> LEDA Guide > Graph Algorithms > Matching Algorithms > Bipartite Weighted Matching > Example MWMCB_MATCHING()

Example MWMCB_MATCHING()

The following program shows how the function MWMCB_MATCHING() can be used to compute a maximum weighted matching and a corresponding potential function for the nodes in a bipartite graph. It also shows how the function CHECK_MCB() can be used to check the correctness of the result.

Remark: The graph algorithms in LEDA are generic, that is, they accept graphs as well as parameterized graphs.

In main() we first create a bipartite graph G=(A,B,E) with three nodes in A, four nodes in B, and six edges. We use a list<node> to store A and B. We use an edge_array<double> weight to store the weights of the edges of G. The variant of MWMCB_MATCHING() for int can be used in exactly the same way. You only need to replace double by int in weight and pot.

#include <LEDA/graph/graph.h>
#include <LEDA/graph/mwb_matching.h>

using namespace leda;

int main()
{
  graph G; 

  list<node> A;
  node a0=G.new_node(); A.append(a0);
  node a1=G.new_node(); A.append(a1);
  node a2=G.new_node(); A.append(a2);

  list<node> B;
  node b0=G.new_node(); B.append(b0);
  node b1=G.new_node(); B.append(b1);
  node b2=G.new_node(); B.append(b2);
  node b3=G.new_node(); B.append(b3);

  edge e0=G.new_edge(a0,b1); edge e1=G.new_edge(a0,b3);
  edge e2=G.new_edge(a1,b0); edge e3=G.new_edge(a2,b0);
  edge e4=G.new_edge(a2,b2); edge e5=G.new_edge(a0,b0);

The result of MWMCB_MATCHING() is a list<edge> M containing the edges in the maximum weighted maximum cardinality matching and a node_array<integer> pot for the potentials of the nodes of G.

  edge_array<double> weight(G);
  weight[e0]=1; weight[e1]=2; weight[e2]=3;
  weight[e3]=2; weight[e4]=1; weight[e5]=10;

  node_array<double> pot(G);
  list<edge> M=MWMCB_MATCHING(G,A,B,weight,pot);

  std::cout << "Maximum Weighted Maximum " 
            << " Cardinality Matching:" << std::endl;
  double weight_of_M=0;
  edge e;
  forall(e,M) {G.print_edge(e); weight_of_M+=weight[e];}
  std::cout << " weight: " << weight_of_M << std::endl;

  node v; forall_nodes(v,G) {
    std::cout << "pot"; G.print_node(v);
    std::cout << "=" << pot[v] << std::endl;
  }
 
  return 0;
}

Remark: There are variants of MAX_WEIGHT_MATCHING_T() that do not need the parameter pot and variants without explicitely stating the bipartition of G as list<node> A, list<node> B. Have look at the Manual Page Bipartite Weighted Matchings and Assignments for details.

Tip: Using the smaller set as A and the bigger set as B leads to smaller running times, in general.

See also:

Bipartite Weighted Matching

Graphs

Parameterized Graphs

Linear Lists

Edge Arrays

Node Arrays


Matching Algorithms


Manual Entries:

Manual Page Bipartite Weighted Matchings and Assignments



Algorithmic Solutions Software GmbH