Example of How to Use SPANNING_TREE() and MIN_SPANNING_TREE()
The following program shows how the functions SPANNING_TREE()
and MIN_SPANNING_TREE() can be used to compute a spanning
tree and a minimum spanning tree in a graph.
Remark: The graph algorithms in LEDA are generic, that is, they
accept graphs as well as parameterized
graphs.
We first create a graph G with five nodes and nine edges
and call SPANNING_TREE() for G . SPANNING_TREE()
returns the list of edges
of the spanning tree. After that we define edge_array<int>
cost to store the costs on the edges of G and call
MIN_SPANNING_TREE() for G and cost .
The result is the list of edges in the minimum spanning tree.
#include <LEDA/graph/graph.h>
#include <LEDA/graph/min_span.h>
using namespace leda;
int main()
{
graph G;
node n0=G.new_node(); node n1=G.new_node();
node n2=G.new_node(); node n3=G.new_node();
node n4=G.new_node();
edge e0=G.new_edge(n0,n1); edge e1=G.new_edge(n0,n2);
edge e2=G.new_edge(n0,n4); edge e3=G.new_edge(n1,n2);
edge e4=G.new_edge(n1,n3); edge e5=G.new_edge(n1,n4);
edge e6=G.new_edge(n2,n3); edge e7=G.new_edge(n2,n4);
edge e8=G.new_edge(n3,n4);
list<edge> tree_edges=SPANNING_TREE(G);
std::cout << "Spanning tree: ";
edge e; forall(e,tree_edges) G.print_edge(e);
std::cout << std::endl;
edge_array<int> cost(G);
cost[e0]=3; cost[e1]=1; cost[e2]=4; cost[e3]=1;
cost[e4]=1; cost[e5]=1; cost[e6]=1; cost[e7]=1;
cost[e8]=1;
list<edge> min_tree_edges=MIN_SPANNING_TREE(G,cost);
std::cout << "Minimum spanning tree: ";
forall(e,min_tree_edges) G.print_edge(e);
std::cout << std::endl;
return 0;
}
|
See also:
Spanning Trees and Minimum Spanning Trees
Graphs
Parameterized Graphs
Edge Arrays
Linear Lists
Manual Entries:
Minimum
Spanning Trees
|