Definition
An instance of data type d3_rat_point is a point with rational coordinates in the three-dimensional space. A point with cartesian coordinates (a, b, c) is represented by homogeneous coordinates (x, y, z, w) of arbitrary length integers (see Integers of Arbitrary Length) such that a = x/w, b = y/w, c = z/w and w > 0.
#include < LEDA/geo/d3_rat_point.h >
Creation
d3_rat_point | p | introduces a variable p of type d3_rat_point initialized to the point (0, 0, 0). |
d3_rat_point | p(const rational& a, const rational& b, const rational& c) | |
introduces a variable p of type d3_rat_point initialized to the point (a, b, c). | ||
d3_rat_point | p(integer a, integer b, integer c) | |
introduces a variable p of type d3_rat_point initialized to the point (a, b, c). | ||
d3_rat_point | p(integer x, integer y, integer z, integer w) | |
introduces a variable p of type d3_rat_point
initialized to the point with homogeneous coordinates (x, y, z, w)
if w > 0 and to point
(- x, - y, - z, - w) if w < 0.
Precondition w 0. |
||
d3_rat_point | p(const rat_vector& v) | introduces a variable p of type d3_rat_point initialized
to the point
(v[0], v[1], v[2]).
Precondition: v.dim() = 3. |
Operations
d3_point | p.to_float() | returns a floating point approximation of p. |
rat_vector | p.to_vector() | returns the vector extending from the origin to p. |
integer | p.X() | returns the first homogeneous coordinate of p. |
integer | p.Y() | returns the second homogeneous coordinate of p. |
integer | p.Z() | returns the third homogeneous coordinate of p. |
integer | p.W() | returns the fourth homogeneous coordinate of p. |
double | p.XD() | returns a floating point approximation of p.X(). |
double | p.YD() | returns a floating point approximation of p.Y(). |
double | p.ZD() | returns a floating point approximation of p.Z(). |
double | p.WD() | returns a floating point approximation of p.W(). |
rational | p.xcoord() | returns the x-coordinate of p. |
rational | p.ycoord() | returns the y-coordinate of p. |
rational | p.zcoord() | returns the z-coordinate of p. |
rational | p[int i] | returns the ith cartesian coordinate of p
Precondition 0 < = i < = 2. |
double | p.xcoordD() | returns a floating point approximation of p.xcoord(). |
double | p.ycoordD() | returns a floating point approximation of p.ycoord(). |
double | p.zcoordD() | returns a floating point approximation of p.zcoord(). |
integer | p.hcoord(int i) | returns the ith homogeneous coordinate of p.
Precondition 0 < = i < = 3. |
rat_point | p.project_xy() | returns p projected into the xy-plane. |
rat_point | p.project_yz() | returns p projected into the yz-plane. |
rat_point | p.project_xz() | returns p projected into the xz-plane. |
d3_rat_point | p.reflect(const d3_rat_point& p, const d3_rat_point& q, const d3_rat_point& r) | |
returns p reflected across the plane passing
through p, q and r.
Precondition p, q and r are not collinear. |
||
d3_rat_point | p.reflect(const d3_rat_point& q) | |
returns p reflected across point q. | ||
d3_rat_point | p.translate(const rational& dx, const rational& dy, const rational& dz) | |
returns p translated by vector (dx, dy, dz). | ||
d3_rat_point | p.translate(integer dx, integer dy, integer dz, integer dw) | |
returns p translated by vector (dx/dw, dy/dw, dz/dw). | ||
d3_rat_point | p.translate(const rat_vector& v) | |
returns
p + v, i.e., p translated by vector v
Precondition v.dim() = 3. |
||
d3_rat_point | p + const rat_vector& v | returns p translated by vector v
Precondition v.dim() = 3. |
d3_rat_point | p - const rat_vector& v | returns p translated by vector - v
Precondition v.dim() = 3. |
rational | p.sqr_dist(const d3_rat_point& q) | |
returns the squared distance between p and q. | ||
rational | p.xdist(const d3_rat_point& q) | |
returns the x-distance between p and q. | ||
rational | p.ydist(const d3_rat_point& q) | |
returns the y-distance between p and q. | ||
rational | p.zdist(const d3_rat_point& q) | |
returns the z-distance between p and q. | ||
rat_vector | p - const d3_rat_point& q | returns the difference vector of the coordinates. |
ostream& | ostream& O « const d3_rat_point& p | |
writes the homogeneous coordinates (x, y, z, w) of p to output stream O. | ||
istream& | istream& I » d3_rat_point& p | |
reads the homogeneous coordinates (x, y, z, w) of p from input stream I. |
Non-Member Functions
int | orientation(const d3_rat_point& a, const d3_rat_point& b, const d3_rat_point& c, const d3_rat_point& d) | |
computes the orientation of points a, b, c and d as the
sign of the determinant
i.e., it returns +1 if point d lies left of the directed plane through a, b, c, 0 if a,b, c and d are coplanar, and -1 otherwise. |
||
int | orientation_xy(const d3_rat_point& a, const d3_rat_point& b, const d3_rat_point& c) | |
returns the orientation of the projections of a, b and c into the xy-plane. | ||
int | orientation_yz(const d3_rat_point& a, const d3_rat_point& b, const d3_rat_point& c) | |
returns the orientation of the projections of a, b and c into the yz-plane. | ||
int | orientation_xz(const d3_rat_point& a, const d3_rat_point& b, const d3_rat_point& c) | |
returns the orientation of the projections of a, b and c into the xz-plane. | ||
int | cmp_distances(const d3_rat_point& p1, const d3_rat_point& p2, const d3_rat_point& p3, const d3_rat_point& p4) | |
compares the distances (p1,p2) and (p3,p4). Returns +1 (-1) if distance (p1,p2) is larger (smaller) than distance (p3,p4), otherwise 0. | ||
d3_rat_point | midpoint(const d3_rat_point& a, const d3_rat_point& b) | |
returns the midpoint of a and b. | ||
rational | volume(const d3_rat_point& a, const d3_rat_point& b, const d3_rat_point& c, const d3_rat_point& d) | |
computes the signed volume of the simplex determined by a,b,c, and d, positive if orientation(a, b, c, d ) > 0 and negative otherwise. | ||
bool | collinear(const d3_rat_point& a, const d3_rat_point& b, const d3_rat_point& c) | |
returns true if points a, b, c are collinear, and false otherwise. | ||
bool | coplanar(const d3_rat_point& a, const d3_rat_point& b, const d3_rat_point& c, const d3_rat_point& d) | |
returns true if points a, b, c, d are coplanar and false otherwise. | ||
int | side_of_sphere(const d3_rat_point& a, const d3_rat_point& b, const d3_rat_point& c, const d3_rat_point& d, const d3_rat_point& e) | |
returns +1 (-1) if point e lies on the positive (negative) side of the oriented sphere through points a, b, c, and d, and 0 if e is contained in this sphere. | ||
int | region_of_sphere(const d3_rat_point& a, const d3_rat_point& b, const d3_rat_point& c, const d3_rat_point& d, const d3_rat_point& x) | |
determines whether the point x lies inside (= + 1), on (= 0),
or outside (= - 1) the sphere through points a, b, c, d,
(equivalent to orientation(a,b,c,d) * side_of_sphere(a,b,c,d,x)) Precondition orientation(A)! = 0 |
||
bool | contained_in_simplex(const d3_rat_point& a, const d3_rat_point& b, const d3_rat_point& c, const d3_rat_point& d, const d3_rat_point& x) | |
determines whether x is contained in the simplex spanned
by the points a, b, c, d.
Precondition a, b, c, d are affinely independent. |
||
bool | contained_in_simplex(const array<d3_rat_point>& A, const d3_rat_point& x) | |
determines whether x is contained in the simplex spanned
by the points in A.
Precondition A must have size < = 4 and the points in A must be affinely independent. |
||
bool | contained_in_affine_hull(const list<d3_rat_point>& L, const d3_rat_point& x) | |
determines whether x is contained in the affine hull of the points in L. | ||
bool | contained_in_affine_hull(const array<d3_rat_point>& A, const d3_rat_point& x) | |
determines whether x is contained in the affine hull of the points in A. | ||
int | affine_rank(const array<d3_rat_point>& L) | |
computes the affine rank of the points in L. | ||
int | affine_rank(const array<d3_rat_point>& A) | |
computes the affine rank of the points in A. | ||
bool | affinely_independent(const list<d3_rat_point>& L) | |
decides whether the points in A are affinely independent. | ||
bool | affinely_independent(const array<d3_rat_point>& A) | |
decides whether the points in A are affinely independent. | ||
bool | inside_sphere(const d3_rat_point& a, const d3_rat_point& b, const d3_rat_point& c, const d3_rat_point& d, const d3_rat_point& e) | |
returns true if point e lies in the interior of the sphere through points a, b, c, and d, and false otherwise. | ||
bool | outside_sphere(const d3_rat_point& a, const d3_rat_point& b, const d3_rat_point& c, const d3_rat_point& d, const d3_rat_point& e) | |
returns true if point e lies in the exterior of the sphere through points a, b, c, and d, and false otherwise. | ||
bool | on_sphere(const d3_rat_point& a, const d3_rat_point& b, const d3_rat_point& c, const d3_rat_point& d, const d3_rat_point& e) | |
returns true if points a, b, c, d, and e lie on a common sphere. | ||
d3_rat_point | point_on_positive_side(const d3_rat_point& a, const d3_rat_point& b, const d3_rat_point& c) | |
returns a point d with orientation(a, b, c, d ) > 0. |
Point Generators
d3_rat_point | random_d3_rat_point_in_cube(int maxc) | |
returns a point whose coordinates are random integers in [- maxc..maxc]. | ||
void | random_d3_rat_points_in_cube(int n, int maxc, list<d3_rat_point>& L) | |
returns a list L of n points ... . | ||
d3_rat_point | random_d3_rat_point_in_square(int maxc) | |
returns a point whose x and y-coordinates are random integers in [- maxc..maxc]. The z-coordinate is zero. In 2d, this function is equivalent to random_rat_point_in_cube. | ||
void | random_d3_rat_points_in_square(int n, int maxc, list<d3_rat_point>& L) | |
returns a list L of n points ... . | ||
d3_rat_point | random_d3_rat_point_in_unit_cube(int D = 16383) | |
returns a point whose coordinates are random rationals of the form i/D where i is a random integer in the range [0..D]. The default value of D is 214 - 1. | ||
void | random_d3_rat_points_in_unit_cube(int n, int D, list<d3_rat_point>& L) | |
returns a list L of n points ... . | ||
void | random_d3_rat_points_in_unit_cube(int n, list<d3_rat_point>& L) | |
as above, but the default value of D is used. | ||
d3_rat_point | random_d3_rat_point_in_ball(int R) | |
returns a random point with integer coordinates
in the ball with radius R centered at the origin.
Precondition R < = 214. |
||
void | random_d3_rat_points_in_ball(int n, int R, list<d3_rat_point>& L) | |
returns a list L of n points ... . | ||
d3_rat_point | random_d3_rat_point_in_unit_ball(int D = 16383) | |
returns a point in the unit ball whose coordinates are random rationals of the form i/D where i is a random integer in the range [0..D]. The default value of D is 214 - 1. | ||
void | random_d3_rat_points_in_unit_ball(int n, int D, list<d3_rat_point>& L) | |
returns a list L of n points ... . | ||
void | random_d3_rat_points_in_unit_ball(int n, list<d3_rat_point>& L) | |
returns a list L of n points ... . The default value of D is used. | ||
d3_rat_point | random_d3_rat_point_in_disc(int R) | |
returns a random point with integer x and y-coordinates
in the disc with radius R centered at the origin. The z-coordinate is zero. In 2d this is the same as the function random_rat_point_in_ball.
Precondition R < = 214. |
||
void | random_d3_rat_points_in_disc(int n, int R, list<d3_rat_point>& L) | |
returns a list L of n points ... . | ||
d3_rat_point | random_d3_rat_point_on_circle(int R) | |
returns a random point with integer coordinates that lies close to the circle with radius R centered at the origin. | ||
void | random_d3_rat_points_on_circle(int m, int R, list<d3_rat_point>& L) | |
returns a list L of n points ... . | ||
d3_rat_point | random_d3_rat_point_on_unit_circle(int D = 16383) | |
returns a point close to the unit circle whose coordinates are random rationals of the form i/D where i is a random integer in the range [0..D]. The default value of D is 214 - 1. | ||
void | random_d3_rat_points_on_unit_circle(int m, int D, list<d3_rat_point>& L) | |
returns a list L of n points ... . | ||
void | random_d3_rat_points_on_unit_circle(int m, list<d3_rat_point>& L) | |
returns a list L of n points ... . The default value of D is used. | ||
d3_rat_point | random_d3_rat_point_on_sphere(int R) | |
returns a point with integer coordinates close to the sphere with radius R centered at the origin. | ||
void | random_d3_rat_points_on_sphere(int m, int R, list<d3_rat_point>& L) | |
returns a list L of n points ... . | ||
d3_rat_point | random_d3_rat_point_on_unit_sphere(int D = 16383) | |
returns a point close to the unit sphere whose coordinates are random rationals of the form i/D where i is a random integer in the range [0..D]. The default value of D is 214 - 1. In 2d this function is equivalent to point_on_unit_circle. | ||
void | random_d3_rat_points_on_unit_sphere(int m, int D, list<d3_rat_point>& L) | |
returns a list L of n points ... . | ||
void | random_d3_rat_points_on_unit_sphere(int m, list<d3_rat_point>& L) | |
returns a list L of n points ... . The default value of D is used. | ||
d3_rat_point | random_d3_rat_point_on_paraboloid(int maxc) | |
returns a point (x, y, z) with x and y random integers in the range [- maxc..maxc], and z = 0.004*(x*x + y*y) - 1.25*maxc. The function does not make sense in 2d. | ||
void | random_d3_rat_points_on_paraboloid(int n, int maxc, list<d3_rat_point>& L) | |
returns a list L of n points ... . | ||
void | lattice_d3_rat_points(int n, int maxc, list<d3_rat_point>& L) | |
returns a list L of approximately n points. The points have integer coordinates id /maxc for an appropriately chosen d and - maxc/d < = i < = maxc/d. | ||
void | random_d3_rat_points_on_segment(int n, int maxc, list<d3_rat_point>& L) | |
generates n points on the diagonal whose coordinates are random integer in the range from - maxc to maxc. |