next up previous contents index
Next: Rational Rays ( rat_ray Up: Basic Data Types for Previous: Rational Points ( rat_point   Contents   Index


Rational Segments ( rat_segment )

Definition

An instance s of the data type rat_segment is a directed straight line segment in the two-dimensional plane, i.e., a line segment [p, q] connecting two rational points p and q (cf. Rational Points). p is called the source or start point and q is called the target or end point of s. A segment is called trivial if its source is equal to its target.

#include < LEDA/geo/rat_segment.h >

Types

rat_segment::coord_type the coordinate type (rational).

rat_segment::point_type the point type (rat_point).

rat_segment::float_type the corresponding floatin-point type (segment).

Creation

rat_segment s introduces a variable s of type rat_segment. s is initialized to the empty segment.

rat_segment s(const rat_point& p, const rat_point& q)
    introduces a variable s of type rat_segment. s is initialized to the segment [p, q].

rat_segment s(const rat_point& p, const rat_vector& v)
    introduces a variable s of type rat_segment. s is initialized to the segment [p, p + v].
Precondition v.dim() = 2.

rat_segment s(const rational& x1, const rational& y1, const rational& x2, const rational& y2)
    introduces a variable s of type rat_segment. s is initialized to the segment [(x1, y1),(x2, y2)].

rat_segment s(const integer& x1, const integer& y1, const integer& w1, const integer& x2, const integer& y2, const integer& w2)
    introduces a variable s of type rat_segment. s is initialized to the segment [(x1, y1, w1),(x2, y2, w2)].

rat_segment s(const integer& x1, const integer& y1, const integer& x2, const integer& y2)
    introduces a variable s of type rat_segment. s is initialized to the segment [(x1, y1),(x2, y2)].

rat_segment s(const segment& s1, int prec = rat_point::default_precision)
    introduces a variable s of type rat_segment. s is initialized to the segment obtained by approximating the two defining points of s1.

Operations

segment s.to_float() returns a floating point approximation of s.

void s.normalize() simplifies the homogenous representation by calling source().normalize() and target().normlize().

rat_point s.start() returns the source point of s.

rat_point s.end() returns the target point of s.

rat_segment s.reversal() returns the segment (target(),source()).

rational s.xcoord1() returns the x-coordinate of the source point of s.

rational s.xcoord2() returns the x-coordinate of the target point of s.

rational s.ycoord1() returns the y-coordinate of the source point of s.

rational s.ycoord2() returns the y-coordinate of the target point of s.

double s.xcoord1D() returns a double precision approximation of s.xcoord1().

double s.xcoord2D() returns a double precision approximation of s.xcoord2().

double s.ycoord1D() returns a double precision approximation of s.ycoord1().

double s.ycoord2D() returns a double precision approximation of s.ycoord2().

integer s.X1() returns the first homogeneous coordinate of the source point of s.

integer s.X2() returns the first homogeneous coordinate of the target point of s.

integer s.Y1() returns the second homogeneous coordinate of the source point of s.

integer s.Y2() returns the second homogeneous coordinate of the target point of s.

integer s.W1() returns the third homogeneous coordinate of the source point of s.

integer s.W2() returns the third homogeneous coordinate of the target point of s.

double s.XD1() returns a floating point approximation of s.X1().

double s.XD2() returns a floating point approximation of s.X2().

double s.YD1() returns a floating point approximation of s.Y1().

double s.YD2() returns a floating point approximation of s.Y2().

double s.WD1() returns a floating point approximation of s.W1().

double s.WD2() returns a floating point approximation of s.W2().

integer s.dx() returns the normalized x-difference X2*W1 - X1*W2 of s.

integer s.dy() returns the normalized y-difference Y2*W1 - Y1*W2 of s.

double s.dxD() returns a floating point approximation of s.dx().

double s.dyD() returns a floating point approximation of s.dy().

bool s.is_trivial() returns true if s is trivial.

bool s.is_vertical() returns true if s is vertical.
Precondition s is non-trivial.

bool s.is_horizontal() returns true if s is horizontal.
Precondition s is non-trivial.

rational s.slope() returns the slope of s.
Precondition s is not vertical.

int s.cmp_slope(const rat_segment& s1)
    compares the slopes of s and s1.
Precondition s and s1 are non-trivial.

int s.orientation(const rat_point& p)
    computes orientation(a, b, p) (see below), where a $ \not=$b and a and b appear in this order on segment s.

rational s.x_proj(rational y) returns p.xcoord(), where p $ \in$ line(s) with p.ycoord() = y.
Precondition s is not horizontal.

rational s.y_proj(rational x) returns p.ycoord(), where p $ \in$ line(s) with p.xcoord() = x.
Precondition s is not vertical.

rational s.y_abs() returns the y-abscissa of line(s), i.e., s.y_proj(0).
Precondition s is not vertical.

bool s.contains(const rat_point& p)
    decides whether s contains p.

bool s.intersection(const rat_segment& t)
    decides whether s and t intersect.

bool s.intersection(const rat_segment& t, rat_point& p)
    decides whether s and t intersect. If so, some point of intersection is assigned to p.

bool s.intersection(const rat_segment& t, rat_segment& inter)
    decides whether s and t intersect. If so, the segment formed by the points of intersection is assigned to inter.

bool s.intersection_of_lines(const rat_segment& t, rat_point& p)
    decides if the lines supporting s and t intersect in a single point. If so, the point of intersection is assigned to p.
Precondition s and t are nontrivial.

bool s.overlaps(const rat_segment& t)
    decides whether s and t overlap, i.e. they have a non-trivial intersection.

rat_segment s.translate(const rational& dx, const rational& dy)
    returns s translated by vector (dx, dy).

rat_segment s.translate(const integer& dx, const integer& dy, const integer& dw)
    returns s translated by vector (dx/dw, dy/dw).

rat_segment s.translate(const rat_vector& v)
    returns s + v, i.e., s translated by vector v.
Precondition v.dim() = 2.

rat_segment s + const rat_vector& v returns s translated by vector v.

rat_segment s - const rat_vector& v returns s translated by vector - v.

rat_segment s.rotate90(const rat_point& q, int i=1)
    returns s rotated about q by an angle of i x 90 degrees. If i > 0 the rotation is counter-clockwise otherwise it is clockwise.

rat_segment s.rotate90(int i=1) returns s rotated about the origin by an angle of i x 90 degrees.

rat_segment s.reflect(const rat_point& p, const rat_point& q)
    returns s reflected across the straight line passing through p and q.

rat_segment s.reflect(const rat_point& p)
    returns s reflected across point p.

rat_segment s.reverse() returns s reversed.

rat_segment s.perpendicular(const rat_point& p)
    returns the segment perpendicular to s with source p and target on line(s).
Precondition s is nontrivial.

rational s.sqr_length() returns the square of the length of s.

rational s.sqr_dist(const rat_point& p)
    returns the squared Euclidean distance between p and s.

rational s.sqr_dist() returns the squared distance between s and the origin.

rat_vector s.to_vector() returns the vector s.target() - s.source().

bool s == const rat_segment& t returns true if s and t are equal as oriented segments

int equal_as_sets(const rat_segment& s, const rat_segment& t)
    returns true if s and t are equal as unoriented segments

Non-Member Functions

int cmp_slopes(const rat_segment& s1, const rat_segment& s2)
    returns compare(slope(s1), slope(s2)).

int cmp_segments_at_xcoord(const rat_segment& s1, const rat_segment& s2, const rat_point& p)
    compares points l1 $ \cap$ v and l2 $ \cap$ v where li is the line underlying segment si and v is the vertical straight line passing through point p.

int orientation(const rat_segment& s, const rat_point& p)
    computes orientation(a, b, p), where a $ \not=$b and a and b appear in this order on segment s.


next up previous contents index
Next: Rational Rays ( rat_ray Up: Basic Data Types for Previous: Rational Points ( rat_point   Contents   Index