> LEDA Guide > Graph Algorithms > Shortest Path Algorithms > Checking the Results of an SSSP Algorithm > Example CHECK_SP_T()

Example of How to Use CHECK_SP_T()

The following program shows how the function CHECK_SP_T() can be used to check the result of a single source shortest paths computation in a directed graph.

Remark: The graph algorithms in LEDA are generic, that is, they accept graphs as well as parameterized graphs.

In order to use the template functions CHECK_SP_T() we need to include <LEDA/templates/shortest_path.t>. We use the LEDA number type integer as the number type NT for the edge costs. In constrast to the C++ number type int, LEDA's integer does not overflow.

#include <LEDA/graph/graph.h>
#include <LEDA/graph/templates/shortest_path.h>
#include <LEDA/numbers/integer.h>

using namespace leda;

In main() we first create a simple graph G with six nodes and six edges. We use an edge_array<integer> cost to store the costs of the edges of G.

int main()
{
  graph G; 

  node n0=G.new_node(); node n1=G.new_node();
  node n2=G.new_node(); node n3=G.new_node();
  node n4=G.new_node(); node n5=G.new_node();

  edge e0=G.new_edge(n0,n1); edge e1=G.new_edge(n0,n2);
  edge e2=G.new_edge(n2,n3); edge e3=G.new_edge(n3,n4);
  edge e4=G.new_edge(n4,n2); edge e5=G.new_edge(n3,n5);
 
  edge_array<integer> cost(G);
  cost[e0]=1; cost[e1]=1;  cost[e2]=-1;
  cost[e3]=1; cost[e4]=-1; cost[e5]=1;

In our example SHORTEST_PATH_T() is used for the SSSP computation. The node_array<edge> pred and the node_array<integer> dist are used for the result of SHORTEST_PATH_T(). The result of the function CHECK_SP_T() is the node_array<int> label. For a node v, label[v]==-2 if v is on a negative cost cycle, label[v]==-1 if v is reachable from a negative cost cycle, label[v]>0 if v is not reachable from s, and label[v]==0 otherwise. CHECK_SP_T() aborts with an error message if the check fails.

  node_array<edge> pred(G);  
  node_array<integer> dist(G);
  SHORTEST_PATH_T(G,n0,cost,dist,pred);
 
  node_array<int> label(G);
  label=CHECK_SP_T(G,n0,cost,dist,pred);

  node v;
  forall_nodes(v,G) {
    G.print_node(v);
    if (label[v]==-2) 
      std::cout << " is on a negative cycle." << std::endl;
    else if (label[v]==-1) 
      std::cout << " is reachable from a negative cycle." << std::endl;
    else if (label[v]>0) 
      std::cout << " is not reachable from n0." << std::endl;
    else 
      std::cout << " has finite distance from n0." << std::endl;
  }

  return 0;
}

See also:

Checking the Results of an SSSP Algorithm

Generic Algorithms for SSSP

Integer

Graphs

Parameterized Graphs

Edge Arrays

Node Arrays


Shortest Path Algorithms

Graphs and Related Data Types

Number Types


Manual Entries:

Page Shortest Path Algorithms




Algorithmic Solutions Software GmbH