> LEDA Guide > Graph Algorithms > Matching Algorithms > Bipartite Maximum Weighted Maximum Cardinality Matching > Example MWMCB_MATCHING_T()

Example MWMCB_MATCHING_T()

The following program shows how the function MWMCB_MATCHING_T() can be used to compute a maximum weighted maximum cardinality matching and a corresponding potential function for the nodes in a bipartite graph.

Remark: The graph algorithms in LEDA are generic, that is, they accept graphs as well as parameterized graphs.

In order to use the template function MWMCB_MATCHING_T() we need to include <LEDA/templates/mwb_matching.t>. We use the LEDA number type integer as the number type NT for the edge weights. In constrast to the C++ number type int, LEDA's integer does not overflow.

#include <LEDA/graph/graph.h>
#include <LEDA/graph/templates/mwb_matching.h>
#include <LEDA/numbers/integer.h>

using namespace leda;

In main() we first create a bipartite graph G=(A,B,E) with three nodes in A, four nodes in B, and six edges. We use a list<node> to store A and B. Then we assign weights to the edges using an edge_array<integer> weight.

int main()
{
  graph G; 

  list<node> A;
  node a0=G.new_node(); A.append(a0);
  node a1=G.new_node(); A.append(a1);
  node a2=G.new_node(); A.append(a2);

  list<node> B;
  node b0=G.new_node(); B.append(b0);
  node b1=G.new_node(); B.append(b1);
  node b2=G.new_node(); B.append(b2);
  node b3=G.new_node(); B.append(b3);

  edge e0=G.new_edge(a0,b1); edge e1=G.new_edge(a0,b3);
  edge e2=G.new_edge(a1,b0); edge e3=G.new_edge(a2,b0);
  edge e4=G.new_edge(a2,b2); edge e5=G.new_edge(a0,b0);
 
  edge_array<integer> weight(G);
  weight[e0]=1; weight[e1]=2; weight[e2]=3;
  weight[e3]=2; weight[e4]=1; weight[e5]=10;

The result of MWMCB_MATCHING_T() is a list<edge> M containing the edges in the maximum weighted maximum cardinality matching and a node_array<integer> pot for the potentials of the nodes of G.

  node_array<integer> pot(G);
  list<edge> M=MWMCB_MATCHING_T(G,A,B,weight,pot);

  std::cout << "Maximum Weighted Maximum "
            << " Cardinality Matching:" << std::endl;
  integer weight_of_M=0;
  edge e;
  forall(e,M) {G.print_edge(e); weight_of_M+=weight[e];}
  std::cout << " weight: " << weight_of_M << std::endl;

  node v; forall_nodes(v,G) {
    std::cout << "pot"; G.print_node(v);
    std::cout << "=" << pot[v] << std::endl;
  }
  
  return 0;
}

Remark 1: Notice that the resulting matching in our example is a maximum cardinality matching for G, but not a maximum weighted matching.

Remark 2: There is a variant of MWMCB_MATCHING_T() that does not need the parameter pot.

Tip: Using the smaller set as A and the bigger set as B leads to smaller running times, in general.

See also:

Bipartite Maximum Weighted Maximum Cardinality Matching

Graphs

Parameterized Graphs

Integers

Linear Lists

Edge Arrays

Node Arrays


Matching Algorithms

Number Types


Manual Entries:

Manual Page Bipartite Weighted Matchings and Assignments



Algorithmic Solutions Software GmbH