Definition
An instance C of data type rat_circle is an oriented circle in the plane. A circle is defined by three points p1, p2, p3 with rational coordinates (rat_points). The orientation of C is equal to the orientation of the three defining points, i.e., orientation(p1, p2, p3). Positive orientation corresponds to counter-clockwise orientation and negative orientation corresponds to clockwise orientation.
Some triples of points are unsuitable for defining a circle. A triple is admissable if |{p1, p2, p3}| 2. Assume now that p1, p2, p3 are admissable. If |{p1, p2, p3}| = 1 they define the circle with center p1 and radius zero. If p1, p2, and p3 are collinear C is a straight line passing through p1, p2 and p3 in this order and the center of C is undefined. If p1, p2, and p3 are not collinear, C is the circle passing through them.
#include < LEDA/geo/rat_circle.h >
Types
rat_circle::coord_type | the coordinate type (rational). |
rat_circle::point_type | the point type (rat_point). |
rat_circle::float_type | the corresponding floatin-point type (circle). |
Creation
rat_circle | C(const rat_point& a, const rat_point& b, const rat_point& c) | |
introduces a variable C of type
ratcircle. C is
initialized to the circle through points a, b, and c.
Precondition a, b, and c are admissable. |
||
rat_circle | C(const rat_point& a, const rat_point& b) | |
introduces a variable C of type circle. C is initialized to the counter-clockwise oriented circle with center a passing through b. | ||
rat_circle | C(const rat_point& a) | introduces a variable C of type circle. C is initialized to the trivial circle with center a. |
rat_circle | C | introduces a variable C of type ratcircle. C is initialized to the trivial circle centered at (0, 0). |
rat_circle | C(const circle& c, int prec = rat_point::default_precision) | |
introduces a variable C of type rat_circle. C is initialized to the circle obtained by approximating three defining points of c. |
Operations
circle | C.to_float() | returns a floating point approximation of C. |
void | C.normalize() | simplifies the homogenous representation by normalizing p1, p2, and p3. |
int | C.orientation() | returns the orientation of C. |
rat_point | C.center() | returns the center of C.
Precondition C has a center, i.e., is not a line. |
rat_point | C.point1() | returns p1. |
rat_point | C.point2() | returns p2. |
rat_point | C.point3() | returns p3. |
rational | C.sqr_radius() | returns the square of the radius of C. |
rat_point | C.point_on_circle(double alpha, double epsilon) | |
returns a point p on C such that the angle of p differs from alpha by at most epsilon. | ||
bool | C.is_degenerate() | returns true if the defining points are collinear. |
bool | C.is_trivial() | returns true if C has radius zero. |
bool | C.is_line() | returns true if C is a line. |
rat_line | C.to_line() | returns line(point1(), point3()). |
int | C.side_of(const rat_point& p) | |
returns -1, +1, or 0 if p lies right of, left of, or on C respectively. | ||
bool | C.inside(const rat_point& p) | |
returns true iff p lies inside of C. | ||
bool | C.outside(const rat_point& p) | |
returns true iff p lies outside of C. | ||
bool | C.contains(const rat_point& p) | |
returns true iff p lies on C. | ||
rat_circle | C.translate(const rational& dx, const rational& dy) | |
returns C translated by vector (dx, dy). | ||
rat_circle | C.translate(integer dx, integer dy, integer dw) | |
returns C translated by vector (dx/dw, dy/dw). | ||
rat_circle | C.translate(const rat_vector& v) | |
returns C translated by vector v. | ||
rat_circle | C + const rat_vector& v | returns C translated by vector v. |
rat_circle | C - const rat_vector& v | returns C translated by vector - v. |
rat_circle | C.rotate90(const rat_point& q, int i=1) | |
returns C rotated by i x 90 degrees about q. If i > 0 the rotation is counter-clockwise otherwise it is clockwise. | ||
rat_circle | C.reflect(const rat_point& p, const rat_point& q) | |
returns C reflected across the straight line passing through p and q. | ||
rat_circle | C.reflect(const rat_point& p) | |
returns C reflected across point p. | ||
rat_circle | C.reverse() | returns C reversed. |
bool | C == const rat_circle& D | returns true if C and D are equal as oriented circles. |
bool | equal_as_sets(const rat_circle& C1, const rat_circle& C2) | |
returns true if C1 and C2 are equal as unoriented circles. | ||
bool | radical_axis(const rat_circle& C1, const rat_circle& C2, rat_line& rad_axis) | |
if the radical axis for C1 and C2 exists, it is assigned to rad_axis and true is returned; otherwise the result is false. | ||
ostream& | ostream& out « const rat_circle& c | |
writes the three defining points. | ||
istream& | istream& in » rat_circle& c | |
reads three points and assigns the circle defined by them to c. |