
Version 7.2

The LEDA User Manual

Algorithmic Solutions

Contents

1 Preface 1

2 Basics 3

2.1 Getting Started . 3

2.2 The LEDA Manual Page (the type specification) 4

2.3 User Defined Parameter Types . 6

2.3.1 Linear Orders . 7

2.3.2 Hashed Types . 10

2.4 Arguments . 11

2.5 Items . 11

2.6 Iteration . 13

3 Modules 15

4 Simple Data Types and Basic Support Operations 17

4.1 Strings (string) . 17

4.2 File Input Streams (file istream) . 22

4.3 File Output Streams (file ostream) . 22

4.4 String Input Streams (string istream) . 22

4.5 String Output Streams (string ostream) 22

4.6 Random Sources (random source) . 24

4.7 Random Variates (random variate) . 26

4.8 Dynamic Random Variates (dynamic random variate) 26

4.9 Memory Management . 28

4.10 Memory Allocator (leda allocator) . 29

4.11 Error Handling (error) . 31

4.12 Files and Directories (file) . 33

4.13 Sockets (leda socket) . 35

4.14 Some Useful Functions (misc) . 38

4.15 Timer (timer) . 40

4.16 Counter (counter) . 43

4.17 Two Tuples (two tuple) . 45

4.18 Three Tuples (three tuple) . 46

4.19 Four Tuples (four tuple) . 47

4.20 A date interface (date) . 50

i

ii CONTENTS

5 Number Types and Linear Algebra 57

5.1 Integers of Arbitrary Length (integer) . 57

5.2 Rational Numbers (rational) . 60

5.3 The data type bigfloat (bigfloat) . 62

5.4 The data type real (real) . 67

5.5 Interval Arithmetic in LEDA (interval) 74

5.6 Modular Arithmetic in LEDA (residual) 77

5.7 The mod kernel of type residual (residual) 78

5.8 The smod kernel of type residual (residual) 79

5.9 A Floating Point Filter (floatf) . 82

5.10 Double-Valued Vectors (vector) . 84

5.11 Double-Valued Matrices (matrix) . 87

5.12 Vectors with Integer Entries (integer vector) 90

5.13 Matrices with Integer Entries (integer matrix) 92

5.14 Rational Vectors (rat vector) . 97

5.15 Real-Valued Vectors (real vector) . 102

5.16 Real-Valued Matrices (real matrix) . 105

5.17 Numerical Analysis Functions (numerical analysis) 107

5.17.1 Minima and Maxima . 107

5.17.2 Integration . 108

5.17.3 Useful Numerical Functions . 108

5.17.4 Root Finding . 108

6 Basic Data Types 109

6.1 One Dimensional Arrays (array) . 109

6.2 Two Dimensional Arrays (array2) . 114

6.3 Stacks (stack) . 115

6.4 Queues (queue) . 116

6.5 Bounded Stacks (b stack) . 117

6.6 Bounded Queues (b queue) . 118

6.7 Linear Lists (list) . 120

6.8 Singly Linked Lists (slist) . 128

6.9 Sets (set) . 130

6.10 Integer Sets (int set) . 133

6.11 Dynamic Integer Sets (d int set) . 135

6.12 Partitions (partition) . 138

6.13 Parameterized Partitions (Partition) . 140

CONTENTS iii

7 Dictionary Types 143

7.1 Dictionaries (dictionary) . 143

7.2 Dictionary Arrays (d array) . 146

7.3 Hashing Arrays (h array) . 149

7.4 Maps (map) . 151

7.5 Two-Dimensional Maps (map2) . 153

7.6 Sorted Sequences (sortseq) . 155

8 Priority Queues 163

8.1 Priority Queues (p queue) . 163

8.2 Bounded Priority Queues (b priority queue) 166

9 Graphs and Related Data Types 169

9.1 Graphs (graph) . 169

9.2 Parameterized Graphs (GRAPH) . 185

9.3 Static Graphs (static graph) . 189

9.4 Undirected Graphs (ugraph) . 195

9.5 Parameterized Ugraph (UGRAPH) . 195

9.6 Planar Maps (planar map) . 197

9.7 Parameterized Planar Maps (PLANAR MAP) 199

9.8 Node Arrays (node array) . 201

9.9 Edge Arrays (edge array) . 203

9.10 Face Arrays (face array) . 205

9.11 Node Maps (node map) . 207

9.12 Edge Maps (edge map) . 209

9.13 Face Maps (face map) . 211

9.14 Two Dimensional Node Arrays (node matrix) 213

9.15 Two-Dimensional Node Maps (node map2) 215

9.16 Sets of Nodes (node set) . 217

9.17 Sets of Edges (edge set) . 218

9.18 Lists of Nodes (node list) . 219

9.19 Node Partitions (node partition) . 221

9.20 Node Priority Queues (node pq) . 222

9.21 Bounded Node Priority Queues (b node pq) 224

9.22 Graph Generators (graph gen) . 226

9.23 Miscellaneous Graph Functions (graph misc) 231

9.24 Markov Chains (markov chain) . 235

9.25 Dynamic Markov Chains (dynamic markov chain) 236

9.26 GML Parser for Graphs (gml graph) . 237

9.27 The LEDA graph input/output format . 242

iv CONTENTS

10 Graph Algorithms 243

10.1 Basic Graph Algorithms (basic graph alg) 244

10.2 Shortest Path Algorithms (shortest path) 247

10.3 Maximum Flow (max flow) . 251

10.4 Min Cost Flow Algorithms (min cost flow) 253

10.5 Minimum Cut (min cut) . 254

10.6 Maximum Cardinality Matchings in Bipartite Graphs (mcb matching) . . 256

10.7 Bipartite Weighted Matchings and Assignments (mwb matching) 257

10.8 Maximum Cardinality Matchings in General Graphs (mc matching) . . . 261

10.9 General Weighted Matchings (mw matching) 263

10.10Stable Matching (stable matching) . 269

10.11Minimum Spanning Trees (min span) . 271

10.12Euler Tours (euler tour) . 272

10.13Algorithms for Planar Graphs (plane graph alg) 273

10.14Graph Drawing Algorithms (graph draw) 276

10.15Graph Morphism Algorithms (graph morphism) 279

10.16Graph Morphism Algorithm Functionality (graph morphism algorithm) . 280

11 Graphs and Iterators 287

11.1 Introduction . 287

11.1.1 Iterators . 287

11.1.2 Handles and Iterators . 288

11.1.3 STL Iterators . 288

11.1.4 Circulators . 289

11.1.5 Data Accessors . 289

11.1.6 Graphiterator Algorithms . 291

11.2 Node Iterators (NodeIt) . 293

11.3 Edge Iterators (EdgeIt) . 295

11.4 Face Iterators (FaceIt) . 296

11.5 Adjacency Iterators for leaving edges (OutAdjIt) 298

11.6 Adjacency Iterators for incoming edges (InAdjIt) 301

11.7 Adjacency Iterators (AdjIt) . 303

11.8 Face Circulators (FaceCirc) . 306

11.9 Filter Node Iterator (FilterNodeIt) . 308

11.10Comparison Predicate (CompPred) . 309

11.11Observer Node Iterator (ObserverNodeIt) 311

CONTENTS v

11.12STL Iterator Wrapper (STLNodeIt) . 313

11.13Node Array Data Accessor (node array da) 315

11.14Constant Accessors (constant da) . 317

11.15Node Member Accessors (node member da) 317

11.16Node Attribute Accessors (node attribute da) 319

11.17Breadth First Search (flexible) (GIT BFS) 320

11.18Depth First Search (flexible) (GIT DFS) 322

11.19Topological Sort (flexible) (GIT TOPOSORT) 324

11.20Strongly Connected Components (flexible) (GIT SCC) 326

11.21Dijkstra(flexible) (GIT DIJKSTRA) . 328

12 Basic Data Types for Two-Dimensional Geometry 331

12.1 Points (point) . 332

12.2 Segments (segment) . 337

12.3 Straight Rays (ray) . 341

12.4 Straight Lines (line) . 344

12.5 Circles (circle) . 348

12.6 Polygons (POLYGON) . 352

12.7 Generalized Polygons (GEN POLYGON) 358

12.8 Triangles (triangle) . 365

12.9 Iso-oriented Rectangles (rectangle) . 368

12.10Rational Points (rat point) . 371

12.11Rational Segments (rat segment) . 376

12.12Rational Rays (rat ray) . 381

12.13Straight Rational Lines (rat line) . 384

12.14Rational Circles (rat circle) . 388

12.15Rational Triangles (rat triangle) . 391

12.16Iso-oriented Rational Rectangles (rat rectangle) 394

12.17Real Points (real point) . 398

12.18Real Segments (real segment) . 403

12.19Real Rays (real ray) . 407

12.20Straight Real Lines (real line) . 410

12.21Real Circles (real circle) . 414

12.22Real Triangles (real triangle) . 418

12.23Iso-oriented Real Rectangles (real rectangle) 421

12.24Geometry Algorithms (geo alg) . 425

12.25Transformation (TRANSFORM) . 436

12.26Point Generators (point generators) . 439

12.27Point on Rational Circle (r circle point) 443

12.28Segment of Rational Circle (r circle segment) 445

12.29Polygons with circular edges (r circle polygon) 450

12.30Generalized polygons with circular edges (r circle gen polygon) 456

12.31Parser for well known binary format (wkb io) 464

vi CONTENTS

13 Advanced Data Types for Two-Dimensional Geometry 465

13.1 Point Sets and Delaunay Triangulations (POINT SET) 465

13.2 Point Location in Triangulations (POINT LOCATOR) 472

13.3 Sets of Intervals (interval set) . 473

13.4 Planar Subdivisions (subdivision) . 475

14 Basic Data Types for Three-Dimensional Geometry 477

14.1 Points in 3D-Space (d3 point) . 478

14.2 Straight Rays in 3D-Space (d3 ray) . 483

14.3 Segments in 3D-Space (d3 segment) . 485

14.4 Straight Lines in 3D-Space (d3 line) . 487

14.5 Planes (d3 plane) . 489

14.6 Spheres in 3D-Space (d3 sphere) . 492

14.7 Simplices in 3D-Space (d3 simplex) . 494

14.8 Rational Points in 3D-Space (d3 rat point) 496

14.9 Straight Rational Rays in 3D-Space (d3 rat ray) 505

14.10Rational Lines in 3D-Space (d3 rat line) 507

14.11Rational Segments in 3D-Space (d3 rat segment) 510

14.12Rational Planes (d3 rat plane) . 513

14.13Rational Spheres (d3 rat sphere) . 516

14.14Rational Simplices (d3 rat simplex) . 518

14.153D Convex Hull Algorithms (d3 hull) . 520

14.163D Triangulation and Voronoi Diagram Algorithms (d3 delaunay) 521

15 Graphics 523

15.1 Colors (color) . 523

15.2 Windows (window) . 525

15.3 Panels (panel) . 560

15.4 Menues (menu) . 561

15.5 Postscript Files (ps file) . 563

15.6 Graph Windows (GraphWin) . 564

15.7 The GraphWin (GW) File Format . 583

15.7.1 A complete example . 587

15.8 Geometry Windows (GeoWin) . 590

15.9 Windows for 3d visualization (d3 window) 626

16 Implementations 631

16.1 User Implementations . 631

16.1.1 Dictionaries . 631

16.1.2 Priority Queues . 633

16.1.3 Sorted Sequences . 634

CONTENTS vii

A Technical Information 635

A.1 LEDA Library and Packages . 635

A.2 Contents of a LEDA Source Code Package 635

A.3 Source Code on UNIX Platforms . 636

A.4 Source Code on Windows with MS Visual C++ 636

A.5 Usage of Header Files . 638

A.6 Object Code on UNIX . 638

A.7 Static Libraries for MS Visual C++ .NET 639

A.8 DLL’s for MS Visual C++ .NET . 643

A.9 Namespaces and Interaction with other Libraries 648

A.10 Platforms . 648

B The golden LEDA rules 649

B.1 The LEDA rules in detail . 649

B.2 Code examples for the LEDA rules . 651

Chapter 1

Preface

One of the major differences between combinatorial computing and other areas of com-
puting such as statistics, numerical analysis and linear programming is the use of complex
data types. Whilst the built-in types, such as integers, reals, vectors, and matrices, usu-
ally suffice in the other areas, combinatorial computing relies heavily on types like stacks,
queues, dictionaries, sequences, sorted sequences, priority queues, graphs, points, seg-
ments, . . . In the fall of 1988, we started a project (called LEDA for Library of Efficient
Data types and Algorithms) to build a small, but growing library of data types and algo-
rithms in a form which allows them to be used by non-experts. We hope that the system
will narrow the gap between algorithms research, teaching, and implementation. The
main features of LEDA are:

1. LEDA provides a sizable collection of data types and algorithms in a form which
allows them to be used by non-experts. This collection includes most of the data
types and algorithms described in the text books of the area.

2. LEDA gives a precise and readable specification for each of the data types and
algorithms mentioned above. The specifications are short (typically, not more than
a page), general (so as to allow several implementations), and abstract (so as to
hide all details of the implementation).

3. For many efficient data structures access by position is important. In LEDA, we
use an item concept to cast positions into an abstract form. We mention that most
of the specifications given in the LEDA manual use this concept, i.e., the concept is
adequate for the description of many data types.

4. LEDA contains efficient implementations for each of the data types, e.g., Fibonacci
heaps for priority queues, skip lists and dynamic perfect hashing for dictionaries, ...

5. LEDA contains a comfortable data type graph. It offers the standard iterations such
as “for all nodes v of a graph G do” or “for all neighbors w of v do”, it allows to
add and delete vertices and edges and it offers arrays and matrices indexed by nodes
and edges,... The data type graph allows to write programs for graph problems in
a form close to the typical text book presentation.

6. LEDA is implemented by a C++ class library. It can be used with almost any C++
compiler that supports templates.

1

2 CHAPTER 1. PREFACE

7. LEDA is available from Algorithmic Solutions Software GmbH. See
http://www.algorithmic-solutions.com.

This manual contains the specifications of all data types and algorithms currently available
in LEDA. Users should be familiar with the C++ programming language (see [85] or [58]).

The manual is structured as follows: In Chapter Basics, which is a prerequisite for all
other chapters, we discuss the basic concepts and notations used in LEDA. New users
of LEDA should carefully read Section User Defined Parameter Types to avoid problems
when plugging in self defined parameter types. If you want to get information about the
LEDA documentation scheme please read Section DocTools. For technical information
concerning the installation and usage of LEDA users should refer to Chapter TechnicalIn-
formation. There is also a section describing namespaces and the interaction with other
software libraries (Section NameSpace). The other chapters define the data types and
algorithms available in LEDA and give examples of their use. These chapters can be
consulted independently from one another.

More information about LEDA can be found on the LEDA web page:
http://www.algorithmic-solutions.com/leda/

Finally there’s a tool called xlman which allows online help and demonstration on all unix
platforms having a LATEX package installed.

New in Version 7.2

Please read the CHANGES and FIXES files in the LEDA root directory for more infor-
mation.

Chapter 2

Basics

An extended version of this chapter is available as chapter Foundations of [66]

2.1 Getting Started

Please use your favourite text editor to create a file prog.c with the following program:

#include <LEDA/core/d_array.h>

#include <LEDA/core/string.h>

#include <iostream>

using std::cin;

using std::cout;

using std::endl;

using leda::string;

using leda::d_array;

int main()

{

d_array<string,int> N(0);

string s;

while (cin >> s) N[s]++;

forall_defined (s,N)

cout << s << " " << N[s] << endl;

return 0;

}

If you followed the installation guidelines (see Chapter TechnicalInformation ff.), you can
compile and link it with LEDA’s library libleda (cf. Section Libraries). For example, on
a Unix machine where g++ is installed you can type

g++ -o prog prog.c -lleda -lX11 -lm

3

4 CHAPTER 2. BASICS

When executed it reads a sequence of strings from the standard input and then prints the
number of occurrences of each string on the standard output. More examples of LEDA
programs can be found throughout this manual.

The program above uses the parameterized data type dictionary array (d array<I,E>)
from the library. This is expressed by the include statement (cf. Section Header Files
for more details). The specification of the data type d array can be found in Section
Dictionary Arrays. We use it also as a running example to discuss the principles underlying
LEDA in the following sections.

2.2 The LEDA Manual Page (the type specification)

In general the specification of a LEDA data type consists of five parts: a definition of the
set of objects comprising the (parameterized) abstract data type, a list of all local types of
the data type, a description of how to create an object of the data type, the definition of
the operations available on the objects of the data type, and finally, information about the
implementation. The five parts appear under the headers definition, types, creation,
operations, and implementation, respectively. Sometimes there is also a fifth part
showing an example.

• Definition

This part of the specification defines the objects (also called instances or elements)
comprising the data type using standard mathematical concepts and notation.

Example

The generic data type dictionary array:

An object a of type d array<I,E> is an injective function from the data type I to
the set of variables of data type E. The types I and E are called the index and the
element type, respectively. a is called a dictionary array from I to E.

Note that the types I and E are parameters in the definition above. Any built-in,
pointer, item, or user-defined class type T can be used as actual type parameter of
a parameterized data type. Class types however have to provide several operations
listed in Chapter User Defined Parameter Types.

• Types

This section gives the list of all local types of the data type. For example,

d array<I,E>::item the item type.
d array<I,E>::index type ¿the index type.
d array<I,E>::element type ¿the element type.

• Creation

A variable of a data type is introduced by a C++ variable declaration. For all LEDA
data types variables are initialized at the time of declaration. In many cases the
user has to provide arguments used for the initialization of the variable. In general
a declaration

2.2. THE LEDA MANUAL PAGE (THE TYPE SPECIFICATION) 5

XYZ<t1, ... ,tk> y(x1, ... ,xt);

introduces a variable y of the data type XYZ< t1, ... ,tk > and uses the argu-
ments x1, ... ,xt to initialize it. For example,

h_array<string,int> A(0);

introduces A as a dictionary array from strings to integers, and initializes A as
follows: an injective function a from string to the set of unused variables of type
int is constructed, and is assigned to A. Moreover, all variables in the range of a
are initialized to 0. The reader may wonder how LEDA handles an array of infinite
size. The solution is, of course, that only that part of A is explicitly stored which
has been accessed already.

For all data types, the assignment operator (=) is available for variables of that
type. Note however that assignment is in general not a constant time operation,
e.g., if L1 and L2 are variables of type list<T> then the assignment L1 = L2 takes
time proportional to the length of the list L2 times the time required for copying
an object of type T .

Remark: For most of the complex data types of LEDA, e.g., dictionaries, lists,
and priority queues, it is convenient to interpret a variable name as the name for an
object of the data type which evolves over time by means of the operations applied
to it. This is appropriate, whenever the operations on a data type only “modify”
the values of variables, e.g., it is more natural to say an operation on a dictionary D
modifies D than to say that it takes the old value of D, constructs a new dictionary
out of it, and assigns the new value to D. Of course, both interpretations are
equivalent. From this more object-oriented point of view, a variable declaration,
e.g., dictionary<string,int> D, is creating a new dictionary object with name D
rather than introducing a new variable of type dictionary<string,int>; hence
the name “Creation” for this part of a specification.

• Operations

In this section the operations of the data types are described. For each operation
the description consists of two parts

1. The interface of the operation is defined using the C++ function declaration
syntax. In this syntax the result type of the operation (void if there is no
result) is followed by the operation name and an argument list specifying the
type of each argument. For example,

list_item L.insert (E x, list_item it, int dir = leda::after)

defines the interface of the insert operation on a list L of elements of type E
(cf. Section Linear Lists). Insert takes as arguments an element x of type
E, a list item it and an optional relative position argument dir. It returns a
list item as result.

E& A[I x]

6 CHAPTER 2. BASICS

defines the interface of the access operation on a dictionary array A. It takes
an element x of type I as an argument and returns a variable of type E.

2. The effect of the operation is defined. Often the arguments have to fulfill
certain preconditions. If such a condition is violated the effect of the operation
is undefined. Some, but not all, of these cases result in error messages and
abnormal termination of the program (see also Section Error Handling). For
the insert operation on lists this definition reads:

A new item with contents x is inserted after (if dir = leda::after) or
before (if dir = leda::before) item it into L. The new item is returned.
Precondition: item it must be in L.

For the access operation on dictionary arrays the definition reads:

returns the variable A(x).

• Implementation

The implementation section lists the (default) data structures used to implement the
data type and gives the time bounds for the operations and the space requirement.
For example,

Dictionary arrays are implemented by randomized search trees ([3]). Access opera-
tions A[x] take time O(log dom(A)). The space requirement is O(dom(A)).

2.3 User Defined Parameter Types

If a user defined class type T shall be used as actual type parameter in a container class,
it has to provide the following operations:

a) a constructor taking no arguments T :: T ()
b) a copy constructor T :: T (constT&)
c) an assignment operator T& T :: operator = (constT&)
d) an input operator istream& operator >> (istream&, T&)
e) an output operator ostream& operator << (ostream&, const T&)

and if required by the parameterized data type

f) a compare function int compare(const T&, const T&)
g) a hash function int Hash(const T&)

Notice: Starting with version 4.4 of LEDA, the operations ”compare” and
”Hash” for a user defined type need to be defined inside the "namespace leda"!

In the following two subsections we explain the background of the required compare and
hash function. Section Implementation Parameters concerns a very special parameter
type, namely implementation parameters.

2.3. USER DEFINED PARAMETER TYPES 7

2.3.1 Linear Orders

Many data types, such as dictionaries, priority queues, and sorted sequences require lin-
early ordered parameter types. Whenever a type T is used in such a situation, e.g. in
dictionary<T,...> the function

int compare(const T&, const T&)

must be declared and must define a linear order on the data type T .

A binary relation rel on a set T is called a linear order on T if for all x,y,z in T :

1) x rel x
2) x rel y and y rel z implies x rel z
3) x rel y or y rel x
4) x rel y and y rel x implies x = y

A function int compare(const T&, const T&) defines the linear order rel on T if

compare(x, y)

< 0, if x rel y and x 6= y
= 0, if x = y
> 0, if y rel x and x 6= y

For each of the data types char, short, int, long, float, double, integer, rational, bigfloat,
real, string, and point a function compare is predefined and defines the so-called default
ordering on that type. The default ordering is the usual≤ - order for the built-in numerical
types, the lexicographic ordering for string, and for point the lexicographic ordering of
the cartesian coordinates. For all other types T there is no default ordering, and the user
has to provide a compare function whenever a linear order on T is required.

Example: Suppose pairs of double numbers shall be used as keys in a dictionary with
the lexicographic order of their components. First we declare class pair as the type of
pairs of double numbers, then we define the I/O operations operator>> and operator<<
and the lexicographic order on pair by writing an appropriate compare function.

class pair {

double x;

double y;

public:

pair() { x = y = 0; }

pair(const pair& p) { x = p.x; y = p.y; }

pair& operator=(const pair& p)

{

if(this != &p)

{ x = p.x; y = p.y; }

return *this;

}

8 CHAPTER 2. BASICS

double get_x() {return x;}

double get_y() {return y;}

friend istream& operator>> (istream& is, pair& p)

{ is >> p.x >> p.y; return is; }

friend ostream& operator<< (ostream& os, const pair& p)

{ os << p.x << " " << p.y; return os; }

};

namespace leda {

int compare(const pair& p, const pair& q)

{

if (p.get_x() < q.get_x()) return -1;

if (p.get_x() > q.get_x()) return 1;

if (p.get_y() < q.get_y()) return -1;

if (p.get_y() > q.get_y()) return 1;

return 0;

}

};

Now we can use dictionaries with key type pair, e.g.,

dictionary<pair,int> D;

Sometimes, a user may need additional linear orders on a data type T which are different
from the order defined by compare. In the following example a user wants to order points
in the plane by the lexicographic ordering of their cartesian coordinates and by their
polar coordinates. The former ordering is the default ordering for points. The user can
introduce an alternative ordering on the data type point (cf. Section Basic Data Types for
Two-Dimensional Geometry) by defining an appropriate compare function (in namespace
leda)

int pol_cmp(const point& x, const point& y)

{ /* lexicographic ordering on polar coordinates */ }

Now she has several possibilities:

1. First she can call the macro

DEFINE_LINEAR_ORDER(point, pol_cmp, pol_point)

After this call pol point is a new data type which is equivalent to the data type
point, with the only exception that if pol point is used as an actual parameter e.g.
in dictionary<pol point,...>, the resulting data type is based on the linear order
defined by pol cmp. Now, dictionaries based on either ordering can be used.

2.3. USER DEFINED PARAMETER TYPES 9

dictionary<point,int> D0; // default ordering

dictionary<pol_point,int> D1; // polar ordering

In general the macro call

DEFINE_LINEAR_ORDER(T, cmp, T1)

introduces a new type T1 equivalent to type T with the linear order defined by the
compare function cmp.

2. As a new feature all order based data types like dictionaries, priority queues, and
sorted sequences offer a constructor which allows a user to set the internally used
ordering at construction time.

dictionary<point,int> D0; // default ordering

dictionary<point,int> D1(pol_cmp); // polar ordering

This alternative handles the cases where two or more different orderings are needed
more elegantly.

3. Instead of passing a compare function cmp(const T&, const T&) to the sorted type
one can also pass an object (a so-called compare object) of a class that is de-
rived from the class leda cmp base and that overloads the function-call operator
int operator()(const T&, const T&) to define a linear order for T .

This variant is helpful when the compare function depends on a global parameter.
We give an example. More examples can be found in several sections of the LEDA
book [66]. Assume that we want to compare edges of a graphGRAPH < point , int >
(in this type every node has an associated point in the plane; the point associated
with a node v is accessed as G[v]) according to the distance of their endpoints. We
write

using namespace leda;

class cmp_edges_by_length: public leda_cmp_base<edge> {

const GRAPH<point,int>& G;

public:

cmp_edges_by_length(const GRAPH<point,int>& g): G(g){}

int operator()(const edge& e, const edge& f) const

{ point pe = G[G.source(e)]; point qe = G[G.target(e)];

point pf = G[G.source(f)]; point qf = G[G.target(f)];

return compare(pe.sqr_dist(qe),pf.sqr_dist(qf));

}

};

int main(){

GRAPH<point,int> G;

10 CHAPTER 2. BASICS

cmp_edges_by_length cmp(G);

list<edge> E = G.all_edges();

E.sort(cmp);

return 0;

}

The class cmp edges by length has a function operator that takes two edges e and
f of a graph G and compares them according to their length. The graph G is a
parameter of the constructor. In the main program we define cmp(G) as an instance
of cmp edges by length and then pass cmp as the compare object to the sort function
of list<edge>. In the implementation of the sort function a comparison between
two edges is made by writing cmp(e, f), i.e., for the body of the sort function there
is no difference whether a function or a compare object is passed to it.

2.3.2 Hashed Types

LEDA also contains parameterized data types requiring a hash function and an equal-
ity test (operator==) for the actual type parameters. Examples are dictionaries imple-
mented by hashing with chaining (dictionary<K,I,ch hashing>) or hashing arrays (
h array<I,E>). Whenever a type T is used in such a context, e.g., in h array<T,...>

there must be defined

1. a hash function int Hash(const T&)

2. the equality test bool operator == (const T&, constT&)

Hash maps the elements of type T to integers. It is not required that Hash is a perfect
hash function, i.e., it has not to be injective. However, the performance of the underlying
implementations very strongly depends on the ability of the function to keep different
elements of T apart by assigning them different integers. Typically, a search operation
in a hashing implementation takes time linear in the maximal size of any subset whose
elements are assigned the same hash value. For each of the simple numerical data types
char, short, int, long there is a predefined Hash function: the identity function.

We demonstrate the use of Hash and a data type based on hashing by extending the
example from the previous section. Suppose we want to associate information with values
of the pair class by using a hashing array h array<pair,int> A. We first define a hash
function that assigns each pair (x, y) the integral part of the first component x

namespace leda {

int Hash(const pair& p) { return int(p.get_x()); }

};

and then we can use a hashing array with index type pair

h_array<pair, int> A;

2.4. ARGUMENTS 11

2.4 Arguments

• Optional Arguments

The trailing arguments in the argument list of an operation may be optional. If these
trailing arguments are missing in a call of an operation the default argument values
given in the specification are used. For example, if the relative position argument
in the list insert operation is missing it is assumed to have the value leda::after, i.e.,
L.insert(it, y) will insert the item ¡y > after item it into L.

• Argument Passing

There are two kinds of argument passing in C++, by value and by reference. An
argument x of type type specified by “type x” in the argument list of an operation
or user defined function will be passed by value, i.e., the operation or function
is provided with a copy of x. The syntax for specifying an argument passed by
reference is “type& x”. In this case the operation or function works directly on x (
the variable x is passed not its value).

Passing by reference must always be used if the operation is to change the value
of the argument. It should always be used for passing large objects such as lists,
arrays, graphs and other LEDA data types to functions. Otherwise a complete copy
of the actual argument is made, which takes time proportional to its size, whereas
passing by reference always takes constant time.

• Functions as Arguments

Some operations take functions as arguments. For instance the bucket sort operation
on lists requires a function which maps the elements of the list into an interval of
integers. We use the C++ syntax to define the type of a function argument f :

T (*f)(T1, T2, ..., Tk)

declares f to be a function taking k arguments of the data types T1, . . . , Tk,
respectively, and returning a result of type T , i.e,

f : T1× . . .× Tk −→ T

2.5 Items

Many of the advanced data types in LEDA (dictionaries, priority queues, graphs, . . .),
are defined in terms of so-called items. An item is a container which can hold an object
relevant for the data type. For example, in the case of dictionaries a dic item contains a
pair consisting of a key and an information. A general definition of items is given at the
end of this section.

Remark: Item types are, like all other types, functions, constants, ..., defined in the
"namespace leda" in LEDA–4.5.

12 CHAPTER 2. BASICS

We now discuss the role of items for the dictionary example in some detail. A popular
specification of dictionaries defines a dictionary as a partial function from some type K
to some other type I, or alternatively, as a set of pairs from K × I, i.e., as the graph of
the function. In an implementation each pair (k, i) in the dictionary is stored in some
location of the memory. Efficiency dictates that the pair (k, i) cannot only be accessed
through the key k but sometimes also through the location where it is stored, e.g., we
might want to lookup the information i associated with key k (this involves a search in
the data structure), then compute with the value i a new value i’, and finally associate
the new value with k. This either involves another search in the data structure or, if the
lookup returned the location where the pair (k, i) is stored, can be done by direct access.
Of course, the second solution is more efficient and we therefore wanted to provide it in
LEDA.

In LEDA items play the role of positions or locations in data structures. Thus an object
of type dictionary<K,I>, where K and I are types, is defined as a collection of items
(type dic item) where each item contains a pair in K × I. We use ¡k, i > to denote an
item with key k and information i and require that for each k in K there is at most one
i in I such that ¡k, i > is in the dictionary. In mathematical terms this definition may be
rephrased as follows: A dictionary d is a partial function from the set dic item to the set
K × I. Moreover, for each k in K there is at most one i in I such that the pair (k, i) is
in d.

The functionality of the operations

dic_item D.lookup(K k)

I D.inf(dic_item it)

void D.change_inf(dic_item it, I i’)

is now as follows: D.lookup(K k) returns an item it with contents (k, i), D.inf (it) extracts
i from it, and a new value i′ can be associated with k by D.change inf (it, i′).

Let us have a look at the insert operation for dictionaries next:

dic_item D.insert(K k, I i)

There are two cases to consider. If D contains an item it with contents (k, i′) then i′ is
replaced by i and it is returned. If D contains no such item, then a new item, i.e., an
item which is not contained in any dictionary, is added to D, this item is made to contain
(k, i) and is returned. In this manual (cf. Section Dictionaries) all of this is abbreviated
to

dic item D.insert(K k, I i) associates the information i with the key k. If there is an
item ¡k, j > in D then j is replaced by i, else a new item
¡k, i¿ is added to D. In both cases the item is returned.

We now turn to a general discussion. With some LEDA types XY Z there is an associated
type XYZ item of items. Nothing is known about the objects of type XYZ item except
that there are infinitely many of them. The only operations available on XYZ items
besides the one defined in the specification of type XY Z is the equality predicate “==”

2.6. ITERATION 13

and the assignment operator “=” . The objects of type XY Z are defined as sets or
sequences of XYZ items containing objects of some other type Z. In this situation an
XYZ item containing an object z in Z is denoted by ¡z¿. A new or unused XYZ item is
any XYZ item which is not part of any object of type XY Z.

Remark: For some readers it may be useful to interpret a dic item as a pointer to a
variable of type K × I. The differences are that the assignment to the variable contained
in a dic item is restricted, e.g., the K-component cannot be changed, and that in return
for this restriction the access to dic items is more flexible than for ordinary variables, e.g.,
access through the value of the K-component is possible.

2.6 Iteration

For many (container) types LEDA provides iteration macros. These macros can be used
to iterate over the elements of lists, sets and dictionaries or the nodes and edges of a
graph. Iteration macros can be used similarly to the C++ for statement. Examples are

• for all item based data types:

forall items(it,D) { the items of D are successively assigned to variable it }
forall rev items(it,D) { the items of D are assigned to it in reverse order }

• for lists and sets:

forall(x, L) { the elements of L are successively assigned to x}
forall rev(x, L) { the elements of L are assigned to x in reverse order}

• for graphs:

forall nodes(v,G) { the nodes of G are successively assigned to v}
forall edges(e,G) { the edges of G are successively assigned to e}
forall adj edges(e, v) { all edges adjacent to v are successively assigned to e}

PLEASE NOTE:
Inside the body of a forall loop insertions into or deletions from the corre-
sponding container are not allowed, with one exception, the current item or object
of the iteration may be removed, as in

forall_edges(e,G) {

if (source(e) == target(e)) G.del_edge(e);

} // remove self-loops

The item based data types list, array, and dictionary provide now also an STL com-
patible iteration scheme. The following example shows STL iteration on lists. Note that
not all LEDA supported compilers allow the usage of this feature.

14 CHAPTER 2. BASICS

using namespace leda;

using std::cin;

using std::cout;

using std::endl;

list<int> L;

// fill list somehow

list<int>::iterator it;

for (it = L.begin(); it != L.end(); it++)

cout << *it << endl;

list<int>::iterator defines the iterator type, begin() delivers access to the first list
item via an iterator. end() is the past the end iterator and serves as an end marker. The
increment operator ++ moves the iterator one position to the next item, and *it delivers
the content of the item to which the iterator is pointing. For more information on STL
please refer to the standard literature about STL.

For a more flexible access to the LEDA graph data type there are graph iterators which
extent the STL paradigm to more complex container types. To make use of these features
please refer to Graph Iterators.

Chapter 3

Modules

During the last years, LEDA’s main include directory has grown to more than 400 include
files. As a result, the include directory was simply too complex so that new features were
hard to identify. We therefore introduced modules to better organize LEDA’s include
structure. Starting from version 5.0 LEDA consists of the several modules:

• core (LEDA/incl/core/)
Module core stores all basic data types (array, list, set, partition, etc.), all dictio-
nary types (dictionary, d array, h array sortseq, etc.), all priority queues, and basic
algorithms like sorting.

• numbers (LEDA/incl/numbers/)
Module numbers stores all LEDA number types (integer, real, rational, bigfloat,
polynomial, etc.) as well as data types related to linear algebra (vector, matrix,
etc.) and all additional data types and functions related to numerical computation
(fpu, numerical analysis, etc.)

• graph (LEDA/incl/graph/)
Module graph stores all graph data types, all types related to graphs and all graph
algorithms.

• geo (LEDA/incl/geo/)
Module geo stores all geometric data types and all geometric algorithms.

• graphics (LEDA/incl/graphics/)
Module graphics stores all include files and data types related to our graphical user
interfaces, i.e. window, graphwin and geowin.

• coding (LEDA/incl/coding/)
Module codings contains all data types and algorithms relating to compression and
cryptography.

• system (LEDA/incl/system/)
Module system contains all data types that offer system-related functionality like
date, time, stream, error handling and memory management.

15

16 CHAPTER 3. MODULES

• internal (LEDA/incl/internal/)
Module internal contains include files that are needed for LEDA’s maintenance or
for people who want to implement extension packages.

• beta (LEDA/incl/beta/)
Module beta contains data types that are not fully tested.

• exp (LEDA/incl/exp/)
Module exp contains data types that are experimental. Most of these data types
can be used as implementation parameters for the data types dictionary, priority
queues, d array, and sortseq. Starting with LEDA version 6.5, experimental data
types are no longer available in pre-compiled object code packages.

Chapter 4

Simple Data Types and Basic
Support Operations

This section describes simple data types like strings, streams and gives some information
about error handling, memory management and file system access. The stream data types
described in this section are all derived from the C++ stream types istream and ostream.
They can be used in any program that includes the <LEDA/stream.h> header file. Some
of these types may be obsolete in combination with the latest versions of the standard
C++ I/O library.

4.1 Strings (string)

1. Definition

An instance s of the data type string is a sequence of characters (type char). The number

of characters in the sequence is called the length of s. A string of length zero is called the

empty string. Strings can be used wherever a C++ const char∗ string can be used.

Strings differ from the C++ type char∗ in several aspects: parameter passing by value

and assignment works properly (i.e., the value is passed or assigned and not a pointer to

the value) and strings offer many additional operations.

#include < LEDA/core/string.h >

2. Types

string :: size type the size type.

3. Creation

string s; introduces a variable s of type string. s is initialized with the
empty string.

17

18 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

string s(const char ∗ p); introduces a variable s of type string. s is initialized with a
copy of the C++ string p.

string s(char c); introduces a variable s of type string. s is initialized with the
one-character string “c”.

string s(const char ∗ format , ...);

introduces a variable s of type string. s is initialized with the
string produced by printf(format,. . .).

4. Operations

int s.length() returns the length of string s.

bool s.empty() returns whether s is the empty string.

char s.char at(int i) returns the character at position i.
Precondition: 0 ≤ i ≤ s.length()-1.

char s[int i] returns s.char at(i).

char& s[int i] returns a reference to the character at position i.
Precondition: 0 ≤ i ≤ s.length()-1.

string s.substring(int i, int j) returns the substring of s starting at position
max(0, i) and ending at position min(j, s.length())−
1.

string s.substring(int i) returns the substring of s starting at position
max(0, i).

string s(int i, int j) returns the substring of s starting at po-
sition max(0, i) and ending at position
min(j, s.length()−1).
If min(j, s.length()−1) < max(0, i) then the empty
string is returned.

string s.head(int i) returns the first i characters of s if i ≥ 0 and the
first (length() + i) characters of s if i < 0.

string s.tail(int i) returns the last i characters of s if i ≥ 0 and the last
(length() + i) characters of s if i < 0.

int s.index(string x, int i) returns the minimum j such that j ≥ i and x is a
substring of s starting at position j (returns -1 if no
such j exists).

int s.index(const string& x) returns s.index(x, 0).

int s.index(char c, int i) returns the minimum j such that j ≥ i and s[j] = c
(-1 if no such j exists).

4.1. STRINGS (STRING) 19

int s.index(char c) returns s.index(c, 0).

int s.last index(string x, int i)

returns the maximum j such that j ≤ i and x is a
substring of s starting at position j (returns -1 if no
such j exists).

int s.last index(const string& x)

returns s.last index(x, s.length()− 1).

int s.last index(char c, int i) returns the maximum j such that j ≤ i and s[j] = c
(-1 if no such j exists).

int s.last index(char c) returns s.last index(c, s.length()− 1).

string s.next word(int& i, char sep)

returns word (substring separated by sep characters)
starting at index i and assigns start of next word to
i (-1 if not existing).

int s.split(string ∗ A, int sz , char sep = −1)

splits s into substrings separated by sep characters
or white space (if sep = −1) and stores them in the
array A[0..sz−1]. The operation returns the number
of created substrings (at most sz).
Precondition: A is an array of length sz.

int s.count words(char sep = −1)

returns the number of substrings separated by sep
characters or white space (if sep = −1).

int s.break into words(string ∗ A, int sz)
breaks s into words separated by white space char-
acters and stores them in the array A. Same as
s.split(A, sz,−1)

string s.expand tabs(int tab w) return the result of expanding all tabs in s using
tabulator width tab w.

bool s.contains(const string& x)

true iff x is a substring of s.

bool s.starts with(const string& x)

true iff s starts with x.

bool s.begins with(const string& x)

true iff s starts with x.

bool s.ends with(const string& x)

true iff s starts with x.

20 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

string s.insert(int i, string x) returns s(0, i− 1) + s1 + s(i, s.length()−1).

string s.replace(const string& s1 , const string& s2 , int i = 1)

returns the string created from s by replacing the
i-th occurrence of s1 in s by s2.
Remark: The occurences of s1 in s are counted in
a non-overlapping manner, for instance the string
sasas contains only one occurence of the string sas.

string s.replace(int i, int j, const string& x)

returns the string created from s by replacing s(i, j)
by x.
Precondition: i ≤ j.

string s.replace(int i, const string& x)

returns the string created from s by replacing s[i] by
x.

string s.replace all(const string& s1 , const string& s2)

returns the string created from s by replacing all oc-
currences of s1 in s by s2.
Precondition: The occurrences of s1 in s do not over-
lap (it’s hard to say what the function returns if the
precondition is violated.).

string s.del(const string& x, int i = 1)

returns s.replace(x, ””, i).

string s.del(int i, int j) returns s.replace(i, j, ””).

string s.del(int i) returns s.replace(i, ””).

string s.del all(const string& x) returns s.replace all(x, ””).

void s.read(istream& I, char delim = ’ ’)

reads characters from input stream I into s until the
first occurrence of character delim. (If delim is ’\ n’
it is extracted from the stream, otherwise it remains
there.)

void s.read(char delim = ’ ’) same as s.read(cin,delim).

void s.read line(istream& I) same as s.read(I,’\ n’).

void s.read line() same as s.read line(cin).

void s.read file(istream& I) same as s.read(I,’EOF’).

void s.read file() same as s.read file(cin).

4.1. STRINGS (STRING) 21

string& s += const string& x appends x to s and returns a reference to s.

string const string& x+ const string& y

returns the concatenation of x and y.

bool const string& x== const string& y

true iff x and y are equal.

bool const string& x != const string& y

true iff x and y are not equal.

bool const string& x < const string& y

true iff x is lexicographically smaller than y.

bool const string& x > const string& y

true iff x is lexicographically greater than y.

bool const string& x ≤ const string& y

returns (x < y) | (x == y).

bool const string& x ≥ const string& y

returns (x > y) | (x == y).

istream& istream& I ≫ string& s

same as s.read(I,’ ’).

ostream& ostream& O ≪ const string& s

writes string s to the output stream O.

Iteration

forall words(x, s) { “the words of s are successively assigned to x” }

forall lines(x, s) { “the lines of s are successively assigned to x” }

5. Implementation

Strings are implemented by C++ character vectors. All operations involving the search

for a pattern x in a string s take time O(s.lenght() ∗ x.length()), [] takes constant time

and all other operations on a string s take time O(s.length()).

22 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

4.2 File Input Streams (file istream)

1. Definition

The data type file istream is equivalent to the ifstream type of C++.

#include < LEDA/system/stream.h >

4.3 File Output Streams (file ostream)

1. Definition

The data type file istream is equivalent to the ofstream type of C++.

#include < LEDA/system/stream.h >

4.4 String Input Streams (string istream)

1. Definition

An instance I of the data type string istream is an C++istream connected to a string s,

i.e., all input operations or operators applied to I read from s.

#include < LEDA/system/stream.h >

2. Creation

string istream I(const char ∗ s);
creates an instance I of type string istream connected to the string
s.

3. Operations

All operations and operators (>>) defined for C++istreams can be applied to string input

streams as well.

4.5 String Output Streams (string ostream)

1. Definition

An instance O of the data type string ostream is an C++ostream connected to an internal

4.5. STRING OUTPUT STREAMS (STRING OSTREAM) 23

string buffer, i.e., all output operations or operators applied to O write into this internal

buffer. The current value of the buffer is called the contents of O.

#include < LEDA/system/stream.h >

2. Creation

string ostream O; creates an instance O of type string ostream.

3. Operations

string O.str() returns the current contents of O.

All operations and operators (<<) defined for C++ostreams can be applied to string

output streams as well.

24 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

4.6 Random Sources (random source)

1. Definition

An instance of type random source is a random source. It allows to generate uniformly

distributed random bits, characters, integers, and doubles. It can be in either of two

modes: In bit mode it generates a random bit string of some given length p (1 ≤ p ≤ 31)

and in integer mode it generates a random integer in some given range [low..high] (low ≤
high < low + 231). The mode can be changed any time, either globally or for a single

operation. The output of the random source can be converted to a number of formats

(using standard conversions).

#include < LEDA/core/random source.h >

2. Creation

random source S; creates an instance S of type random source, puts it into bit mode,
and sets the precision to 31.

random source S(int p);

creates an instance S of type random source, puts it into bit mode,
and sets the precision to p (1 ≤ p ≤ 31).

random source S(int low , int high);

creates an instance S of type random source, puts it into integer
mode, and sets the range to [low..high].

3. Operations

unsigned long S.get() returns a random unsigned long integer (32
bits on 32-bit systems or on LLP64 systems
and 64 bits on other 64-bit systems).

void S.set seed(int s) resets the seed of the random number gen-
erator to s.

int S.reinit seed() generates and sets a new seed s. The return
value is s.

void S.set range(int low , int high)

sets the mode to integer mode and changes
the range to [low ..high].

int S.set precision(int p) sets the mode to bit mode, changes the pre-
cision to p bits and returns previous preci-
sion.

int S.get precision() returns current precision of S.

4.6. RANDOM SOURCES (RANDOM SOURCE) 25

random source& S ≫ char& x extracts a character x of default precision or
range and returns S, i.e., it first generates
an unsigned integer of the desired precision
or in the desired range and then converts it
to a character (by standard conversion).

random source& S ≫ unsigned char& x extracts an unsigned character x of default
precision or range and returns S.

random source& S ≫ int& x extracts an integer x of default precision or
range and returns S.

random source& S ≫ long& x extracts a long integer x of default precision
or range and returns S.

random source& S ≫ unsigned int& x extracts an unsigned integer x of default
precision or range and returns S.

random source& S ≫ unsigned long& x extracts a long unsigned integer x of default
precision or range and returns S.

random source& S ≫ double& x extracts a double precision floating point
number x in [0, 1], i.e, u/(231−1) where u is
a random integer in [0..231−1], and returns
S.

random source& S ≫ float& x extracts a single precision floating point
number x in [0, 1], i.e, u/(231−1) where u is
a random integer in [0..231−1], and returns
S.

random source& S ≫ bool& b extracts a random boolean value (true or
false).

int S() returns an integer of default precision or
range.

int S(int prec) returns an integer of supplied precision
prec.

int S(int low , int high) returns an integer from the supplied range
[low..high].

26 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

4.7 Random Variates (random variate)

1. Definition

An instance R of the data type random variate is a non-uniform random number genera-

tor. The generation process is governed by an array<int> w. Let [l .. r] be the index range

of w and let W =
∑

i w[i] be the total weight. Then any integer i ∈ [l .. h] is generated

with probability w[i]/W . The weight function w must be non-negative and W must be

non-zero.

#include < LEDA/core/random variate.h >

2. Creation

random variate R(const array<int>& w);

creates an instance R of type random variate.

3. Operations

int R.generate() generates i ∈ [l .. h] with probability w[i]/W .

4.8 Dynamic Random Variates (dy-

namic random variate)

1. Definition

An instance R of the data type dynamic random variate is a non-uniform random number

generator. The generation process is governed by an array<int> w. Let [l .. r] be the

index range of w and let W =
∑

i w[i] be the total weight. Then any integer i ∈ [l .. h] is

generated with probability w[i]/W . The weight function w must be non-negative and W

must be non-zero. The weight function can be changed dynamically.

#include < LEDA/core/random variate.h >

2. Creation

dynamic random variate R(const array<int>& w);

creates an instance R of type dynamic random variate.

3. Operations

int R.generate() generates i ∈ [l .. h] with probability w[i]/W .

4.8. DYNAMIC RANDOM VARIATES (DYNAMIC RANDOM VARIATE) 27

int R.set weight(int i, int g)

sets w[i] to g and returns the old value of w[i].
Precondition: i ∈ [l .. h].

28 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

4.9 Memory Management

LEDA offers an efficient memory management system that is used internally for all

node, edge and item types. This system can easily be customized for user defined

classes by the “LEDA MEMORY” macro. You simply have to add the macro call

“LEDA MEMORY(T)” to the declaration of a class T . This redefines new and delete

operators for type T , such that they allocate and deallocate memory using LEDA’s inter-

nal memory manager.

struct pair {

double x;

double y;

pair() { x = y = 0; }

pair(const pair& p) { x = p.x; y = p.y; }

friend ostream& operator<<(ostream&, const pair&) { ... }

friend istream& operator>>(istream&, pair&) { ... }

friend int compare(const pair& p, const pair& q) { ... }

LEDA_MEMORY(pair)

};

dictionary<pair,int> D;

The LEDA memory manager only frees memory at its time of destruction (program end

or unload of library) as this allows for much faster memory allocation requests. As a

result, memory that was deallocated by a call to the redefined delete operator still resides

in the LEDA memory management system and is not returned to the system memory

manager. This might lead to memory shortages. To avoid those shortages, it is possible

to return unused memory of LEDA’s memory management system to the system memory

manager by calling

leda::std_memory_mgr.clear();

4.10. MEMORY ALLOCATOR (LEDA ALLOCATOR) 29

4.10 Memory Allocator (leda allocator)

1. Definition

An instance A of the data type leda allocator<T> is a memory allocator according to the

C++standard. leda allocator<T> is the standard compliant interface to the LEDA memory

management.

#include < LEDA/system/allocator.h >

2. Types

Local types are size type, difference type, value type, pointer , reference, const pointer , and

const reference.

template <class T1>

leda allocator<T> :: rebind allows the construction of a derived allocator:
leda allocator<T> :: template rebind<T1> ::other
is the type leda allocator<T1>.

3. Creation

leda allocator<T> A; introduces a variable A of type leda allocator<T>.

4. Operations

pointer A.allocate(size type n, const pointer = 0)

returns a pointer to a newly allocated memory range of
size n ∗ sizeof (T).

void A.deallocate(pointer p, size type n)

deallocates a memory range of n ∗ sizeof (T) starting at
p. Precondition: the memory range was obtained via
allocate(n).

pointer A.address(reference r)

returns &r.

const pointer A.address(const reference r)

returns &r.

void A.construct(pointer p, const reference r)

makes an inplace new new((void∗)p) T (r).

void A.destroy(pointer p)

destroys the object referenced via p by calling p →
∼T ().

30 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

size type A.max size() the largest value n for which the call allocate(n, 0) might
succeed.

5. Implementation

Note that the above class template uses all kinds of modern compiler technology like

member templates, partial specialization etc. It runs only on a subset of LEDA’s general

supported platforms like g++ > 2.95, SGI CC > 7.3.

4.11. ERROR HANDLING (ERROR) 31

4.11 Error Handling (error)

LEDA tests the preconditions of many (not all!) operations. Preconditions are never

tested, if the test takes more than constant time. If the test of a precondition fails an

error handling routine is called. It takes an integer error number i and a char∗ error

message string s as arguments. The default error handler writes s to the diagnostic

output (cerr) and terminates the program abnormally if i 6= 0. Users can provide their

own error handling function handler by calling

set_error_handler(handler)

After this function call handler is used instead of the default error handler. handler

must be a function of type void handler(int , const char∗). The parameters are replaced

by the error number and the error message respectively.

New:

Starting with version 4.3 LEDA provides an exception error handler

void exception error handler(int num, const char ∗msg)

This handler uses the C++exception mechanism and throws an exception of type

leda exception instead of terminating the program. An object of type leda exception stores

a pair consisting of an error number and an error message. Operations e.get msg() and

e.get num() can be called to retrieve the corresponding values from an exception object

e.

1. Operations

#include < LEDA/system/error.h >

void error handler(int err no, const char ∗msg)

reports error messages by passing err no and msg
to the default error handler.

LedaErrorHandler set error handler(void (∗err handler)(int , const char∗))
sets the default error handler to function
err handler . Returns a pointer to the previous er-
ror handler.

LedaErrorHandler get error handler() returns a pointer to the current default error han-
dler.

void catch system errors(bool b = true)

after a call to this function system errors (e.g.
bus errors and segmentation faults) are handled
by LEDA’s error handler.

32 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

bool leda assert(bool cond , const char ∗ err msg , int err no = 0)

calls error handler(err no, err msg) if cond =
false and returns cond .

4.12. FILES AND DIRECTORIES (FILE) 33

4.12 Files and Directories (file)

1. Operations

#include < LEDA/system/file.h >

string set directory(string new dir)

sets the current working directory to new dir and
returns the name of the old cwd.

string get directory() returns the name of the current working directory.

string get home directory() returns the name of the user’s home directory.

string get directory delimiter() returns the character that delimits directory
names in a path (i.e. “\” on Windows and “/”
on Unix).

void append directory delimiter(string& dir)

appends the directory delimiter to dir if dir does
not already end with the delimiter.

void remove trailing directory delimiter(string& dir)

removes the directory delimiter from dir if dir ends
with it.

list<string> get directories(string dir) returns the list of names of all sub-directories in
directory dir .

list<string> get directories(string dir , string pattern)

returns the list of names of all sub-directories in
directory dir matching pattern.

list<string> get files(string dir) returns the list of names of all regular files in di-
rectory dir .

list<string> get files(string dir , string pattern)

returns the list of names of all regular files in di-
rectory dir matching pattern.

list<string> get entries(string dir) returns the list of all entries (directory and files)
of directory dir .

bool create directory(string fname)

creates a directory with name dname, returns true
on success.

bool is directory(string fname) returns true if fname is the path name of a direc-
tory and false otherwise.

34 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

bool is file(string fname) returns true if fname is the path name of a regular
file and false otherwise.

bool create link(string name, string target)

creates a symbolic link from name to target , re-
turns true on success.

bool is link(string fname) returns true if fname is the path name of a sym-
bolic link and false otherwise.

size t size of file(string fname) returns the size of file fname in bytes.

time t time of file(string fname) returns the time of last access to file fname.

string tmp dir name() returns name of the directory for temporary files.

string tmp file name() returns a unique name for a temporary file.

bool delete file(string fname) deletes file fname returns true on success and false
otherwise.

bool copy file(string src, string dest)

copies file src to file dest returns true on success
and false otherwise.

bool move file(string src, string dest)

moves file src to file dest returns true on success
and false otherwise.

bool chmod file(string fname, string option)

change file permission bits.

bool open file(string fname) opens file fname with associated application.

bool open url(string url) opens web page url with associated application.

int compare files(string fname1 , string fname2)

returns 1 if the contents of fname1 and fname2
differ and 0 otherwise.

string first file in path(string fname, string path, char sep = ’ : ’)

searches all directories in string path (separated
by sep) for the first directory dir that contains
a file with name fname and returns dir/fname
(the empty string if no such directory is contained
in path).

list<string> get disk drives() returns the list of all disk drives of the system.

4.13. SOCKETS (LEDA SOCKET) 35

4.13 Sockets (leda socket)

1. Definition

A data packet consists of a sequence of bytes (in C of type unsigned char)

c0, c1, c2, c3, x1, . . . , xn. The first four bytes encode the number n of the following bytes

such that n = c0 + c1 · 28 + c2 · 216 + c3 · 224. The LEDA data type leda socket offers,

in addition to the operations for establishing a socket connection, functions for sending

and receiving packets across such a connection. It is also possible to set a receive limit;

if such a receive limit is set, messages longer than the limit will be refused. If the limit is

negative (default), no messages will be refused.

In particular, the following operations are available:

#include < LEDA/system/socket.h >

2. Creation

leda socket S(string host , int port);

creates an instance S of type leda socket associated with host name
host and port number port .

leda socket S(string host);

creates an instance S of type leda socket associated with host name
host .

leda socket S; creates an instance S of type leda socket .

3. Operations

void S.set host(string host)

sets the host name to host .

void S.set port(int port) sets the port number to port .

size t S.get limit() returns the receive limit parameter.

void S.set limit(size t limit)

sets the receive limit parameter to limit . If a negative
limit is set, the limit parameter will be ignored.

void S.set qlength(int len) sets the queue length to len.

void S.set timeout(int sec)

sets the timeout interval to sec seconds.

void S.set error handler(void (∗f)(leda socket& , string))

sets the error handler to function f .

36 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

void S.set receive handler(void (∗f)(leda socket& , size t , size t))

sets the receive handler to function f .

void S.set send handler(void (∗f)(leda socket& , size t , size t))

sets the send handler to function f .

string S.get host() returns the host name.

int S.get port() returns the port number.

int S.get timeout() returns the timeout interval length in seconds.

int S.get qlength() returns the queue length.

bool S.connect(int sec) tries to establish a connection from a client to a server.
If the connection can be established within sec sec-
onds, the operation returns true and false otherwise.

bool S.connect() same as S.connect(10)

bool S.listen() creates a socket endpoint on the server, performs ad-
dress binding and signals readiness of a server to re-
ceive data.

bool S.accept() the server takes a request from the queue.

void S.detach() detach from endpoint port.

void S.disconnect() ends a connection.

string S.client ip() returns the client ip address.

Sending and receiving packets

void S.send file(string fname)

sends the contents of file fname.

void S.send file(string fname, int buf sz)

sends fname using a buffer of size buf sz .

void S.send bytes(char ∗ buf , size t num)

sends num bytes starting at address buf .

void S.send string(string msg)

sends string msg .

void S.send int(int x) sends (a text representation of) integer x.

bool S.receive file(string fname)

receives data and writes it to file fname.

4.13. SOCKETS (LEDA SOCKET) 37

char∗ S.receive bytes(size t& num)

receives num bytes. The function allocates memory
and returns the first address of the allocated memory.
num is used as the return parameter for the number
of received bytes.

int S.receive bytes(char ∗ buf , size t buf sz)

receives at most buf sz bytes and writes them into the
buffer buf . It returns the number of bytes supplied by
the sender (maybe more than buf sz), or -1 in case of
an error.

bool S.receive string(string& s)

receives string s.

bool S.receive int(int& x) receives (a text representation of) an integer and
stores its value in x.

bool S.wait(string s) returns true, if s is received, false otherwise.

The following template functions can be used to send/receive objects supporting input

and output operators for iostreams.

template <class T>

void socket send object(const T& obj , leda socket& sock)

sends obj to the connection partner of sock .

template <class T>

void socket receive object(T& obj , leda socket& sock)

receives obj from the connection partner of sock .

38 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

4.14 Some Useful Functions (misc)

The following functions and macros are defined in <LEDA/core/misc.h>.

int read int(string s) prints s and reads an integer from cin.

double read real(string s) prints s and reads a real number from cin.

string read string(string s) prints s and reads a line from cin.

char read char(string s) prints s and reads a character from cin.

int Yes(string s) returns (read char(s) == ‘y’).

bool get environment(string var)

returns true if variable var is defined in the current
environment and false otherwise.

bool get environment(string var , string& val)

if variable var is defined in the current environment
its value is assigned to val and the result is true. Oth-
erwise, the result is false.

double cpu time() returns the currently used cpu time in seconds. (The
class timer in Section 4.15 provides a nicer interface
for time measurements.)

double cpu time(double& T) returns the cpu time used by the program from time
T up to this moment and assigns the current time to
T .

float elapsed time() returns the current daytime time in seconds.

float elapsed time(float& T)

returns the elapsed time since time T and assigns the
current elapsed time to T .

float real time() same as elapsed time().

float real time(float& T) same as elapsed time(T).

void print statistics() prints a summary of the currently used memory,
which is used by LEDA’s internal memory manager.
This only reports on memory usage of LEDA’s inter-
nal types and user-defined types that implement the
LEDA MEMORY macro (see Section 4.9).

bool is space(char c) returns true is c is a white space character.

4.14. SOME USEFUL FUNCTIONS (MISC) 39

void sleep(double sec) suspends execution for sec seconds.

void wait(double sec) suspends execution for sec seconds.

double truncate(double x, int k = 10)

returns a double whose mantissa is truncated after
k − 1 bits after the binary point, i.e, if x 6= 0 then
the binary representation of the mantissa of the result
has the form d.dddddddd, where the number of d’s
is equal to k. There is a corresponding function for
integers; it has no effect.

template <class T>

const T& min(const T& a, const T& b)

returns the minimum of a and b.

template <class T>

const T& max(const T& a, const T& b)

returns the maximum of a and b.

template <class T>

void swap(T& a, T& b) swaps values of a and b.

40 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

4.15 Timer (timer)

1. Definition

The class timer facilitates time measurements. An instance t has two states: running

or stopped . It measures the time which elapses while it is in the state running . The

state depends on a (non-negative) internal counter, which is incremented by every start

operation and decremented by every stop operation. The timer is running iff the counter

is not zero. The use of a counter (instead of a boolean flag) to determine the state is

helpful when a recursive function f is measured, which is shown in the example below:

#include <LEDA/system/timer.h>

leda::timer f_timer;

void f()

{

f_timer.start();

// do something ...

f(); // recursive call

// do something else ...

f_timer.stop(); // timer is stopped when top-level call returns

}

int main()

{

f();

std::cout << "time spent in f " << f_timer << "\n"; return 0;

}

Let us analyze this example. When f is called in main, the timer is in the state stopped .

The first start operation (in the top-level call) increments the counter from zero to one

and puts the timer into the state running . In a recursive call the counter is incremented

at the beginning and decremented upon termination, but the timer remains in the state

running . Only when the top-level call of f terminates and returns to main, the counter is

decremented from one to zero, which puts the timer into the state stopped . So the timer

measures the total running time of f (including recursive calls).

#include < LEDA/system/timer.h >

2. Types

timer ::measure auxiliary class to facilitate measurements (see example below).

4.15. TIMER (TIMER) 41

3. Creation

timer t(const string& name, bool report on destruction = true);

creates an instance t with the given name. If report on destruction
is true, then the timer reports upon its destruction how long it has
been running in total. The initial state of the timer is stopped .

timer t; creates an unnamed instance t and sets the report on destruction
flag to false. The initial state of the timer is stopped .

4. Operations

void t.reset() sets the internal counter and the total elapsed time to
zero.

void t.start() increments the internal counter.

void t.stop() decrements the internal counter. (If the counter is
already zero, nothing happens.)

void t.restart() short-hand for t.reset() + t.start().

void t.halt() sets the counter to zero, which forces the timer into
the state stopped no matter how many start opera-
tions have been executed before.

bool t.is running() returns if t is currently in the state running .

float t.elapsed time() returns how long (in seconds) t has been in the state
running (since the last reset).

void t.set name(const string& name)

sets the name of t.

string t.get name() returns the name of t.

void t.report on desctruction(bool do report = true)

sets the flag report on destruction to do report .

bool t.will report on desctruction()

returns whether t will issue a report upon its destruc-
tion.

5. Example

We give an example demonstrating the use of the class measure. Note that the function

below has several return statements, so it would be tedious to stop the timer “by hand”.

#include <LEDA/system/timer.h>

42 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

unsigned fibonacci(unsigned n)

{

static leda::timer t("fibonacci");

// report total time upon destruction of t

leda::timer::measure m(t);

// starts the timer t when m is constructed, and stops t

// when m is destroyed, i.e. when the function returns

if (n < 1) return 0;

else if (n == 1) return 1;

else return fibonacci(n-1) + fibonacci(n-2);

}

int main()

{

std::cout << fibonacci(40) << "\n";

return 0; // reports "Timer(fibonacci): X.XX s" upon termination

}

4.16. COUNTER (COUNTER) 43

4.16 Counter (counter)

1. Definition

The class counter can be used during profiling to count how often certain code is executed.

An example is given below.

#include < LEDA/system/counter.h >

2. Creation

counter c(const string& name, bool report on destruction = true);

creates an instance c with the given name. If report on destruction
is true, then the counter reports its value upon destruction. The
initial value of the counter is zero.

counter c; creates an unnamed instance c and sets the report on destruction
flag to false. The initial value of the counter is zero.

3. Operations

void c.reset() sets the value of c to zero.

void c.set value(const unsigned long val)

sets the value of c to val .

const unsigned long c.get value() returns the current value of c.

const unsigned long c.increment() increments c and returns its new value. (We also pro-
vide the operator ++.)

void c.set name(const string& name)

sets the name of c.

string c.get name() returns the name of c.

void c.report on desctruction(bool do report = true)

sets the flag report on destruction to do report .

bool c.will report on desctruction()

returns whether c will issue a report upon its destruc-
tion.

4. Example

In the example below we count how often the function fibonacci is executed.

#include <LEDA/system/counter.h>

44 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

unsigned fibonacci(unsigned n)

{

static leda::counter cnt("fibonacci");

// report upon destruction of cnt

++cnt;

if (n < 1) return 0;

else if (n == 1) return 1;

else return fibonacci(n-1) + fibonacci(n-2);

}

int main()

{

std::cout << fibonacci(40) << "\n";

return 0; // reports "Counter(fibonacci) = 331160281" upon termination

}

4.17. TWO TUPLES (TWO TUPLE) 45

4.17 Two Tuples (two tuple)

1. Definition

An instance p of type two tuple<A,B> is a two-tuple (a, b) of variables of types A, and

B, respectively.

Related types are two tuple, three tuple, and four tuple.

#include < LEDA/core/tuple.h >

2. Types

two tuple<A,B> ::first type the type of the first component.

two tuple<A,B> :: second type

the type of the second component.

3. Creation

two tuple<A,B> p; creates an instance p of type two tuple<A,B>. All components
are initialized to their default value.

two tuple<A,B> p(const A& u, const B& v);

creates an instance p of type two tuple<A,B> and initializes
it with the value (u, v).

4. Operations

A& p.first() returns the A-component of p. If p is a const-object the
return type is A.

B& p.second() returns the B-component of p. If p is a const-object the
return type is B.

template <class A, class B>

bool const two tuple<A,B>& p== const two tuple<A,B>& q

equality test for two tuples . Each of the component
types must have an equality operator.

template <class A, class B>

int compare(const two tuple<A,B>& p, const two tuple<A,B>& q)

lexicographic ordering for two tuples . Each of the com-
ponent types must have a compare function.

template <class A, class B>

46 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

int Hash(const two tuple<A,B>& p)

hash function for two tuples . Each of the component
types must have a Hash function.

5. Implementation

The obvious implementation is used.

4.18 Three Tuples (three tuple)

1. Definition

An instance p of type three tuple<A,B,C> is a three-tuple (a, b, c) of variables of types

A, B, and C, respectively.

Related types are two tuple, three tuple, and four tuple.

#include < LEDA/core/tuple.h >

2. Types

three tuple<A,B,C> ::first type

the type of the first component.

three tuple<A,B,C> :: second type

the type of the second component.

three tuple<A,B,C> :: third type

the type of the third component.

3. Creation

three tuple<A,B,C> p; creates an instance p of type three tuple<A,B,C>. All com-
ponents are initialized to their default value.

three tuple<A,B,C> p(const A& u, const B& v, const C& w);

creates an instance p of type three tuple<A,B,C> and initial-
izes it with the value (u, v, w).

4. Operations

A& p.first() returns the A-component of p. If p is a const-object the
return type is A.

B& p.second() returns the B-component of p. If p is a const-object the
return type is B.

4.19. FOUR TUPLES (FOUR TUPLE) 47

C& p.third() returns the C-component of p. If p is a const-object the
return type is C.

template <class A, class B, class C>

bool const three tuple<A,B,C>& p== const three tuple<A,B,C>& q

equality test for three tuples . Each of the component
types must have an equality operator.

template <class A, class B, class C>

int compare(const three tuple<A,B,C>& p, const three tuple<A,B,C>& q)

lexicographic ordering for three tuples . Each of the com-
ponent types must have a compare function.

template <class A, class B, class C>

int Hash(const three tuple<A,B,C>& p)

hash function for three tuples . Each of the component
types must have a Hash function.

5. Implementation

The obvious implementation is used.

4.19 Four Tuples (four tuple)

1. Definition

An instance p of type four tuple<A,B,C,D> is a four-tuple (a, b, c, d) of variables of types

A, B, C, and D, respectively.

Related types are two tuple, three tuple, and four tuple.

#include < LEDA/core/tuple.h >

2. Types

four tuple<A,B,C,D> ::first type

the type of the first component.

four tuple<A,B,C,D> :: second type

the type of the second component.

four tuple<A,B,C,D> :: third type

the type of the third component.

four tuple<A,B,C,D> :: fourth type

the type of the fourth component.

48 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

3. Creation

four tuple<A,B,C,D> p; creates an instance p of type four tuple<A,B,C,D>. All com-
ponents are initialized to their default value.

four tuple<A,B,C,D> p(const A& u, const B& v, const C& w, const D& x);

creates an instance p of type four tuple<A,B,C,D> and ini-
tializes it with the value (u, v, w, x).

4. Operations

A& p.first() returns the A-component of p. If p is a const-object the
return type is A.

B& p.second() returns the B-component of p. If p is a const-object the
return type is B.

C& p.third() returns the C-component of p. If p is a const-object the
return type is C.

D& p.fourth() returns the D-component of p. If p is a const-object the
return type is D.

template <class A, class B, class C, class D>

bool const four tuple<A,B,C,D>& p== const four tuple<A,B,C,D>& q

equality test for four tuples . Each of the component
types must have an equality operator.

template <class A, class B, class C, class D>

int compare(const four tuple<A,B,C,D>& p, const four tuple<A,B,C,D>& q)

lexicographic ordering for four tuples . Each of the com-
ponent types must have a compare function.

template <class A, class B, class C, class D>

int Hash(const four tuple<A,B,C,D>& p)

hash function for four tuples . Each of the component
types must have a Hash function.

5. Implementation

The obvious implementation is used.

6. Example

We customize four tuples and define a h array for them.

#define prio() first()

#define inf() second()

4.19. FOUR TUPLES (FOUR TUPLE) 49

#define pq_item() third()

#define part_item() fourth()

typedef four_tuple<int,int,int,int> my_qu;

my_qu q;

my_qu q1(2,2,0,0);

q.prio() = 5;

h_array<my_qu,int> M;

M[my_qu(2,2,nil,nil)] = 5;

50 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

4.20 A date interface (date)

1. Definition

An instance of the data type date represents a date consisting of a day d, a month m and

year y. It will be denoted by d.m.y. Valid dates range from 1.1.1 to 31.12.9999. A date is

valid if it lies in the range and is correct according to the gregorian calendar, i.e. a year

y is considered to be a leap year iff y is divisible by 4 but not by 100 or y is divisible by

400. The year part y is always a four digit number, so that each date in the valid range

has an unambiguous representation.

With the date class there is associated an input and an output format, each is described by

a string which determines how instances of type date are read from streams and how they

are printed to streams. Printing the date 4.11.1973 using the format string ”dd.mm.yy”

will result in ”04.11.73”, whereas printing the same date using ”mm/dd/yyyy” will pro-

duce ”11/04/1973”. The date type provides some predefined formats, it also allows user-

defined formats and supports different languages (for month names and weekday names).

A format string consists of tokens, not all tokens are valid for both input and output

formats. But any sequence of valid tokens forms a valid format string, the only exception

to this rule is the delim token (see the table below). In order to avoid ambiguities when

parsing a format string the longest prefix rule is applied, which ensures that dd is parsed

as a single token and not as twice the token d.

An input format does not have to refer to all the three parts (day, month and year) of a

date; the parts which do not appear in the format are left unchanged when the format is

used in an update operation. Applying the format ”d.m.”, for example, changes the day

and the month part but not the year part. (The result of using input formats referring

twice to the same part as in ”m M” is undefined.) Please see table 4.1 for an overview of

all possible tokens.

#include < LEDA/system/date.h >

2. Types

date ::month { Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec }
The enumeration above allows to specify months by their name.
Of course, one can also specify months by their number writing
date::month(m).

date :: language { user def lang, local, english, german, french }
When the language is set to local , the month names and weekday
names are read from the local environment; the other identifiers are
self-explanatory.

4.20. A DATE INTERFACE (DATE) 51

Table 4.1: Token Overview

token input output description
d yes yes day with 1 or 2 digits
dd yes yes day with 2 digits (possibly with leading zero)
dth yes yes day as abbreviated english ordinal number (1st, 2nd,

3rd, 4th, . . .)
m yes yes month with 1 or 2 digits
mm yes yes month with 2 digits (possibly with leading zero)
M yes yes month name (when used in an input format this token

must be followed by a single char c which does not belong
to any month name, c is used to determine the end of
the name. e.g.: ”d.M.yy”)

M:l yes yes the first l characters of the month name (l must be a
single digit)

yy yes yes year with 2 digits (yy is considered to represent a year
in [1950;2049])

yyyy yes yes year with 4 digits
[yy]yy yes yes input: year with 2 or 4 digits / output: same as yyyy
w no yes calendar week (in the range [1;53]) (see get week() for

details)
diy no yes day in the year (in the range [1,366])
dow no yes day of the week (1=Monday, . . . , 7=Sunday)
DOW no yes name of the weekday
DOW:l no yes the first l characters of the weekday name (l must be a

single digit)
”txt” yes yes matches/prints txt (txt must not contain a double quote)
’txt ’ yes yes matches/prints txt (txt must not contain a single quote)
c yes yes matches/prints c (c /∈ {d,m,M, ?, ∗, ;})
? yes no matches a single arbitrary character
∗c yes no matches any sequence of characters ending with c
; yes yes separates different formats, e.g. ”d.M.yy;dd.mm.yy”

input: the first format that matches the input is used
output: all but the first format is ignored

delim:c yes no c serves as delimiter when reading input from
streams (If this token is used, it must be the
first in the format string.) When you use
”delim:\n;d.M.yy\n;d.m.yyyy\n” as input format to
read a date from a stream, everything until the
first occurence of ”\n” is read and then the format
”d.M.yy\n;d.m.yyyy\n” is applied.

date :: format { user def fmt, US standard, german standard, colons, hyphens }
The format US standard is an abbreviation for mm/dd/[yy]yy , the
format german standard is the same as dd.mm.[yy]yy , the other for-
mats are the same as the latter except that the periods are replaced
by colons/hyphens.

52 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

3. Creation

date D; creates an instance D of type date and initializes it to the current
date.

date D(int d, month m, int y);

creates an instance D of type date and initializes it to d.m.y.
Precondition: d.m.y represents a valid date.

date D(string date str , bool swallow = true);

creates an instance D of type date and initializes it to date given
in date str .
If swallow is true, then the format ”m/d/[yy]yy ; d?m?[yy]yy” is
used to parse date str , otherwise the current input format is applied.
Precondition: date str represents a valid date.

4. Operations

4.1 Languages and Input/Output Formats

void date :: set language(language l)

sets the language to l, which means that the month
names and the weekday names are set according to
the language.
Precondition: l 6= user def lang

void date :: set month names(const char ∗ names [])

sets the names for the months and changes the lan-
guage to user def lang .
Precondition: names [0..11] contains the names for the
months from January to December.

void date :: set dow names(const char ∗ names [])

sets the names for the weekdays and changes the lan-
guage to user def lang .
Precondition: names [0..6] contains the names for the
weekdays from Monday to Sunday.

language date :: get language() returns the current language.

void date :: set input format(format f)

sets the input format to f .
Precondition: f 6= user def fmt

void date :: set input format(string f)

sets the input format to the user-defined format in f .
Precondition: f is a valid format string

4.20. A DATE INTERFACE (DATE) 53

format date :: get input format()

returns the current input format.

string date :: get input format str()

returns the current input format string.

void date :: set output format(format f)

sets the output format to f .
Precondition: f 6= user def fmt

void date :: set output format(string f)

sets the output format to the user-defined format in
f .
Precondition: f is a valid format string

format date :: get output format()

returns the current output format.

string date :: get output format str()

returns the current output format string.

4.2 Access and Update Operations

All update operations which may fail have in common that the date is changed and

true is returned if the new date is valid, otherwise false is returned and the date is left

unchanged. (Note that the functions add to day , add to month and add to year can only

fail if the valid range (1.1.1 – 31.12.9999) is exceeded.)

void D.set to current date()

sets D to the current date.

bool D.set date(int d, month m, int y)

D is set to d.m.y (if d.m.y is valid).

bool D.set date(const string date str , bool swallow = true)

D is set to the date contained in date str . If swallow
is true, then the format ”m/d/[yy]yy ; d?m?[yy]yy” is
used to parse date str , otherwise the current input
format is applied.

string D.get date() returns a string representation of D in the current
output format.

int D.get day() returns the day part of D, i.e. if D is d.m.y then d is
returned.

month D.get month() returns the month part of D.

54 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

string D.get month name() returns the name of the month of D in the current
language.

int D.get year() returns the year part of D.

bool D.set day(int d) sets the day part of D to d, i.e. if D is d’.m.y then D
is set to d.m.y.

bool D.add to day(int d) adds d days to D (cf. arithmetic operations).

bool D.set month(month m)

sets the month part of D to m.

bool D.add to month(int m)

adds m months to the month part of D.
Let D be d.m’.y, then it is set to d.(m’ + m).y. If
this produces an overflow (i.e. m′ +m > 12) then the
month part is repeatedly decremented by 12 and the
year part is simultaneously incremented by 1, until the
month part is valid. (An underflow (i.e. m′ +m < 1)
is treated analogously.) The day part of the result is
set to the minimum of d and the number of days in
the resulting month.

bool D.set year(int y) sets the year part of D to y.

bool D.add to year(int y) adds y years to the year part of D.
(If D has the form 29.2.y’ and y’ + y is no leap year,
then D is set to 28.2.(y’ + y).)

int D.get day of week() returns the day of the week of D.
(1=Monday, 2=Tuesday, . . . , 7=Sunday)

string D.get dow name() returns the name of the weekday of D in the current
language.

int D.get week() returns the number of the calendar week of D (range
[1,53]).
A week always ends with a Sunday. Every week be-
longs to the year which covers most of its days. (If the
first Sunday of a year occurs before the fourth day of
the year, then all days up to this Sunday belong to
the last week of the preceding year. Similarly, if there
are less than 4 days left after the last Sunday of a
year, then these days belong to the first week of the
succeding year.)

int D.get day in year() returns the number of the day in the year of D (range
[1;366]).

4.20. A DATE INTERFACE (DATE) 55

4.3 Arithmetic Operations

date D + int d returns the date d days after D.

date D − int d returns the date d days before D.

The related operators ++, −−, +=, −= and all comparison operators are also provided.

int D − const date& D2 returns the difference between D and D2 in days.

int D.days until(const date& D2)

returns D2−D.

int D.months until(const date& D2)

if D2 ≥ D then max{m : D.add to month(m) ≤
D2} is returned; otherwise the result is
−D2.months until(D).

int D.years until(const date& D2)

if D2 ≥ D then max{y : D.add to year(y) ≤ D2} is
returned; otherwise the result is −D2.years until(D).

4.4 Miscellaneous Predicates

bool date :: is valid(int d, month m, int y)

returns true iff d.m.y represents a valid date.

bool date :: is valid(string d, bool swallow = true)

returns true iff d represents a valid date. If swallow
is true the swallow format (cf. set date) is used, oth-
erwise the current input format is tried.

bool date :: is leap year(int y)

returns true iff y is a leap year.

bool D.is last day in month()

let D be d.m.y; the function return true iff d is the
last day in the month m of the year y.

5. Example

We count the number of Sundays in the days from now to 1.1.2020 using the following

code chunk:

int number_of_Sundays = 0;

for (date D; D<=date(1,date::Jan,2020); ++D)

if (D.get_day_of_week() == 7) ++number_of_Sundays;

56 CHAPTER 4. SIMPLE DATA TYPES AND BASIC SUPPORT OPERATIONS

Now we show an example in which different output formats are used:

date D(2,date::month(11),1973);

date::set_output_format(date::german_standard);

cout << D << endl; // prints "02.11.1973"

date::set_language(date::english);

date::set_output_format("dth M yyyy");

cout << D << endl; // prints "2nd November 1973"

Finally, we give an example for the usage of a multi-format. One can choose among 3

different formats:

1. If one enters only day and month, then the year part is set to the current year.

2. If one enters day, month and year providing only 2 digits for the year, the year

is considered to be in the range [1950, 2049]. (Note that the date 1.1.10 must be

written as ”1.1.0010”.)

3. One may also specify the date in full detail by entering 4 digits for the year.

The code to read the date in one of the formats described above looks like this:

D.set_to_current_date(); // set year part to current year

date::set_input_format("delim:\n;d.m.\n;d.m.[yy]yy\n");

cin >> D; cout << D << endl;

Chapter 5

Number Types and Linear Algebra

5.1 Integers of Arbitrary Length (integer)

1. Definition

An instance of the data type integer is an integer number of arbitrary length. The internal

representation of an integer consists of a vector of so-called digits and a sign bit. A digit

is an unsigned long integer (type unsigned long).

#include < LEDA/numbers/integer.h >

2. Creation

integer a; creates an instance a of type integer and initializes it with zero.

integer a(int n); creates an instance a of type integer and initializes it with the value
of n.

integer a(unsigned int i);

creates an instance a of type integer and initializes it with the value
of i.

integer a(long l); creates an instance a of type integer and initializes it with the value
of l.

integer a(unsigned long i);

creates an instance a of type integer and initializes it with the value
of i.

integer a(double x); creates an instance a of type integer and initializes it with the
integral part of x.

integer a(unsigned int sz , const digit ∗ vec, int sign = 1);

creates an instance a of type integer and initializes it with the value
represented by the first sz digits vec and the sign.

57

58 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

integer a(const char ∗ s);
a creates an instance a of type integer from its decimal representa-
tion given by the string s.

integer a(const string& s);

a creates an instance a of type integer from its decimal representa-
tion given by the string s.

3. Operations

The arithmetic operations +, −, ∗, /, + =, − =, ∗ =, / =, −(unary), ++, −−, the

modulus operation (%, % =), bitwise AND (&, & =), bitwise OR (|, | =), the complement

(˜), the shift operations (<<, >>), the comparison operations <, <=, >, >=, ==, ! =

and the stream operations all are available.

int a.sign() returns the sign of a.

int a.length() returns the number of bits of the representation of
a.

bool a.is long() returns whether a fits in the data type long.

long a.to long() returns a long number which is initialized with the
value of a. Precondition: a.is long() is true.

double a.to double() returns a double floating point approximation of a.

double a.to double(bool& is double)

as above, but also returns in is double whether the
conversion was exact.

double a.to float() as above.

string a.to string() returns the decimal representation of a.

integer& a.from string(string s) sets a to the number that has decimal respresenta-
tion s.

sz t a.used words() returns the length of the digit vector that represents
a.

digit a.highword() returns the most significant digit of a.

digit a.contents(int i) returns the i-th digit of a (the first digit is
a.contents(0)).

void a.hex print(ostream& o) prints the digit vector that represents a in hex for-
mat to the output stream o.

bool a.iszero() returns whether a is equal to zero.

5.1. INTEGERS OF ARBITRARY LENGTH (INTEGER) 59

Non-member functions

double to double(const integer& a)

returns a double floating point approximation of a.

integer sqrt(const integer& a) returns the largest integer which is not larger than
the square root of a.

integer abs(const integer& a) returns the absolute value of a.

integer factorial(const integer& n)

returns n!.

integer gcd(const integer& a, const integer& b)

returns the greatest common divisor of a and b.

int log(const integer& a) returns the logarithm of a to the basis 2 (rounded
down).

int log2 abs(const integer& a)

returns the logarithm of |a| to the basis 2 (rounded
up).

int sign(const integer& a) returns the sign of a.

integer sqr(const integer& a) returns a2.

double double quotient(const integer& a, const integer& b)

returns a the best possible floating-point approxi-
mation of a/b.

integer integer :: random(int n) returns a random integer of length n bits.

4. Implementation

An integer is essentially implemented by a vector vec of unsigned long numbers. The

sign and the size are stored in extra variables. Some time critical functions are also

implemented in assembler code.

60 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

5.2 Rational Numbers (rational)

1. Definition

An instance q of type rational is a rational number where the numerator and the denom-

inator are both of type integer.

#include < LEDA/numbers/rational.h >

2. Creation

rational q; creates an instance q of type rational .

rational q(integer n);

creates an instance q of type rational and initializes it with the
integer n.

rational q(integer n, integer d);

creates an instance q of type rational and initializes it to the rational
number n/d.

rational q(double x);

creates an instance q of type rational and initializes it with the
value of x.

3. Operations

The arithmetic operations +, −, ∗, /, + =, − =, ∗ =, / =, −(unary), ++, −−, the

comparison operations <, <=, >, >=, ==, ! = and the stream operations are all available.

void q.negate() negates q.

void q.invert() inverts q.

rational q.inverse() returns the inverse of q.

integer q.numerator() returns the numerator of q.

integer q.denominator() returns the denominator of q.

rational& q.simplify(const integer& a)

simplifies q by a.
Precondition: a divides the numerator and the de-
nominator of q.

rational& q.normalize() normalizes q.

5.2. RATIONAL NUMBERS (RATIONAL) 61

double to float() returns a double floating point approximation of
q. If the q is approximable by a normalized, finite
floating point number, the error is 3ulps, i.e., three
units in the last place.

string q.to string() returns a string representation of q.

Non-member functions

int sign(const rational& q) returns the sign of q.

rational abs(const rational& q) returns the absolute value of q.

rational sqr(const rational& q) returns the square of q.

integer trunc(const rational& q) returns the integer with the next smaller absolute
value.

rational pow(const rational& q, int n)

returns the n-th power of q.

rational pow(const rational& q, integer a)

returns the a-th power of q.

integer floor(const rational& q) returns the next smaller integer.

integer ceil(const rational& q) returns the next bigger integer.

integer round(const rational& q) rounds q to the nearest integer.

rational small rational between(const rational& p, const rational& q)

returns a rational number between p and q whose
denominator is as small as possible.

rational small rational near(const rational& p, rational eps)

returns a rational number between p − eps and
p+ eps whose denominator is as small as possible.

4. Implementation

A rational is implemented by two integer numbers which represent the numerator and

the denominator. The sign is represented by the sign of the numerator.

62 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

5.3 The data type bigfloat (bigfloat)

1. Definition

In general a bigfloat is given by two integers s and e where s is the significant and e is

the exponent. The tuple (s, e) represents the real number

s · 2e.

In addition, there are the special bigfloat values NaN (not a number), pZero, nZero

(= +0,−0), and pInf , nInf (= +∞,−∞). These special values behave as defined by the

IEEE floating point standard. In particular, 5
+0

= ∞, −5
+0

= −∞, ∞ + 1 = ∞, 5
∞

= +0,

+∞+ (−∞) = NaN and 0 · ∞ = NaN .

Arithmetic on bigfloats uses two parameters: The precision prec of the result (in number

of binary digits) and the rounding mode mode. Possible rounding modes are:

• TO NEAREST : round to the closest representable value

• TO ZERO : round towards zero

• TO INF : round away from zero

• TO P INF : round towards +∞

• TO N INF : round towards −∞

• EXACT : compute exactly for +,−, ∗ and round to nearest otherwise

Operations +, −, ∗ work as follows. First, the exact result z is computed. If the rounding

mode is EXACT then z is the result of the operation. Otherwise, let s be the significant

of the result; s is rounded to prec binary places as dictated by mode. Operations / and
√

work accordingly except that EXACT is treated as TO NEAREST .

The parameters prec and mode are either set directly for a single operation or else they

are set globally for every operation to follow. The default values are 53 for prec and

TO NEAREST for mode.

#include < LEDA/numbers/bigfloat.h >

2. Creation

A bigfloat may be constructed from data types double, long , int and integer , without loss

of accuracy. In addition, an instance of type bigfloat can be created as follows.

bigfloat x(const integer& s, const integer& e);

introduces a variable x of type bigfloat and initializes it to s · 2e

5.3. THE DATA TYPE BIGFLOAT (BIGFLOAT) 63

double x.to double() returns the double value next to x (i.e. rounding mode
is always TO NEAREST).

double x.to double(bool& is double)

as above, but also returns in is double whether the
conversion was exact.

double x.to double(double& abs err , rounding modes m = TO NEAREST)

as above, but with more flexibility: The parameter m
specifies the rounding mode. For the returned value
d, we have |x − d| ≤ abs err . (abs err is zero iff the
conversion is exact and the returned value is finite.)

double x.to double(rounding modes m)

as above, but does not return an error bound.

rational x.to rational() converts x into a number of type rational .

sz t x.get significant length(void)

returns the length of the significant of x.

sz t x.get effective significant length(void)

returns the length of the significant of x without trail-
ing zeros.

integer x.get exponent(void) returns the exponent of x.

integer x.get significant(void)

returns the significant of x.

sz t bigfloat :: set precision(sz t p)

sets the global arithmetic precision to p binary digits
and returns the old value

sz t bigfloat :: get precision()

returns the currently active global arithmetic preci-
sion

sz t bigfloat :: set output precision(sz t d)

sets the precision of bigfloat output to d decimal digits
and returns the old value

sz t bigfloat :: set input precision(sz t p)

sets the precision of bigfloat input to p binary digits
and returns the old value

rounding modes bigfloat :: set rounding mode(rounding modes m)

sets the global rounding mode to m and returns the
old rounding mode

64 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

rounding modes bigfloat :: get rounding mode()

returns the currently active global rounding mode

output modes bigfloat :: set output mode(output modes o mode)

sets the output mode to o mode and returns the old
output mode

A bigfloat x can be rounded by the call round(x, prec,mode, is exact). The optional

boolean variable is exact is set to true if and only if the rounding operation did not

change the value of x.

integer to integer(rounding modes rmode = TO NEAREST ,
bool& is exact = bigfloat ::dbool)

returns the integer value next to x (in the given round-
ing mode)

integer to integer(const bigfloat& x, rounding modes rmode, bool& is exact)

returns x.to integer(...).

3. Operations

The arithmetical operators +, −, ∗, /, +=, −=, ∗=, /=, sqrt , the comparison operators

<, ≤, >, ≥ , =, 6= and the stream operators are available. Addition, subtraction, mul-

tiplication, division, square root and power are implemented by the functions add , sub,

mul , div , sqrt and power respectively. For example, the call

add(x, y, prec, mode, is exact)

computes the sum of bigfloats x and y with prec binary digits, in rounding mode mode,

and returns it. The optional last parameter is exact is a boolean variable that is set

to true if and only if the returned bigfloat exactly equals the sum of x and y. The

parameters prec and mode are also optional and have the global default values global prec

and round mode respectively, that is, the three calls add(x, y, global prec, round mode),

add(x, y, global prec), and add(x, y) are all equivalent. The syntax for functions sub,

mul , div , and sqrt is analogous.

The operators +, −, ∗, and / are implemented by their counterparts among the functions

add , sub, mul and div . For example, the call x+ y is equivalent to add(x, y).

bool isNaN(const bigfloat& x)

returns true if and only if x is in special state NaN

bool isnInf(const bigfloat& x)

returns true if and only if x is in special state nInf

bool ispInf(const bigfloat& x)

returns true if and only if x is in special state pInf

5.3. THE DATA TYPE BIGFLOAT (BIGFLOAT) 65

bool isnZero(const bigfloat& x)

returns true if and only if x is in special state nZero

bool ispZero(const bigfloat& x)

returns true if and only if x is in special state pZero

bool isZero(const bigfloat& x)

returns true if and only if ispZero(x) or isnZero(x)

bool isInf(const bigfloat& x)

returns true if and only if ispInf (x) or isnInf (x)

bool isSpecial(const bigfloat& x)

returns true if and only if x is in a special state

int sign(const bigfloat& x)

returns the sign of x.

bigfloat abs(const bigfloat& x)

returns the absolute value of x

bigfloat ipow2(const integer& p)

returns 2p

integer ilog2(const bigfloat& x)

returns the binary logarithm of abs(x), rounded up to the
next integer. Precondition: x 6= 0

integer ceil(const bigfloat& x)

returns x, rounded up to the next integer

integer floor(const bigfloat& x)

returns x, rounded down to the next integer

bigfloat sqrt d(const bigfloat& x, sz t p, int d)

returns d
√
x, with relative error ≤ 2−p but not necessarily

exactly rounded to p binary digits

string x.to string(sz t dec prec = global output prec)

returns the decimal representation of x, rounded to a decimal
precision of dec prec decimal places.

bigfloat& x.from string(string s, sz t bin prec = global input prec)

returns an approximation of the decimal number given by the
string s by a bigfloat that is accurate up to bin prec binary
digits

ostream& ostream& os ≪ const bigfloat& x

writes x to output stream os

66 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

istream& istream& is ≫ bigfloat& x

reads x from input stream is in decimal format

5.4. THE DATA TYPE REAL (REAL) 67

5.4 The data type real (real)

1. Definition

An instance x of the data type real is a real algebraic number. There are many ways

to construct a real: either by conversion from double, bigfloat , integer or rational , by

applying one of the arithmetic operators +,−, ∗, / or d
√

to real numbers or by using the

⋄-operator to define a real root of a polynomial over real numbers. One may test the

sign of a real number or compare two real numbers by any of the comparison relations

=, 6=, <,≤, > and ≥. The outcome of such a test is mathematically exact. We give

consider an example expression to clarify this:

x := (
√
17−

√
12) ∗ (

√
17 +

√
12)− 5

Clearly, the value of x is zero. But if you evaluate x using double arithmetic you obtain

a tiny non-zero value due to rounding errors. If the data type real is used to compute

x then sign(x) yields zero. 1 There is also a non–standard version of the sign function:

the call x.sign(integer q) computes the sign of x under the precondition that |x| ≤ 2−q

implies x = 0. This version of the sign function allows the user to assist the data type in

the computation of the sign of x, see the example below.

There are several functions to compute approximations of reals. The calls x.to bigfloat()

and x.get bigfloat error() return bigfloats xnum and xerr such that |xnum − x| ≤
xerr . The user may set a bound on xerr . More precisely, after the call

x.improve approximation to(integer q) the data type guarantees xerr ≤ 2−q. One can

also ask for double approximations of a real number x. The calls x.to double() and

x.get double error() return doubles xnum and xerr such that |xnum − x| ≤ xerr . Note

that xerr = ∞ is possible.

#include < LEDA/numbers/real.h >

2. Types

typedef polynomial<real> Polynomial the polynomial type.

3. Creation

reals may be constructed from data types double, bigfloat , long , int and integer . The

default constructor real() initializes the real to zero.

4. Operations

double x.to double() returns the current double approximation of x.

double x.to double(double& error)

as above, but also computes a bound on the absolute error.

68 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

bigfloat x.to bigfloat() returns the current bigfloat approximation of x.

double x.get double error()

returns the absolute error of the current double approximation
of x, i.e., |x− x.to double()| ≤ x.get double error().

bigfloat x.get bigfloat error()

returns the absolute error of the current bigfloat approxima-
tion of x, i.e., |x− x.to bigfloat()| ≤ x.get bigfloat error().

bigfloat x.get lower bound()

returns the lower bound of the current interval approximation
of x.

bigfloat x.get upper bound()

returns the upper bound of the current interval approximation
of x.

rational x.high() returns a rational upper bound of the current interval approx-
imation of x.

rational x.low() returns a rational lower bound of the current interval approx-
imation of x.

double x.get double lower bound()

returns a double lower bound of x.

double x.get double upper bound()

returns a double upper bound of x.

bool x.possible zero() returns true if 0 is in the current interval approximation of x

integer x.separation bound()

returns the separation bound of x.

integer x.sep bfmss() returns the k-ary BFMSS separation bound of x.

integer x.sep degree measure()

returns the degree measure separation bound of x.

integer x.sep li yap() returns the Li / Yap separation bound of x.

void x.print separation bounds()

prints the different separation bounds of x.

bool x.is general() returns true if the expression defining x contains a ⋄-operator,
false otherwise.

bool x.is rational() returns true if the expression is rational, false otherwise.

5.4. THE DATA TYPE REAL (REAL) 69

rational x.to rational() returns the rational number given by the expression.
Precondition: is rational() has is true.

int x.compare(const real& y)

returns the sign of x-y.

int compare all(const growing array<real>& R, int& j)

compares all elements in R. It returns i such that R[i] = R[j]
and i 6= j. Precondition: Only two of the elements in R are
equal. [Experimental]

int x.sign() returns the sign of (the exact value of) x.

int x.sign(const integer& q)

as above. Precondition: The user guarantees that |x| ≤ 2−q

is only possible if x = 0. This advanced version of the sign
function should be applied only by the experienced user. It
gives an improvement over the plain sign function only in
some cases.

void x.improve approximation to(const integer& q)

recomputes the approximation of x if necessary; the
resulting error of the bigfloat approximation satisfies
x.get bigfloat error() ≤ 2−q

void x.compute with precision(long k)

recomputes the bigfloat approximation of x, if necessary; each
numerical operation is carried out with a mantissa length of k.
Note that here the size of the resulting x.get bigfloat error()
cannot be predicted in general.

void x.guarantee relative error(long k)

recomputes an approximation of x, if necessary; the relative
error of the resulting bigfloat approximation is less than 2−k,
i.e., x.get bigfloat error() ≤ |x| · 2−k.

ostream& ostream& O ≪ const real& x

writes the closest interval that is known to contain x to the
output stream O. Note that the exact representation of x is
lost in the stream output.

istream& istream& I ≫ real& x

reads x number x from the output stream I in double for-
mat. Note that stream input is currently impossible for more
general types of reals.

70 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

real sqrt(const real& x)
√
x

real root(const real& x, int d)
d
√
x, precondition: d ≥ 2

Note: The functions real roots and diamond below are all experimental if they are applied

to a polynomial which is not square-free.

int real roots(const Polynomial& P, list<real>& roots , algorithm type algorithm,
bool is squarefree)

returns all real roots of the polynomial P .

int real roots(const Polynomial& P, growing array<real>& roots ,
algorithm type algorithm, bool is squarefree)

same as above.

int real roots(const int Polynomial& iP , list<real>& roots ,
algorithm type algorithm = isolating algorithm,
bool is squarefree = true)

returns all real roots of the polynomial iP .

real diamond(int j, const Polynomial& P, algorithm type algorithm,
bool is squarefree)

returns the j-th smallest real root of the polynomial P .

real diamond(rational l, rational u, const Polynomial& P, algorithm type algorithm,
bool is squarefree)

returns the real root of the polynomial P which is in the iso-
lating interval [l,u].

real diamond short(rational l, rational u, const Polynomial& P,
algorithm type algorithm, bool is squarefree)

returns the real root of the polynomial P which is in the iso-
lating interval [l,u].
Precondition: (u− l) < 1/4

real diamond(int j, const int Polynomial& iP ,
algorithm type algorithm = isolating algorithm,
bool is squarefree = true)

returns the j-th smallest real root of the polynomial iP .

real diamond(rational l, rational u, const int Polynomial& iP ,
algorithm type algorithm = isolating algorithm,
bool is squarefree = true)

returns the real root of the polynomial iP which is in the
isolating interval [l,u].

real abs(const real& x)

absolute value of x

5.4. THE DATA TYPE REAL (REAL) 71

real sqr(const real& x) square of x

real dist(const real& x, const real& y)

euclidean distance of point (x,y) to the origin

real powi(const real& x, int n)

xn, i.e., n.th power of x

integer floor(const real& x)

returns the largest integer smaller than or equal to x.

integer ceil(const real& x)

returns the smallest integer greater than or equal to x.

rational small rational between(const real& x, const real& y)

returns a rational number between x and y with the smallest
available denominator. Note that the denominator does not
need to be strictly minimal over all possible rationals.

rational small rational near(const real& x, double eps)

returns small rational between(x− eps , x+ eps).

5. Implementation

A real is represented by the expression which defines it and an interval inclusion I that

contains the exact value of the real. The arithmetic operators +,−, ∗, d
√

take constant

time. When the sign of a real number needs to be determined, the data type first computes

a number q, if not already given as an argument to sign, such that |x| ≤ 2−q implies x = 0.

The bound q is computed as described in [81]. Using bigfloat arithmetic, the data type

then computes an interval I of maximal length 2−q that contains x. If I contains zero,

then x itself is equal to zero. Otherwise, the sign of any point in I is returned as the sign

of x.

Two shortcuts are used to speed up the computation of the sign. Firstly, if the initial

interval approximation already suffices to determine the sign, then no bigfloat approxima-

tion is computed at all. Secondly, the bigfloat approximation is first computed only with

small precision. The precision is then roughly doubled until either the sign can be decided

(i.e., if the current approximation interval does not contain zero) or the full precision 2−q

is reached. This procedure makes the sign computation of a real number x adaptive in

the sense that the running time of the sign computation depends on the complexity of x.

6. Example

We give two typical examples for the use of the data type real that arise in Computational

geometry. We admit that a certain knowledge about Computational geometry is required

for their full understanding. The examples deal with the Voronoi diagram of line segments

and the intersection of line segments, respectively.

72 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

The following incircle test is used in the computation of Voronoi diagrams of line segments

[18, 15]. For i, 1 ≤ i ≤ 3, let li : aix + biy + ci = 0 be a line in two–dimensional space

and let p = (0, 0) be the origin. In general, there are two circles passing through p and

touching l1 and l2. The centers of these circles have homogeneuos coordinates (xv, yv, zv),

where

xv = a1c2 + a2c1 ± sign(s)
√

2c1c2(
√
N +D)

yv = b1c2 + b2c1 ± sign(r)
√

2c1c2(
√
N −D)

zv =
√
N − a1a2 − b1b2

and
s = b1D2 − b2D1, N = (a21 + b21)(a

2
2 + b22)

r = a1D2 − a2D1, D = a1a2 − b1b2.

Let us concentrate on one of these (say, we take the plus sign in both cases). The test

whether l3 intersects, touches or misses the circle amounts to determining the sign of

E := dist2(v, l3)− dist2(v, p) =
(a3xv + b3yv + c3)

2

a23 + b23
− (x2

v + y2v).

The following program computes the sign of Ẽ := (a23 + b23) · E using our data type real.

int incircle(real a1, real b1, real c1, real a2, real b2, real c2, real a3, real b3,

real c3)

{
real RN = sqrt((a1 ∗ a1 + b1 ∗ b1) ∗ (a2 ∗ a2 + b2 ∗ b2));
real RN1 = sqrt(a1 ∗ a1 + b1 ∗ b1);
real RN2 = sqrt(a2 ∗ a2 + b2 ∗ b2);
real A = a1 ∗ c2 + a2 ∗ c1;
real B = b1 ∗ c2 + b2 ∗ c1;
real C = 2 ∗ c1 ∗ c2;
real D = a1 ∗ a2 − b1 ∗ b2;
real s = b1 ∗RN2 − b2 ∗RN1;

real r = a1 ∗RN2 − a2 ∗RN1;

int signx = sign(s);

int signy = sign(r);

real xv = A+ signx ∗ sqrt(C ∗ (RN +D));

real yv = B − signy ∗ sqrt(C ∗ (RN −D));

real zv = RN − (a1 ∗ a2 + b1 ∗ b2);
real P = a3 ∗ xv + b3 ∗ yv + c3 ∗ zv;
real D2

3 = a3 ∗ a3 + b3 ∗ b3;
real R2 = xv ∗ xv + yv ∗ yv;
real E = P ∗ P −D2

3 ∗R2;

return sign(E);

}

5.4. THE DATA TYPE REAL (REAL) 73

We can make the above program more efficient if all coefficients ai, bi and ci, 1 ≤ i ≤ 3,

are k bit integers, i.e., integers whose absolute value is bounded by 2k − 1. In [18, 15] we

showed that for Ẽ 6= 0 we have |Ẽ| ≥ 2−24k−26. Hence we may add a parameter int k in

the above program and replace the last line by

return E.sign(24 ∗ k + 26).

Without this assistance, reals automatically compute a weaker bound of |Ẽ| ≥ 2−56k−161

for Ẽ 6= 0 by [16].

We turn to the line segment intersection problem next. Assume that all endpoints have

k–bit integer homogeneous coordinates. This implies that the intersection points have

homogeneous coordinates (X, Y,W) where X, Y and W are (4 k + 3) - bit integers. The

Bentley–Ottmann plane sweep algorithm for segment intersection [67] needs to sort points

by their x–coordinates, i.e., to compare fractionsX1/W1 andX2/W2 whereX1, X2,W1,W2

are as above. This boils down to determining the sign of the 8k+7 bit integer X1 ∗W2 −
X2∗W1. If all variablesXi,Wi are declared real then their sign test will be performed quite

efficiently. First, an interval approximation is computed and then, if necessary, bigfloat

approximations of increasing precision. In many cases, the interval approximation already

determines the sign. In this way, the user of the data type real gets nearly the efficiency

of a hand-coded floating point filter [36, 68] without any work on his side. This is in

marked contrast to [36, 68] and will be incorporated into [67].

74 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

5.5 Interval Arithmetic in LEDA (interval)

1. Definition

An instance of the data type interval represents a real interval I = [a, b]. The basic

interval operations +,−, ∗, /,√ are available. Type interval can be used to approximate

exact real arithmetic operations by inexact interval operations, as follows. Each input

number xi is converted into the interval {xi} and all real operations are replaced by

interval operations. If x is the result of the exact real calculation and I the interval

computed by type interval , it is guaranteed that I contains x. I can be seen as a more or

less accurate approximation of x. In many cases the computed interval I is small enough

to provide a useful approximation of x and the exact sign of x. There are four different

implementations of intervals (consult the implementation section below for details):

• Class interval bound absolute

• Class interval bound relative

• Class interval round inside

• Class interval round outside, which is usually the fastest but requires that the

IEEE754 rounding mode ieee positive is activated, e.g. by using the LEDA class

fpu.

The interface of all interval variants are identical. However, note that the types

interval round inside and interval round outside are only available on some explicitly sup-

ported UNIX platforms, currently including SPARC, MIPS, i386 (PC’s compatible to

80386 or higher), and ALPHA. For all platforms, the name interval stands for the default

implementation interval bound absolute.

#include < LEDA/numbers/interval.h >

interval x; creates an instance x of type interval and initializes it with the
interval {0}

interval x(VOLATILE I double a);

creates an instance x of type interval and initializes it with {a}

interval x(int a); creates an instance x of type interval and initializes it with {a}

interval x(long a); creates an instance x of type interval and initializes it with {a}

interval x(const integer& a);

creates an instance x of type interval and initializes it with the
smallest possible interval containing a

5.5. INTERVAL ARITHMETIC IN LEDA (INTERVAL) 75

interval x(const bigfloat& a);

creates an instance x of type interval and initializes it with the
smallest possible interval containing a

interval x(const real& a);

creates an instance x of type interval and initializes it with the
smallest possible interval containing a

interval x(const rational& a);

creates an instance x of type interval and initializes it with the
smallest possible interval containing a

2. Operations

The arithmetic operations +,−, ∗, /, sqrt ,+=,−=, ∗=, /= and the stream operators are

all available. Important: If the advanced implementation interval round outside is

used, the user has to guarantee that for each interval operation the IEEE754 round-

ing mode ”towards +∞” is active. This can be achieved by calling the function

fpu :: round up(). To avoid side effects with library functions that require the default

IEEE754 rounding mode to nearest , the function fpu :: round nearest() can be used to

reset the rounding mode.

double x.to double() returns the midpoint of the interval x as an approx-
imation for the exact real number represented by x.

double x.get double error() returns the diameter of the interval x which is the
maximal error of the approximation x.to double()
of the exact real number represented by x.

bool x.is a point() returns true if and only if the interval x consists of
a single point.

bool x.is finite() returns true if and only if the interval x is a finite
interval.

bool x.contains(double x) returns true if and only if the interval x contains the
number x

double x.upper bound() returns the upper bound of the interval x.

double x.lower bound() returns the lower bound of the interval x.

void x.set range(VOLATILE I double x, VOLATILE I double y)

sets the current interval to [x, y].

76 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

void x.set midpoint(VOLATILE I double num, VOLATILE I double error)

sets the current interval to a superset of [num −
error, num + error], i.e., to an interval with mid-
point num and radius error .

bool x.sign is known() returns true if and only if all numbers in the interval
x have the same sign

int x.sign() returns the sign of all numbers in the interval x if
this sign is unique; aborts with an error message if
x.sign is known() gives false

3. Implementation

The types interval round inside and interval round outside represent intervals directly

by (the negative of) its lower bound and its upper bound as doubles. Here all

arithmetic operations require that the IEEE754 rounding mode ”towards +∞” is ac-

tive. For type interval round inside this is done inside each operation, and for type

interval round outside the user has to do this manually ”from outside the operations” by

an explicit call of fpu :: round up().

The types interval bound absolute and interval bound relative represent intervals by their

double midpoint NUM and diameter ERROR. The interpretation is that NUM is the

numerical approximation of a real number and ERROR is a bound for the absolute,

respectively relative error of NUM .

5.6. MODULAR ARITHMETIC IN LEDA (RESIDUAL) 77

5.6 Modular Arithmetic in LEDA (residual)

1. Definition

The data type residual provides an implementation of exact integer arithmetic using mod-

ular computation. In contrast to the LEDA type integer which offers similar functionality

as residual , the user of residual has to specify for each calculation the maximal bit length

b of the integers she wants to be exactly representable by residuals. This is done by a

call of residual :: set maximal bit length(b) preceding the calculation. The set of integers

in the interval [−2b, 2b) is called the current range of numbers representable by residuals.

A residual number x that is outside the current range is said to overflow. As an effect of

its overflow, certain operations cannot be applied to x and the result is undefined. These

critical operations include e.g. all kinds of conversion, sign testing and comparisons. It

is important to realize that for an integer x given by a division-free expression it only

matters whether the final result x does not overflow. This is sometimes useful and hence

overflow is not always checked by default.

Division is available for residuals, but with certain restrictions. Namely, for each division

x/y the user has to guarantee at least one of the following two conditions:

• y.is invertible() is true

• x/y is integral and x and y do not overflow.

If the first condition is satisfied, there is an alternative way to do the division x/y. In-

troducing the residual variable z = y.inverse(), the call x/y is equivalent to the call

x∗ z. The latter form is advantageous if several divisions have the same divisor y because

here the time-consuming inversion of y, which is implicit in the division x/y, has to be

performed only once.

If the result of an operation is not integral, the computation will usually proceed without

warning. In such cases the computation produces a nonsensical result that is likely to over-

flow but otherwise is a perfect residual . However, the operations mentioned above check

for overflow. Note that the implemented overflow checks are not rigorous, detecting inva-

lidity only with empirically high probability. Overflow checking can be switched off by call-

ing set maximal bit length with a second, optional parameter residual ::no overflow check .

#include < LEDA/numbers/residual.h >

78 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

5.7 The mod kernel of type residual (residual)

1. Definition

Type residual ::mod provides the basic modular arithmetic modulo primes of maximal size

226. Here numbers modulo the prime p are represented by integral doubles in [0, · · · p−1].

This type cannot be instantiated, so there are only static functions and no constructors.

The following functions have the common precondition that p is a prime between 2 and

226.

#include < LEDA/numbers/residual.h >

2. Operations

double residual :: reduce of positive(double a, double p)

returns a modulo p for nonnegative integral 0 ≤ a <
254

double residual :: reduce(double a, double p)

returns a modulo p for any integral a with |a| < 254

double residual :: add(double a, double b, double p)

returns (a + b) mod p where a, b are integral with
|a|, |b| < 252

double residual :: sub(double a, double b, double p)

returns (a − b) mod p where a, b are integral with
|a|, |b| < 252

double residual ::mul(double a, double b, double p)

returns (a·b) mod p where a, b are integral with |a·b| <
253

double residual :: div(double a, double b, double p)

returns (a · b−1) mod p where a, b are integral with
|a| < 226 and b 6= 0 mod p

double residual :: negate(double a, double p)

returns −a mod p for nonnegative a < p

double residual :: inverse(double a, double p)

returns the inverse of a modulo p for intergal 0 ≤ a <
p < 232

5.8. THE SMOD KERNEL OF TYPE RESIDUAL (RESIDUAL) 79

5.8 The smod kernel of type residual (residual)

1. Definition

Type residual ::smod is a variant of class residual ::mod that uses a signed representation.

Here numbers modulo p are represented by integral doubles in (−p/2,+p/2). All functions

have the common precondition that p is a prime between 3 and 226. The functions of type

residual ::mod are also provided for class residual :: smod and have the same meaning, so

we do not list them separately here.

#include < LEDA/numbers/residual.h >

2. Operations

double residual :: frac(double a)

returns a+ z where z is the unique integer such that
a+ z ∈ [−1/2, 1/2)

3. Creation

residual x; creates an instance x of type residual and initializes it with zero.

residual x(long a); creates an instance x of type residual and initializes it with the
value of a.

residual x(int a); creates an instance x of type residual and initializes it with the
value of a.

residual x(double a);

creates an instance x of type residual and initializes it with the
integral part of x.

residual x(const integer& a);

creates an instance x of type residual and initializes it with the
value of a.

4. Operations

int residual :: set maximal bit length(int b, bool with check = do overflow check)

sets the maximal bit size of the representable num-
bers to b and returns the previous maximal bit size

int residual :: get maximal bit length()

returns the maximal bit size of the representable
numbers

80 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

int residual :: required primetable size(int b)

returns the number of primes required to represent
signed numbers up to bit length b

The following functions have the common precondition that the residual objects a, x

are integral and do not overflow.

integer x.to integer() returns the integer equal to x.

long x.length() returns the length of the binary representation of
the integer represented by x.

bool x.is long() returns true if and only if x fits in the data format
long .

long x.to long() returns a long number which is initialized with the
value of x. Precondition: x.is long() is true.

double x.to double() returns a double floating point approximation of x.

double x.to float() as above.

bool x.is zero() returns true if and only if x is equal to zero.

bool x.is invertible() returns true if and only if x is nonzero and the cur-
rent modular representation of x allows to invert x
without loss of information.

int x.sign() returns the sign of x.

int x.lagrange sign() returns the sign of x using Lagrange’s formula.

int x.garner sign() returns the sign of x using Garner’s formula.

string x.to string() returns the decimal representation of x.

residual abs(const residual& a) returns the absolute value of a

void x.absolute(const residual& a)

sets x to the absolute value of a.

The remaining functions do not have implicit preconditions. Although not explicitly

mentioned, the arithmetic operations +, −, ∗, /, +=, −=, ∗=, /=, ++, −−, the shift

operations, the comparison operations <, ≤, >, ≥, ==, != and the stream operations are

available.

residual sqr(const residual& a) returns a ∗ a

residual det2x2(const residual& a, const residual& b, const residual& c,
const residual& d)

returns a ∗ d− b ∗ c

5.8. THE SMOD KERNEL OF TYPE RESIDUAL (RESIDUAL) 81

void x.add(const residual& a, const residual& b)

sets x to a+ b.

void x.sub(const residual& a, const residual& b)

sets x to a− b.

void x.mul(const residual& a, const residual& b)

sets x to a ∗ b.
void x.div(const residual& a, const residual& b)

sets x to a/b.

void x.det2x2(const residual& a, const residual& b, const residual& c,
const residual& d)

sets x to a ∗ d− b ∗ c.
void x.inverse(const residual& a)

sets x to the modular inverse of a. Precondition:
x.in invertible is true.

void x.negate(const residual& a)

sets x to −a.

The following functions provide direct read-only access to the internal representation of

residual objects. They should only be used by the experienced user after reading the full

documentation of type residual.

residual sequence residual :: get primetable()

returns a copy of the currently used primetable

residual sequence residual :: get garnertable()

returns a copy of the currently used table of Garner’s
constants

residual sequence get representation()

returns a copy of the residual sequence representing
x

82 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

5.9 A Floating Point Filter (floatf)

1. Definition

The type floatf provides a clean and efficient way to approximately compute with large

integers. Consider an expression E with integer operands and operators +,−, and ∗,
and suppose that we want to determine the sign of E. In general, the integer arithmetic

provided by our machines does not suffice to evaluate E since intermediate results might

overflow. Resorting to arbitrary precision integer arithmetic is a costly process. An

alternative is to evaluate the expression using floating point arithmetic, i.e., to convert the

operands to doubles and to use floating-point addition, subtraction, and multiplication.

Of course, only an approximation E ′ of the true value E is computed. However, E ′ might

still be able to tell us something about the sign of E. If E ′ is far away from zero (the

forward error analysis carried out in the next section gives a precise meaning to ”far

away”) then the signs of E ′ and E agree and if E ′ is zero then we may be able to conclude

under certain circumstances that E is zero. Again, forward error analysis can be used to

say what ‘certain circumstances’ are.

The type floatf encapsulates this kind of approximate integer arithmetic. Any integer (=

object of type integer) can be converted to a floatf ; floatfs can be added, subtracted,

multiplied, and their sign can be computed: for any floatf x the function Sign(x) returns

either the sign of x (−1 if x < 0, 0 if x = 0, and +1 if x > 0) or the special value

NO IDEA. If x approximates X, i.e., X is the integer value obtained by an exact

computation, then Sign(x)! = NO IDEA implies that Sign(x) is actually the sign of X

if Sign(x) = NO IDEA then no claim is made about the sign of X.

#include < LEDA/numbers/floatf .h >

2. Creation

floatf x; introduces a variable x of type floatf and initializes it with zero.

floatf x(integer i); introduces a variable x of type floatf and initializes it with integer
i.

3. Operations

floatf const floatf& a+ const floatf& b

Addition.

floatf const floatf& a− const floatf& b

Subtraction.

floatf const floatf& a ∗ const floatf& b

Multiplication.

5.9. A FLOATING POINT FILTER (FLOATF) 83

int Sign(const floatf& f)

as described above.

4. Implementation

A floatf is represented by a double (its value) and an error bound. An operation on

floatfs performs the corresponding operation on the values and also computes the error

bound for the result. For this reason the cost of a floatf operation is about four times

the cost of the corresponding operation on doubles. The rules used to compute the error

bounds are described in ([67]).

5. Example

see [67] for an application in a sweep line algorithm.

84 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

5.10 Double-Valued Vectors (vector)

1. Definition

An instance of data type vector is a vector of variables of type double.

#include < LEDA/numbers/vector.h >

2. Creation

vector v; creates an instance v of type vector; v is initialized to the zero-
dimensional vector.

vector v(int d); creates an instance v of type vector; v is initialized to the zero
vector of dimension d.

vector v(double a, double b);

creates an instance v of type vector; v is initialized to the two-
dimensional vector (a, b).

vector v(double a, double b, double c);

creates an instance v of type vector; v is initialized to the three-
dimensional vector (a, b, c).

vector v(const vector& w, int prec);

creates an instance v of type vector; v is initialized to a copy of w.
The second argument is for compatibility with rat vector .

3. Operations

int v.dim() returns the dimension of v.

double& v[int i] returns i-th component of v.
Precondition: 0 ≤ i ≤ v.dim()−1.

double v.hcoord(int i) for compatibility with rat vector .

double v.coord(int i) for compatibility with rat vector .

double v.sqr length() returns the square of the Euclidean length of v.

double v.length() returns the Euclidean length of v.

vector v.norm() returns v normalized.

double v.angle(const vector& w) returns the angle between v and w.

5.10. DOUBLE-VALUED VECTORS (VECTOR) 85

vector v.rotate90(int i = 1) returns v by an angle of i × 90 degrees. If i >
0 the rotation is counter-clockwise otherwise it is
clockwise. Precondition: v.dim() = 2

vector v.rotate(double a) returns the v rotated counter-clockwise by an angle
of a (in radian).
Precondition: v.dim() = 2

vector& v += const vector& v1 Addition and assign.
Precondition: v.dim() = v1.dim().

vector& v −= const vector& v1 Subtraction and assign.
Precondition: v.dim() = v1.dim().

vector v + const vector& v1 Addition.
Precondition: v.dim() = v1.dim().

vector v − const vector& v1 Subtraction.
Precondition: v.dim() = v1.dim().

double v ∗ const vector& v1 Scalar multiplication.
Precondition: v.dim() = v1.dim().

vector v ∗ double r Componentwise multiplication with double r.

vector& v ∗= double r multiplies all coordinates by r.

vector v / double r Componentwise division which double r.

bool v == const vector& w Test for equality.

bool v != const vector& w Test for inequality.

void v.print(ostream& O) prints v componentwise to ostream O.

void v.print() prints v to cout.

void v.read(istream& I) reads d = v.dim() numbers from input stream I
and writes them into v[0] . . . v[d− 1].

void v.read() reads v from cin.

ostream& ostream& O ≪ const vector& v

writes v componentwise to the output stream O.

istream& istream& I ≫ vector& v reads v componentwise from the input stream I.

Additional Operations for vectors in two and three-dimensional space

double v.xcoord() returns the zero-th cartesian coordinate of v.

86 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

double v.ycoord() returns the first cartesian coordinate of v.

double v.zcoord() returns the second cartesian coordinate of v.

int compare by angle(const vector& v1 , const vector& v2)

For a non-zero vector v let α(v) be the angle by
which the positive x-axis has to be turned counter-
clockwise until it aligns with v. The function com-
pares the angles defined by v1 and v2 , respectively.
The zero-vector precedes all non-zero vectors in the
angle-order.

vector cross product(const vector& v1 , const vector& v2)

returns the cross product of the three-dimensional
vectors v1 and v2 .

4. Implementation

Vectors are implemented by arrays of real numbers. All operations on a vector v take

time O(v.dim()), except for dim and [] which take constant time. The space requirement

is O(v.dim()).

Be aware that the operations on vectors and matrices incur rounding errors and hence are

not completely reliable. For example, if M is a matrix, b is a vector, and x is computed

by x = M.solve(b) it is not necessarily true that the test b==M ∗ x evaluates to true.

The types integer vector and integer matrix provide exact linear algebra.

5.11. DOUBLE-VALUED MATRICES (MATRIX) 87

5.11 Double-Valued Matrices (matrix)

1. Definition

An instance of the data type matrix is a matrix of variables of type double.

#include < LEDA/numbers/matrix.h >

2. Creation

matrix M(int n = 0, int m = 0);

creates an instance M of type matrix, M is initialized to the n×m
- zero matrix.

matrix M(int n, int m, double ∗D);

creates the n × m matrix M with M(i, j) = D[i ∗ m + j] for 0 ≤
i ≤ n − 1 and 0 ≤ j ≤ m − 1. Precondition: D points to an array
of at least n ∗m numbers of type double.

3. Operations

int M.dim1() returns n, the number of rows of M .

int M.dim2() returns m, the number of columns of M .

vector& M.row(int i) returns the i-th row of M (an m-vector).
Precondition: 0 ≤ i ≤ n− 1.

vector M.col(int i) returns the i-th column of M (an n-vector).
Precondition: 0 ≤ i ≤ m− 1.

matrix M.trans() returns MT (m× n - matrix).

matrix M.inv() returns the inverse matrix of M .
Precondition: M is quadratic and M .det() 6= 0.

double M.det() returns the determinant of M .
Precondition: M is quadratic.

vector M.solve(const vector& b)

returns vector x with M · x = b.
Precondition: M .dim1() == M .dim2() = =b.dim() and
M .det() 6= 0.

double& M(int i, int j) returns Mi,j .
Precondition: 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ m− 1.

88 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

matrix M + const matrix& M1

Addition.
Precondition: M .dim1() == M1.dim1() and M .dim2()
== M1.dim2().

matrix M − const matrix& M1

Subtraction.
Precondition: M .dim1() == M1.dim1() and M .dim2()
== M1.dim2().

matrix M ∗ const matrix& M1

Multiplication.
Precondition: M .dim2() == M1.dim1().

vector M ∗ const vector& vec

Multiplication with vector.
Precondition: M .dim2() == vec.dim().

matrix M ∗ double x Multiplication with double x.

void M.print(ostream& O)

prints M row by row to ostream O.

void M.print() prints M cout.

void M.read(istream& I) reads M.dim1 () × M.dim2 () numbers from input
stream I and writes them row by row into matrix M .

void M.read() prints M from cin.

ostream& ostream& O ≪ const matrix& M

writes matrix M row by row to the output stream O.

istream& istream& I ≫ matrix& M

reads a matrix row by row from the input stream I and
assigns it to M .

4. Implementation

Data type matrix is implemented by two-dimensional arrays of double numbers. Opera-

tions det, solve, and inv take time O(n3), dim1, dim2, row, and col take constant time,

all other operations take time O(nm). The space requirement is O(nm).

Be aware that the operations on vectors and matrices incur rounding error and hence are

not completely reliable. For example, if M is a matrix, b is a vector, and x is computed

5.11. DOUBLE-VALUED MATRICES (MATRIX) 89

by x = M.solve(b) it is not necessarly true that the test b ==M ∗ b evaluates to true.

The types integer vector and integer matrix provide exact linear algebra.

90 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

5.12 Vectors with Integer Entries (integer vector)

1. Definition

An instance of data type integer vector is a vector of variables of type integer , the so called

ring type. Together with the type integer matrix it realizes the basic operations of linear

algebra. Internal correctness tests are executed if compiled with the flag LA SELFTEST.

#include < LEDA/numbers/integer vector.h >

2. Creation

integer vector v; creates an instance v of type integer vector . v is initialized to
the zero-dimensional vector.

integer vector v(int d); creates an instance v of type integer vector . v is initialized to
a vector of dimension d.

integer vector v(const integer& a, const integer& b);

creates an instance v of type integer vector . v is initialized to
the two-dimensional vector (a, b).

integer vector v(const integer& a, const integer& b, const integer& c);

creates an instance v of type integer vector . v is initialized to
the three-dimensional vector (a, b, c).

integer vector v(const integer& a, const integer& b, const integer& c,
const integer& d);

creates an instance v of type integer vector ; v is initialized to
the four-dimensional vector (a, b, c, d).

3. Operations

int v.dim() returns the dimension of v.

integer& v[int i] returns i-th component of v.
Precondition: 0 ≤ i ≤ v.dim()− 1.

integer vector& v += const integer vector& v1

Addition plus assignment.
Precondition: v.dim() == v1.dim().

integer vector& v −= const integer vector& v1

Subtraction plus assignment.
Precondition: v.dim() == v1.dim().

5.12. VECTORS WITH INTEGER ENTRIES (INTEGER VECTOR) 91

integer vector v + const integer vector& v1

Addition.
Precondition: v.dim() == v1.dim().

integer vector v − const integer vector& v1

Subtraction.
Precondition: v.dim() == v1.dim().

integer v ∗ const integer vector& v1

Inner Product.
Precondition: v.dim() == v1.dim().

integer vector const integer& r ∗ const integer vector& v

Componentwise multiplication with num-
ber r.

integer vector const integer vector& v ∗ const integer& r

Componentwise multiplication with num-
ber r.

ostream& ostream& O ≪ const integer vector& v

writes v componentwise to the output
stream O.

istream& istream& I ≫ integer vector& v

reads v componentwise from the input
stream I.

4. Implementation

Vectors are implemented by arrays of type integer . All operations on a vector v take

time O(v.dim()), except for dimension and [] which take constant time. The space

requirement is O(v.dim()).

92 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

5.13 Matrices with Integer Entries (integer matrix

)

1. Definition

An instance of data type integer matrix is a matrix of variables of type integer , the so

called ring type. The arithmetic type integer is required to behave like integers in the

mathematical sense.

The types integer matrix and integer vector together realize many functions of basic linear

algebra. All functions on integer matrices compute the exact result, i.e., there is no

rounding error. Most functions of linear algebra are checkable, i.e., the programs can

be asked for a proof that their output is correct. For example, if the linear system

solver declares a linear system Ax = b unsolvable it also returns a vector c such that

cTA = 0 and cT b 6= 0. All internal correctness checks can be switched on by the flag

LA SELFTEST. Preconditions are checked by default and can be switched off by the compile

flag LEDA CHECKING OFF.

#include < LEDA/numbers/integer matrix.h >

2. Creation

integer matrix M(int n, int m);

creates an instance M of type integer matrix of dimension n×m.

integer matrix M(int n = 0);

creates an instance M of type integer matrix of dimension n× n.

integer matrix M(const array< integer vector >& A);

creates an instance M of type integer matrix . Let A be an array of
m column - vectors of common dimension n. M is initialized to an
n×m matrix with the columns as specified by A.

integer matrix integer matrix :: identity(int n)

returns an identity matrix of dimension n.

3. Operations

int M.dim1() returns n, the number of rows of M .

int M.dim2() returns m, the number of columns of M .

integer vector& M.row(int i) returns the i-th row of M (an m - vector).
Precondition: 0 ≤ i ≤ n− 1.

5.13. MATRICES WITH INTEGER ENTRIES (INTEGER MATRIX) 93

integer vector M.col(int i) returns the i-th column of M (an n - vector).
Precondition: 0 ≤ i ≤ m− 1.

integer& M(int i, int j) returns Mi,j .
Precondition: 0 ≤ i ≤ n − 1 and 0 ≤ j ≤
m− 1.

Arithmetic Operators

integer matrix M + const integer matrix& M1

Addition.
Precondition:
M .dim1() == M1.dim1() and M .dim2() ==
M1.dim2().

integer matrix M − const integer matrix& M1

Subtraction.
Precondition:
M .dim1() == M1.dim1() and M .dim2() ==
M1.dim2().

integer matrix M ∗ const integer matrix& M1

Multiplication.
Precondition:
M .dim2() == M1.dim1().

integer vector M ∗ const integer vector& vec

Multiplication with vector.
Precondition:
M .dim2() == vec.dim().

integer matrix const integer matrix& M ∗ const integer& x

Multiplication of every entry with integer x.

integer matrix const integer& x ∗ const integer matrix& M

Multiplication of every entry with integer x.

Non-Member Functions

integer matrix transpose(const integer matrix& M)

returns MT (m× n - matrix).

94 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

integer matrix inverse(const integer matrix& M, integer& D)

returns the inverse matrix of M . More precisely,
1/D times the matrix returned is the inverse of
M .
Precondition: determinant(M) 6= 0.

bool inverse(const integer matrix& M, integer matrix& inverse,
integer& D, integer vector& c)

determines whether M has an inverse. It also computes either
the inverse as (1/D) · inverse or a vector c such that cT ·M = 0.

integer determinant(const integer matrix& M, integer matrix& L,
integer matrix& U, array<int>& q, integer vector& c)

returns the determinant D of M and sufficient information to
verify that the value of the determinant is correct. If the de-
terminant is zero then c is a vector such that cT · M = 0. If
the determinant is non-zero then L and U are lower and upper
diagonal matrices respectively and q encodes a permutation ma-
trix Q with Q(i, j) = 1 iff i = q(j) such that L · M · Q = U ,
L(0, 0) = 1, L(i, i) = U(i − 1, i − 1) for all i, 1 ≤ i < n, and
D = s · U(n− 1, n− 1) where s is the determinant of Q.
Precondition: M is quadratic.

bool verify determinant(const integer matrix& M, integer D,
integer matrix& L, integer matrix& U,
array<int> q, integer vector& c)

verifies the conditions stated above.

integer determinant(const integer matrix& M)

returns the determinant of M .
Precondition: M is quadratic.

int sign of determinant(const integer matrix& M)

returns the sign of the determinant of M .
Precondition: M is quadratic.

bool linear solver(const integer matrix& M, const integer vector& b,
integer vector& x, integer& D,
integer matrix& spanning vectors , integer vector& c)

determines the complete solution space of the linear system M ·
x = b. If the system is unsolvable then cT ·M = 0 and cT ·b 6= 0. If
the system is solvable then (1/D)x is a solution, and the columns
of spanning vectors are a maximal set of linearly independent
solutions to the corresponding homogeneous system.
Precondition: M .dim1() == b.dim().

5.13. MATRICES WITH INTEGER ENTRIES (INTEGER MATRIX) 95

bool linear solver(const integer matrix& M, const integer vector& b,
integer vector& x, integer& D, integer vector& c)

determines whether the linear systemM ·x = b is solvable. If yes,
then (1/D)x is a solution, if not then cT ·M = 0 and cT · b 6= 0.
Precondition: M .dim1() == b.dim().

bool linear solver(const integer matrix& M, const integer vector& b,
integer vector& x, integer& D)

as above, but without the witness c
Precondition: M .dim1() == b.dim().

bool is solvable(const integer matrix& M, const integer vector& b)

determines whether the system M · x = b is solvable
Precondition: M .dim1() == b.dim().

bool homogeneous linear solver(const integer matrix& M,
integer vector& x)

determines whether the homogeneous linear system M · x = 0
has a non - trivial solution. If yes, then x is such a solution.

int homogeneous linear solver(const integer matrix& M,
integer matrix& spanning vecs)

determines the solution space of the homogeneous linear system
M ·x = 0. It returns the dimension of the solution space. More-
over the columns of spanning vecs span the solution space.

void independent columns(const integer matrix& M, array<int>& columns)

returns the indices of a maximal subset of independent columns
of M . The index range of columns starts at 0.

int rank(const integer matrix& M)

returns the rank of matrix M

ostream& ostream& O ≪ const integer matrix& M

writes matrix M row by row to the output stream O.

istream& istream& I ≫ integer matrix& M

reads matrix M row by row from the input stream I.

4. Implementation

The datatype integer matrix is implemented by two-dimensional arrays of variables of

type integer . Operations determinant , inverse, linear solver , and rank take time O(n3),

column takes time O(n), row , dim1 , dim2 , take constant time, and all other operations

take time O(nm). The space requirement is O(nm).

All functions on integer matrices compute the exact result, i.e., there is no rounding

error. The implemenation follows a proposal of J. Edmonds (J. Edmonds, Systems of

96 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

distinct representatives and linear algebra, Journal of Research of the Bureau of National

Standards, (B), 71, 241 - 245). Most functions of linear algebra are checkable , i.e., the

programs can be asked for a proof that their output is correct. For example, if the linear

system solver declares a linear system Ax = b unsolvable it also returns a vector c such

that cTA = 0 and cT b 6= 0.

5.14. RATIONAL VECTORS (RAT VECTOR) 97

5.14 Rational Vectors (rat vector)

1. Definition

An instance of data type rat vector is a vector of rational numbers. A d-dimensional

vector r = (r0, . . . , rd−1) is represented in homogeneous coordinates (h0, . . . , hd), where

ri = hi/hd and the hi’s are of type integer . We call the ri’s the cartesian coordinates of

the vector. The homogenizing coordinate hd is positive.

This data type is meant for use in computational geometry. It realizes free vectors as

opposed to position vectors (type rat point). The main difference between position vec-

tors and free vectors is their behavior under affine transformations, e.g., free vectors are

invariant under translations.

rat vector is an item type.

#include < LEDA/numbers/rat vector.h >

2. Creation

rat vector v(int d = 2); introduces a variable v of type rat vector initialized to
the zero vector of dimension d.

rat vector v(integer a, integer b, integer D);

introduces a variable v of type rat vector initialized to
the two-dimensional vector with homogeneous repre-
sentation (a, b,D) if D is positive and representation
(−a,−b,−D) if D is negative.
Precondition: D is non-zero.

rat vector v(rational x, rational y);

introduces a variable v of type rat vector initialized to
the two-dimensional vector with homogeneous represen-
tation (a, b,D), where x = a/D and y = b/D.

rat vector v(integer a, integer b, integer c, integer D);

introduces a variable v of type rat vector initialized to
the three-dimensional vector with homogeneous repre-
sentation (a, b, c,D) if D is positive and representation
(−a,−b,−c,−D) if D is negative.
Precondition: D is non-zero.

rat vector v(rational x, rational y, rational z);

introduces a variable v of type rat vector initialized to
the three-dimensional vector with homogeneous repre-
sentation (a, b, c,D), where x = a/D, y = b/D and
z = c/D.

98 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

rat vector v(const array<rational>& A);

introduces a variable v of type rat vector initialized to
the d-dimensional vector with homogeneous coordinates
(±c0, . . . ,±cd−1,±D), where d = A.size() and A[i] =
ci/D, for i = 0, . . . , d− 1.

rat vector v(integer a, integer b);

introduces a variable v of type rat vector initialized to
the two-dimensional vector with homogeneous represen-
tation (a, b, 1).

rat vector v(const integer vector& c, integer D);

introduces a variable v of type rat vector initial-
ized to the vector with homogeneous coordinates
(±c0, . . . ,±cd−1,±D), where d is the dimension of c and
the sign chosen is the sign of D.
Precondition: D is non-zero.

rat vector v(const integer vector& c);

introduces a variable v of type rat vector initialized to
the direction with homogeneous coordinate vector ±c,
where the sign chosen is the sign of the last component
of c.
Precondition: The last component of c is non-zero.

rat vector v(const vector& w, int prec);

introduces a variable v of type rat vector initialized to
(⌊P ∗ w0⌋, . . . , ⌊P ∗ wd−1⌋, P), where d is the dimension
of w and P = 2prec.

3. Operations

3.1 Initialization, Access and Conversions

rat vector rat vector :: d2(integer a, integer b, integer D)

returns a rat vector of dimension 2 initialized
to a vector with homogeneous representation
(a, b,D) if D is positive and representation
(−a,−b,−D) if D is negative.
Precondition: D is non-zero.

5.14. RATIONAL VECTORS (RAT VECTOR) 99

rat vector rat vector :: d3(integer a, integer b, integer c, integer D)

returns a rat vector of dimension 3 initialized
to a vector with homogeneous representation
(a, b, c,D) if D is positive and representation
(−a,−b,−c,−D) if D is negative.
Precondition: D is non-zero.

rat vector rat vector :: unit(int i, int d = 2)

returns a rat vector of dimension d initialized
to the i-th unit vector.
Precondition: 0 ≤ i < d.

rat vector rat vector :: zero(int d = 2) returns the zero vector in d-dimensional
space.

int v.dim() returns the dimension of v.

integer v.hcoord(int i) returns the i-th homogeneous coordinate of
v.

rational v.coord(int i) returns the i-th cartesian coordinate of v.

rational v[int i] returns the i-th cartesian coordinate of v.

rational v.sqr length() returns the square of the length of v.

vector v.to float() returns a floating point approximation of v.

Additional Operations for vectors in two and three-dimensional space

rational v.xcoord() returns the zero-th cartesian coordinate of v.

rational v.ycoord() returns the first cartesian coordinate of v.

rational v.zcoord() returns the second cartesian coordinate of v.

integer v.X() returns the zero-th homogeneous coordinate
of v.

integer v.Y() returns the first homogeneous coordinate of
v.

integer v.Z() returns the second homogeneous coordinate
of v.

integer v.W() returns the homogenizing coordinate of v.

rat vector v.rotate90(int i = 1) returns v by an angle of i×90 degrees. If i >
0 the rotation is counter-clockwise otherwise
it is clockwise. Precondition: v.dim() == 2.

100 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

int compare by angle(const rat vector& v1 , const rat vector& v2)

For a non-zero vector v let α(v) be the angle
by which the positive x-axis has to be turned
counter-clockwise until it aligns with v. The
function compares the angles defined by v1
and v2 , respectively. The zero-vector pre-
cedes all non-zero vectors in the angle-order.

rat vector cross product(const rat vector& v1 , const rat vector& v2)

returns the cross product of the three-
dimensional vectors v1 and v2 .

3.2 Tests

bool v == const rat vector& w Test for equality.

bool v != const rat vector& w Test for inequality.

3.3 Arithmetical Operators

rat vector integer n ∗ const rat vector& v

multiplies all cartesian coordinates by n.

rat vector rational r ∗ const rat vector& v

multiplies all cartesian coordinates by r.

rat vector& v ∗= integer n multiplies all cartesian coordinates by n.

rat vector& v ∗= rational r multiplies all cartesian coordinates by r.

rat vector const rat vector& v / integer n

divides all cartesian coordinates by n.

rat vector const rat vector& v / rational r

divides all cartesian coordinates by r.

rat vector& v /= integer n divides all cartesian coordinates by n.

rat vector& v /= rational r divides all cartesian coordinates by r.

rational const v ∗ const rat vector& w

scalar product, i.e.,
∑

0≤i<d viwi, where vi and
wi are the cartesian coordinates of v and w
respectively.

rat vector const rat vector& v + const rat vector& w

adds cartesian coordinates.

5.14. RATIONAL VECTORS (RAT VECTOR) 101

rat vector& v += const rat vector& w addition plus assignment.

rat vector const rat vector& v − const rat vector& w

subtracts cartesian coordinates.

rat vector& v −= const rat vector& w subtraction plus assignment.

rat vector −v returns -v.

3.4 Input and Output

ostream& ostream& O ≪ const rat vector& v

writes v’s homogeneous coordinates
componentwise to the output stream
O.

istream& istream& I ≫ rat vector& v

reads v’s homogeneous coordinates compo-
nentwise from the input stream I. The oper-
ator uses the current dimension of v.

3.5 Linear Hull, Dependence and Rank

bool contained in linear hull(const array<rat vector>& A,
const rat vector& x)

determines whether x is contained in the lin-
ear hull of the vectors in A.

int linear rank(const array<rat vector>& A)

computes the linear rank of the vectors in A.

bool linearly independent(const array<rat vector>& A)

decides whether the vectors in A are linearly
independent.

array<rat vector> linear base(const array<rat vector>& A)

computes a basis of the linear space spanned
by the vectors in A.

4. Implementation

Vectors are implemented by arrays of integers as an item type. All operations like cre-

ation, initialization, tests, vector arithmetic, input and output on an vector v take time

O(v.dim()). dim(), coordinate access and conversions take constant time. The oper-

ations for linear hull, rank and independence have the cubic costs of the used matrix

operations. The space requirement is O(v.dim()).

102 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

5.15 Real-Valued Vectors (real vector)

1. Definition

An instance of data type real vector is a vector of variables of type real .

#include < LEDA/numbers/real vector.h >

2. Creation

real vector v; creates an instance v of type real vector ; v is initialized to the zero-
dimensional vector.

real vector v(int d); creates an instance v of type real vector ; v is initialized to the zero
vector of dimension d.

real vector v(real a, real b);

creates an instance v of type real vector ; v is initialized to the two-
dimensional vector (a, b).

real vector v(real a, real b, real c);

creates an instance v of type real vector ; v is initialized to the three-
dimensional vector (a, b, c).

real vector v(double a, double b);

creates an instance v of type real vector ; v is initialized to the two-
dimensional vector (a, b).

real vector v(double a, double b, double c);

creates an instance v of type real vector ; v is initialized to the three-
dimensional vector (a, b, c).

3. Operations

int v.dim() returns the dimension of v.

real& v[int i] returns i-th component of v.
Precondition: 0 ≤ i ≤ v.dim()−1.

real v.hcoord(int i) for compatibility with rat vector .

real v.coord(int i) for compatibility with rat vector .

real v.sqr length() returns the square of the Euclidean length of v.

real v.length() returns the Euclidean length of v.

5.15. REAL-VALUED VECTORS (REAL VECTOR) 103

real vector v.norm() returns v normalized.

real vector v.rotate90(int i = 1) returns v by an angle of i × 90 degrees. If i >
0 the rotation is counter-clockwise otherwise it is
clockwise. Precondition: v.dim() = 2

real vector v + const real vector& v1 Addition.
Precondition: v.dim() = v1.dim().

real vector v − const real vector& v1 Subtraction.
Precondition: v.dim() = v1.dim().

real v ∗ const real vector& v1 Scalar multiplication.
Precondition: v.dim() = v1.dim().

real vector& v ∗= real r multiplies all coordinates by r.

real vector v ∗ real r Componentwise multiplication with real r.

bool v == const real vector& w Test for equality.

bool v != const real vector& w Test for inequality.

void v.print(ostream& O) prints v componentwise to ostream O.

void v.print() prints v to cout.

void v.read(istream& I) reads d = v.dim() numbers from input stream I
and writes them into v[0] . . . v[d− 1].

void v.read() reads v from cin.

ostream& ostream& O ≪ const real vector& v

writes v componentwise to the output stream O.

istream& istream& I ≫ real vector& v

reads v componentwise from the input stream I.

vector v.to float() returns a floating point approximation of v.

Additional Operations for vectors in two and three-dimensional space

real v.xcoord() returns the zero-th cartesian coordinate of v.

real v.ycoord() returns the first cartesian coordinate of v.

real v.zcoord() returns the second cartesian coordinate of v.

104 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

int compare by angle(const real vector& v1 , const real vector& v2)

For a non-zero vector v let α(v) be the angle by
which the positive x-axis has to be turned counter-
clockwise until it aligns with v. The function com-
pares the angles defined by v1 and v2 , respectively.
The zero-vector precedes all non-zero vectors in the
angle-order.

real vector cross product(const real vector& v1 , const real vector& v2)

returns the cross product of the three-dimensional
vectors v1 and v2 .

4. Implementation

Vectors are implemented by arrays of real numbers. All operations on a vector v take

O(v.dim()) real-number operations, except for dim and [] which take constant time. The

space requirement depends on the size of the representations of the coordinates.

5.16. REAL-VALUED MATRICES (REAL MATRIX) 105

5.16 Real-Valued Matrices (real matrix)

1. Definition

An instance of the data type real matrix is a matrix of variables of type real .

#include < LEDA/numbers/real matrix.h >

2. Creation

real matrix M(int n = 0, int m = 0);

creates an instance M of type real matrix , M is initialized to the
n×m - zero matrix.

real matrix M(int n, int m, real ∗D);

creates the n × m matrix M with M(i, j) = D[i ∗ m + j] for 0 ≤
i ≤ n − 1 and 0 ≤ j ≤ m − 1. Precondition: D points to an array
of at least n ∗m numbers of type real .

3. Operations

int M.dim1() returns n, the number of rows of M .

int M.dim2() returns m, the number of columns of M .

real vector& M.row(int i) returns the i-th row of M (an m-vector).
Precondition: 0 ≤ i ≤ n− 1.

real vector M.col(int i) returns the i-th column of M (an n-vector).
Precondition: 0 ≤ i ≤ m− 1.

real matrix M.trans() returns MT (m× n - matrix).

real matrix M.inv() returns the inverse matrix of M .
Precondition: M is quadratic and M .det() 6= 0.

real M.det() returns the determinant of M .
Precondition: M is quadratic.

real vector M.solve(const real vector& b)

returns vector x with M · x = b.
Precondition: M .dim1() == M .dim2() = =b.dim() and
M .det() 6= 0.

real& M(int i, int j) returns Mi,j .
Precondition: 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ m− 1.

106 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

real matrix M + const real matrix& M1

Addition.
Precondition: M .dim1() == M1.dim1() and M .dim2()
== M1.dim2().

real matrix M − const real matrix& M1

Subtraction.
Precondition: M .dim1() == M1.dim1() and M .dim2()
== M1.dim2().

real matrix M ∗ const real matrix& M1

Multiplication.
Precondition: M .dim2() == M1.dim1().

real vector M ∗ const real vector& vec

Multiplication with vector.
Precondition: M .dim2() == vec.dim().

real matrix M ∗ real x Multiplication with real x.

void M.print(ostream& O)

prints M row by row to ostream O.

void M.print() prints M cout.

void M.read(istream& I) reads M.dim1 () × M.dim2 () numbers from input
stream I and writes them row by row into matrix M .

void M.read() prints M from cin.

ostream& ostream& O ≪ const real matrix& M

writes matrix M row by row to the output stream O.

istream& istream& I ≫ real matrix& M

reads a matrix row by row from the input stream I and
assigns it to M .

4. Implementation

Data type real matrix is implemented by two-dimensional arrays of real numbers. Oper-

ations det, solve, and inv take time O(n3) operations on reals, dim1, dim2, row, and col

take constant time, all other operations perform O(nm) operations on reals. The space

requirement is O(nm) plus the space for the nm entries of type real .

5.17. NUMERICAL ANALYSIS FUNCTIONS (NUMERICAL ANALYSIS) 107

5.17 Numerical Analysis Functions (numeri-

cal analysis)

We collect some functions of numerical analysis. The algorithms in this section are not

the best known and are not recommended for serious use. We refer the reader to the book

“Numerical Recipes in C: The Art of Scientific Computing” by B.P. Flannery, W.H. Press,

S.A. Teukolsky, and W.T. Vetterling, Cambridge University Press for better algorithms.

The functions in this section become available by including numerical analysis.h.

5.17.1 Minima and Maxima

double minimize function(double (∗f)(double), double& xmin, double tol = 1.0e − 10)

finds a local minimum of the function f of one argument. The
minimizing argument is returned in xmin and the minimal
function value is returned as the result of the function. xmin
is determined with tolerance tol , i.e., the true value of the
minimizing argument is contained in the interval [xmin(1−
ǫ), xmin(1 + ǫ)], where ǫ = max(1, xmin) · tol . Please do not
choose tol smaller than 10−15.
Precondition: : If +∞ or −∞ is a local minimum of f , then
the call of minimize function may not terminate.
The algorithm is implemented as follows: First three argu-
ments are determined such that a < b < c (or a > b > c)
and f(a) ≥ f(b) ≤ f(c), i.e., a and c bracket a minimum.
The interval is found by first taking two arbitrary arguments
and comparing their function values. The argument with
the larger function value is taken as a. Then steps of larger
and larger size starting at b are taken until a function value
larger than f(b) is found. Once the bracketing interval is
found, golden-ratio search is applied to it.

template <class F>

double minimize function(const F& f, double& xmin, double tol = 1.0e − 10)

a more flexible version of the above. It is assumed that class
F offers the operator
double operator()(double x). This operator is taken as the
function f .

108 CHAPTER 5. NUMBER TYPES AND LINEAR ALGEBRA

5.17.2 Integration

double integrate function(double (∗f)(double), double l, double r,
double delta = 1.0e − 2)

Computes the integral of f in the interval [l, r] by forming
the sum delta∗∑0≤i<K f(l+i·delta), whereK = (r−l)/delta.
Precondition: l ≤ r and delta > 0.

template <class F>

double integrate function(const F& f, double l, double r, double delta = 1.0e − 2)

a more flexible version of the above. It is assumed that class
F offers the operator
double operator()(double x). This operator is taken as the
function f .

5.17.3 Useful Numerical Functions

double binary entropy(double x)

returns the binary entropy of x, i.e., −x · log x − (1 − x) ·
log(1− x).
Precondition: 0 ≤ x ≤ 1.

5.17.4 Root Finding

double zero of function(double (∗f)(double), double l, double r, double tol = 1.0e − 10)

returns a zero x of f . We have either |f(x)| ≤ 10−10 or there
is an interval [x0, x1] containing x such that f(x0) ·f(x1) ≤ 0
and x1 − x0 ≤ tol ·max(1, |x1|+ |x1|).
Precondition: l ≤ r and f(l) · f(r) ≤ 0.

template <class F>

double zero of function(const F& f, double l, double r, double tol = 1.0e − 10)

a more flexible version of the above. It is assumed that class
F offers the operator
double operator()(double x). This operator is taken as the
function f .

Chapter 6

Basic Data Types

6.1 One Dimensional Arrays (array)

1. Definition

An instance A of the parameterized data type array<E> is a mapping from an interval

I = [a..b] of integers, the index set of A, to the set of variables of data type E, the

element type of A. A(i) is called the element at position i. The array access operator

(A[i]) checks its precondition (a ≤ i ≤ b). The check can be turned off by compiling with

the flag -DLEDA_CHECKING_OFF.

#include < LEDA/core/array.h >

2. Types

array<E> :: item the item type.

array<E> ::value type the value type.

3. Creation

array<E> A(int low , int high);

creates an instance A of type array<E> with index set [low..high].

array<E> A(int n);

creates an instance A of type array<E> with index set [0..n− 1].

array<E> A(const std :: initializer list<E>& lst);

creates an instance A of type array<E> and initializes it to a copy of lst,
e.g. array < int > A(1, 2, 3, 4, 5)

array<E> A; creates an instance A of type array<E> with empty index set.

109

110 CHAPTER 6. BASIC DATA TYPES

Special Constructors

array<E> A(int low , const E& x, const E& y);

creates an instance A of type array<E> with index set [low, low + 1]
initialized to [x, y].

array<E> A(int low , const E& x, const E& y, const E& w);

creates an instance A of type array<E> with index set [low, low + 2]
initialized to [x, y, w].

array<E> A(int low , const E& x, const E& y, const E& z, const E& w);

creates an instance A of type array<E> with index set [low, low + 3]
initialized to [x, y, z, w].

4. Operations

Basic Operations

E& A[int x] returns A(x).
Precondition: a ≤ x ≤ b.

E& A.get(int x) returns A(x).
Precondition: a ≤ x ≤ b.

void A.set(int x, const E& e) sets A(x) = e.
Precondition: a ≤ x ≤ b.

void A.swap(int i, int j) swaps the values of A[i] and A[j].

void A.copy(int x, int y) sets A(x) = A(y).
Precondition: a ≤ x ≤ b and low() ≤ y ≤ high().

void A.copy(int x, const array<E>& B, int y)

sets A(x) = B(y).
Precondition: a ≤ x ≤ b and B.low() ≤ y ≤ B.high().

void A.resize(int low , int high) sets the index set of A to [a..b] such that for all i ∈ [a..b]
which are not contained in the old index set A(i) is set
to the default value of type E.

void A.resize(int n) same as A.resize(0, n− 1).

int A.low() returns the minimal index a of A.

int A.high() returns the maximal index b of A.

int A.size() returns the size (b− a+ 1) of A.

void A.init(const E& x) assigns x to A[i] for every i ∈ { a . . . b }.

6.1. ONE DIMENSIONAL ARRAYS (ARRAY) 111

bool A.C style() returns true if the array has “C-style”, i.e., the index
set is [0..size− 1].

void A.permute() the elements of A are randomly permuted.

void A.permute(int low , int high)

the elements of A[low..high] are randomly permuted.

Sorting and Searching

void A.sort(int (∗cmp)(const E& , const E&))

sorts the elements of A, using function cmp to compare
two elements, i.e., if (ina, . . . , inb) and (outa, . . . , outb)
denote the values of the variables (A(a), . . . , A(b)) be-
fore and after the call of sort, then cmp(outi, outj) ≤ 0
for i ≤ j and there is a permutation π of [a..b] such
that outi = inπ(i) for a ≤ i ≤ b.

void A.sort() sorts the elements of A according to the linear
order of the element type E. Precondition: A
linear order on E must have been defined by
compare(constE&, constE&) if E is a user-defined
type (see Section 2.3)..

void A.sort(int (∗cmp)(const E& , const E&), int low , int high)

sorts sub-array A[llow..high] using compare function
cmp.

void A.sort(int low , int high) sorts sub-array A[low..high] using the linear order on
E. If E is a user-defined type, you have to define the
linear order by providing the compare function (see
Section 2.3).

int A.unique() removes duplicates from A by copying the unique
elements of A to A[A.low()], ..., A[h] and returns h
(A.low()− 1 if A is empty). Precondition: A is sorted
increasingly according to the default ordering of type
E. If E is a user-defined type, you have to define the
linear order by providing the compare function (see
Section 2.3).

int A.binary search(int (∗cmp)(const E& , const E&), const E& x)

performs a binary search for x. Returns an i with
A[i] = x if x in A, A.low() − 1 otherwise. Function
cmp is used to compare two elements.
Precondition: A must be sorted according to cmp.

112 CHAPTER 6. BASIC DATA TYPES

int A.binary search(const E& x)

as above but uses the default linear order on E. If E is
a user-defined type, you have to define the linear order
by providing the compare function (see Section 2.3).

int A.binary locate(int (∗cmp)(const E& , const E&), const E& x)

Returns the maximal i with A[i] ≤ x or A.low()-1 if
x < A[low]. Function cmp is used to compare elements.
Precondition: A must be sorted according to cmp.

int A.binary locate(const E& x)

as above but uses the default linear order on E. If E is
a user-defined type, you have to define the linear order
by providing the compare function (see Section 2.3).

Input and Output

void A.read(istream& I) reads b−a+1 objects of type E from the input stream I
into the array A using the operator ≫ (istream&, E&).

void A.read() calls A.read(cin) to read A from the standard input
stream cin.

void A.read(string s) As above, uses string s as prompt.

void A.print(ostream& O, char space = ’ ’)

prints the contents of array A to the output stream
O using operator ≪ (ostream&, const E&) to print
each element. The elements are separated by character
space.

void A.print(char space = ’ ’) calls A.print(cout, space) to print A on the standard
output stream cout.

void A.print(string s, char space = ’ ’)

As above, uses string s as header.

ostream& ostream& out ≪ const array<E>& A

same as A.print(out); returns out .

istream& istream& in ≫ array<E>& A

same as A.read(in)); returns in.

Iteration

STL compatible iterators are provided when compiled with -DLEDA STL ITERATORS (see

LEDAROOT/demo/stl/array.c for an example).

6.1. ONE DIMENSIONAL ARRAYS (ARRAY) 113

5. Implementation

Arrays are implemented by C++vectors. The access operation takes time O(1), the sorting

is realized by quicksort (time O(n log n)) and the binary search operation takes time

O(log n), where n = b− a+ 1. The space requirement is O(n ∗ sizeof(E)).

114 CHAPTER 6. BASIC DATA TYPES

6.2 Two Dimensional Arrays (array2)

1. Definition

An instance A of the parameterized data type array2<E> is a mapping from a set of pairs

I = [a..b]× [c..d], called the index set of A, to the set of variables of data type E, called

the element type of A, for two fixed intervals of integers [a..b] and [c..d]. A(i, j) is called

the element at position (i, j).

#include < LEDA/core/array2.h >

2. Creation

array2<E> A(int a, int b, int c, int d);

creates an instance A of type array2<E> with index set [a..b]×[c..d].

array2<E> A(int n, int m);

creates an instance A of type array2<E> with index set [0..n−1]×
[0..m− 1].

3. Operations

void A.init(const E& x) assigns x to each element of A.

E& A(int i, int j) returns A(i, j).
Precondition: a ≤ i ≤ b and c ≤ j ≤ d.

int A.low1() returns a.

int A.high1() returns b.

int A.low2() returns c.

int A.high2() returns d.

4. Implementation

Two dimensional arrays are implemented by C++vectors. All operations take time O(1),

the space requirement is O(I ∗ sizeof(E)).

6.3. STACKS (STACK) 115

6.3 Stacks (stack)

1. Definition

An instance S of the parameterized data type stack<E> is a sequence of elements of data

type E, called the element type of S. Insertions or deletions of elements take place only

at one end of the sequence, called the top of S. The size of S is the length of the sequence,

a stack of size zero is called the empty stack.

#include < LEDA/core/stack.h >

2. Creation

stack<E> S; creates an instance S of type stack<E>. S is initialized with the
empty stack.

3. Operations

const E& S.top() returns the top element of S.
Precondition: S is not empty.

void S.push(const E& x) adds x as new top element to S.

E S.pop() deletes and returns the top element of S.
Precondition: S is not empty.

int S.size() returns the size of S.

bool S.empty() returns true if S is empty, false otherwise.

void S.clear() makes S the empty stack.

4. Implementation

Stacks are implemented by singly linked linear lists. All operations take time O(1), except

clear which takes time O(n), where n is the size of the stack.

116 CHAPTER 6. BASIC DATA TYPES

6.4 Queues (queue)

1. Definition

An instance Q of the parameterized data type queue<E> is a sequence of elements of data

type E, called the element type of Q. Elements are inserted at one end (the rear) and

deleted at the other end (the front) of Q. The size of Q is the length of the sequence; a

queue of size zero is called the empty queue.

#include < LEDA/core/queue.h >

2. Types

queue<E> ::value type the value type.

3. Creation

queue<E> Q; creates an instance Q of type queue<E>. Q is initialized with
the empty queue.

4. Operations

const E& Q.top() returns the front element of Q.
Precondition: Q is not empty.

E Q.pop() deletes and returns the front element of Q.
Precondition: Q is not empty.

void Q.append(const E& x)

appends x to the rear end of Q.

void Q.push(const E& x) inserts x at the front end of Q.

int Q.size() returns the size of Q.

int Q.length() returns the size of Q.

bool Q.empty() returns true if Q is empty, false otherwise.

void Q.clear() makes Q the empty queue.

Iteration

forall(x,Q) { “the elements of Q are successively assigned to x” }

5. Implementation

Queues are implemented by singly linked linear lists. All operations take time O(1),

except clear which takes time O(n), where n is the size of the queue.

6.5. BOUNDED STACKS (B STACK) 117

6.5 Bounded Stacks (b stack)

1. Definition

An instance S of the parameterized data type b stack<E> is a stack (see section 6.3) of

bounded size.

#include < LEDA/core/b stack.h >

2. Creation

b stack<E> S(int n);

creates an instance S of type b stack<E> that can hold up to n
elements. S is initialized with the empty stack.

3. Operations

const E& S.top() returns the top element of S.
Precondition: S is not empty.

const E& S.pop() deletes and returns the top element of S.
Precondition: S is not empty.

void S.push(const E& x) adds x as new top element to S.
Precondition: S.size() < n.

void S.clear() makes S the empty stack.

int S.size() returns the size of S.

int S.max size() returns the maximal size of S (given in constructor).

bool S.empty() returns true if S is empty, false otherwise.

4. Implementation

Bounded stacks are implemented by C++vectors. All operations take time O(1). The

space requirement is O(n).

118 CHAPTER 6. BASIC DATA TYPES

6.6 Bounded Queues (b queue)

1. Definition

An instance Q of the parameterized data type b queue<E> is a (double ended) queue (see

section 6.4) of bounded size.

#include < LEDA/core/b queue.h >

2. Creation

b queue<E> Q(int n);

creates an instance Q of type b queue<E> that can hold up to n
elements. Q is initialized with the empty queue.

3. Operations

const E& Q.front() returns the first element of Q.
Precondition: Q is not empty.

const E& Q.back() returns the last element of Q.
Precondition: Q is not empty.

const E& Q.pop front() deletes and returns the first element of Q.
Precondition: Q is not empty.

const E& Q.pop back() deletes and returns the last element of Q.
Precondition: Q is not empty.

void Q.push front(const E& x) inserts x at the beginning of Q.
Precondition: Q.size()< n.

void Q.push back(const E& x) inserts x at the end of Q.
Precondition: Q.size()< n.

void Q.append(const E& x) same as Q.push back().

void Q.clear() makes Q the empty queue.

int Q.max size() returns the maximal size of Q (given in construc-
tor).

int Q.size() returns the size of Q.

int Q.length() same as Q.size().

bool Q.empty() returns true if Q is empty, false otherwise.

6.6. BOUNDED QUEUES (B QUEUE) 119

Stack Operations

const E& Q.top() same as Q.front().

const E& Q.pop() same as Q.pop front().

void Q.push(const E& x) same as Q.push front().

Iteration

forall(x,Q) { “the elements of Q are successively assigned to x” }

4. Implementation

Bounded queues are implemented by circular arrays. All operations take time O(1). The

space requirement is O(n).

120 CHAPTER 6. BASIC DATA TYPES

6.7 Linear Lists (list)

1. Definition

An instance L of the parameterized data type list<E> is a sequence of items

(list<E> :: item). Each item in L contains an element of data type E, called the ele-

ment or value type of L. The number of items in L is called the length of L. If L has

length zero it is called the empty list. In the sequel 〈x〉 is used to denote a list item

containing the element x and L[i] is used to denote the contents of list item i in L.

#include < LEDA/core/list.h >

2. Types

list<E> :: item the item type.

list<E> ::value type the value type.

3. Creation

list<E> L; creates an instance L of type list<E> and initializes it to the empty list.

list<E> L(const std :: initializer list<E>& lst);

creates an instance L of type list<E> and initializes it to a copy of lst,
e.g. list < int > L(1, 2, 3, 4, 5)

4. Operations

Access Operations

int L.length() returns the length of L.

int L.size() returns L.length().

bool L.empty() returns true if L is empty, false otherwise.

list item L.first() returns the first item of L (nil if L is empty).

list item L.last() returns the last item of L. (nil if L is empty)

list item L.get item(int i) returns the item at position i (the first position is
0).
Precondition: 0 ≤ i < L.length(). Note that this
takes time linear in i.

list item L.succ(list item it) returns the successor item of item it, nil if it =
L.last().
Precondition: it is an item in L.

6.7. LINEAR LISTS (LIST) 121

list item L.pred(list item it) returns the predecessor item of item it, nil if it =
L.first().
Precondition: it is an item in L.

list item L.cyclic succ(list item it) returns the cyclic successor of item it, i.e., L.first()
if it = L.last(), L.succ(it) otherwise.

list item L.cyclic pred(list item it) returns the cyclic predecessor of item it, i.e,
L.last() if it = L.first(), L.pred(it) otherwise.

const E& L.contents(list item it) returns the contents L[it] of item it.
Precondition: it is an item in L.

const E& L.inf(list item it) returns L.contents(it).

const E& L.front() returns the first element of L, i.e. the contents of
L.first().
Precondition: L is not empty.

const E& L.head() same as L.front().

const E& L.back() returns the last element of L, i.e. the contents of
L.last().
Precondition: L is not empty.

const E& L.tail() same as L.back().

int L.rank(const E& x) returns the rank of x in L, i.e. its first position
in L as an integer from [1. . . |L|] (0 if x is not in
L). Note that this takes time linear in rank(x).
Precondition: operator== has to be defined for
type E.

Update Operations

list item L.push(const E& x) adds a new item 〈x〉 at the front of L and returns
it (L.insert(x, L.first(), leda ::before)).

list item L.push front(const E& x) same as L.push(x).

list item L.append(const E& x) appends a new item 〈x〉 to L and returns it
(L.insert(x, L.last(), leda ::behind)).

list item L.push back(const E& x) same as L.append(x).

list item L.insert(const E& x, list item pos , int dir = leda ::behind)

inserts a new item 〈x〉 behind (if dir =
leda :: behind) or in front of (if dir = leda :: before)
item pos into L and returns it (here leda :: behind
and leda ::before are predefined constants).
Precondition: it is an item in L.

122 CHAPTER 6. BASIC DATA TYPES

E L.pop() deletes the first item from L and returns its con-
tents.
Precondition: L is not empty.

E L.pop front() same as L.pop().

E L.pop back() deletes the last item from L and returns its con-
tents.
Precondition: L is not empty.

E L.Pop() same as L.pop back().

E L.del item(list item it) deletes the item it from L and returns its contents
L[it].
Precondition: it is an item in L.

E L.del(list item it) same as L.del item(it).

void L.erase(list item it) deletes the item it from L.
Precondition: it is an item in L.

void L.remove(const E& x) removes all items with contents x from L.
Precondition: operator== has to be defined for
type E.

void L.move to front(list item it)

moves it to the front end of L.

void L.move to rear(list item it) moves it to the rear end of L.

void L.move to back(list item it)

same as L.move to rear(it).

void L.assign(list item it , const E& x)

makes x the contents of item it.
Precondition: it is an item in L.

void L.conc(list<E>& L1 , int dir = leda ::behind)

appends (dir = leda :: behind or prepends (dir =
leda :: before) list L1 to list L and makes L1 the
empty list.
Precondition: : L 6= L1

void L.swap(list<E>& L1) swaps lists of items of L and L1;

6.7. LINEAR LISTS (LIST) 123

void L.split(list item it , list<E>& L1 , list<E>& L2)

splits L at item it into lists L1 and
L2. More precisely, if it 6= nil and
L = x1, . . . , xk−1, it, xk+1, . . . , xn then
L1 = x1, . . . , xk−1 and L2 = it, xk+1, . . . , xn.
If it = nil then L1 is made empty and L2 a copy
of L. Finally L is made empty if it is not identical
to L1 or L2.
Precondition: it is an item of L or nil.

void L.split(list item it , list<E>& L1 , list<E>& L2 , int dir)

splits L at item it into lists L1 and L2. Item it
becomes the first item of L2 if dir == leda ::before
and the last item of L1 if dir = leda ::behind .
Precondition: it is an item of L.

void L.extract(list item it1 , list item it2 , list<E>& L1 , bool inclusive = true)

extracts a sublist L1 from L. More precisely, if
L = x1, . . . , xp, it1 , . . . , it2 , xs, . . . , xn then L1 =
it1 , . . . , it2 and L = x1, . . . , xp, xs, . . . , xn. (If
inclusive is false then it1 and it2 remain in L.)
Precondition: it1 and it2 are items of L or nil.

void L.apply(void (∗f)(E& x)) for all items 〈x〉 in L function f is called with ar-
gument x (passed by reference).

void L.reverse items() reverses the sequence of items of L.

void L.reverse items(list item it1 , list item it2)

reverses the sub-sequence it1, . . . , it2 of items of L.
Precondition: it1 = it2 or it1 appears before it2 in
L.

void L.reverse() reverses the sequence of entries of L.

void L.reverse(list item it1 , list item it2)

reverses the sequence of entries L[it1] . . . L[it2].
Precondition: it1 = it2 or it1 appears before it2 in
L.

void L.permute() randomly permutes the items of L.

void L.permute(list item ∗ I) permutes the items of L into the same order as
stored in the array I.

void L.clear() makes L the empty list.

124 CHAPTER 6. BASIC DATA TYPES

Sorting and Searching

void L.sort(int (∗cmp)(const E& , const E&))

sorts the items of L using the ordering defined
by the compare function cmp : E×E −→ int, with

cmp(a, b)

< 0, if a < b
= 0, if a = b
> 0, if a > b

More precisely, if (in1, . . . , inn) and
(out1, . . . , outn) denote the values of L
before and after the call of sort, then
cmp(L[outj], L[outj+1]) ≤ 0 for 1 ≤ j < n
and there is a permutation π of [1..n] such that
outi = inπi

for 1 ≤ i ≤ n.

void L.sort() sorts the items of L using the default ordering of
type E, i.e., the linear order defined by function
int compare(const E&, const E&). If E is a user-
defined type, you have to provide a compare func-
tion (see Section 2.3).

void L.merge sort(int (∗cmp)(const E& , const E&))

sorts the items of L using merge sort and the or-
dering defined by cmp. The sort is stable, i.e., if
x = y and 〈x〉 is before 〈y〉 in L then 〈x〉 is before
〈y〉 after the sort. L.merge sort() is more efficient
than L.sort() if L contains large pre-sorted inter-
vals.

void L.merge sort() as above, but uses the default ordering of type E.
If E is a user-defined type, you have to provide the
compare function (see Section 2.3).

void L.bucket sort(int i, int j, int (∗b)(const E&))

sorts the items of L using bucket sort, where b
maps every element x of L to a bucket b(x) ∈ [i..j].
If b(x) < b(y) then 〈x〉 appears before 〈y〉 after the
sort. If b(x) = b(y), the relative order of x and y
before the sort is retained, thus the sort is stable.

void L.bucket sort(int (∗b)(const E&))

sorts list<E> into increasing order as prescribed by
b Precondition: b is an integer-valued function on
E.

6.7. LINEAR LISTS (LIST) 125

() merges the items of L and L1 using the ordering
defined by cmp. The result is assigned to L and
L1 is made empty.
Precondition: L and L1 are sorted incresingly ac-
cording to the linear order defined by cmp.

void L.merge(list<E>& L1) merges the items of L and L1 using the default
linear order of type E. If E is a user-defined type,
you have to define the linear order by providing
the compare function (see Section 2.3).

void L.unique(int (∗cmp)(const E& , const E&))

removes duplicates from L.
Precondition: L is sorted incresingly according to
the ordering defined by cmp.

void L.unique() removes duplicates from L.
Precondition: L is sorted increasingly according to
the default ordering of type E and operator== is
defined for E. If E is a user-defined type, you have
to define the linear order by providing the compare
function (see Section 2.3).

list item L.search(const E& x) returns the first item of L that contains x, nil if x
is not an element of L.
Precondition: operator== has to be defined for
type E.

list item L.min(const leda cmp base<E>& cmp)

returns the item with the minimal contents with
respect to the linear order defined by compare
function cmp.

list item L.min() returns the item with the minimal contents with
respect to the default linear order of type E.

list item L.max(const leda cmp base<E>& cmp)

returns the item with the maximal contents with
respect to the linear order defined by compare
function cmp.

list item L.max() returns the item with the maximal contents with
respect to the default linear order of type E.

Input and Output

void L.read(istream& I) reads a sequence of objects of type E from the in-
put stream I using operator ≫ (istream&, E&).
L is made a list of appropriate length and the se-
quence is stored in L.

126 CHAPTER 6. BASIC DATA TYPES

void L.read(istream& I, char delim)

as above but stops reading as soon as the first oc-
curence of character delim is encountered.

void L.read(char delim = ’\n’)
calls L.read(cin, delim) to read L from the stan-
dard input stream cin.

void L.read(string prompt , char delim = ’\n’)
As above, but first writes string prompt to cout .

void L.print(ostream& O, char space = ’ ’)

prints the contents of list L to the output tream O
using operator ≪ (ostream&, const E&) to print
each element. The elements are separated by char-
acter space.

void L.print(char space = ’ ’) calls L.print(cout, space) to print L on the stan-
dard output stream cout.

void L.print(string header , char space = ’ ’)

As above, but first outputs string header .

Operators

list<E>& L = const list<E>& L1 The assignment operator makes L a copy of list
L1. More precisely if L1 is the sequence of items
x1, x2, . . . , xn then L is made a sequence of items
y1, y2, . . . , yn with L[yi] = L1[xi] for 1 ≤ i ≤ n.

E& L[list item it] returns a reference to the contents of it.

list item L[int i] an abbreviation for L.get item(i).

list item L += const E& x same as L.append(x); returns the new item.

ostream& ostream& out ≪ const list<E>& L

same as L.print(out); returns out .

istream& istream& in ≫ list<E>& L

same as L.read(in)); returns in.

Iteration

forall items(it, L) { “the items of L are successively assigned to it” }

forall(x, L) { “the elements of L are successively assigned to x” }

6.7. LINEAR LISTS (LIST) 127

STL compatible iterators are provided when compiled with -DLEDA STL ITERATORS (see

LEDAROOT/demo/stl/list.c for an example).

5. Implementation

The data type list is realized by doubly linked linear lists. Let c be the time complexity

of the compare function and let d be the time needed to copy an object of type list<E>.

All operations take constant time except of the following operations: search, revers items,

permute and rank take linear time O(n), item(i) takes time O(i), min, max, and unique

take time O(c ·n), merge takes time O(c · (n1+n2)), operator=, apply, reverse, read, and

print take time O(d · n), sort and merge sort take time O(n · c · log n), and bucket sort

takes time O(e · n + j − i), where e is the time complexity of f . n is always the current

length of the list.

128 CHAPTER 6. BASIC DATA TYPES

6.8 Singly Linked Lists (slist)

1. Definition

An instance L of the parameterized data type slist<E> is a sequence of items

(slist<E> :: item). Each item in L contains an element of data type E, called the ele-

ment or value type of L. The number of items in L is called the length of L. If L has

length zero it is called the empty list. In the sequel 〈x〉 is used to denote a list item

containing the element x and L[i] is used to denote the contents of list item i in L.

#include < LEDA/core/slist.h >

2. Types

slist<E> :: item the item type.

slist<E> ::value type the value type.

3. Creation

slist<E> L; creates an instance L of type slist<E> and initializes it to the
empty list.

slist<E> L(const E& x); creates an instance L of type slist<E> and initializes it to the
one-element list 〈x〉.

slist<E> L(const std :: initializer list<E>& lst);

creates an instance L of type slist<E> and initializes it to a
copy of lst, e.g. list < int > L(1, 2, 3, 4, 5)

4. Operations

int L.length() returns the length of L.

int L.size() returns L.length().

bool L.empty() returns true if L is empty, false otherwise.

item L.first() returns the first item of L.

item L.last() returns the last item of L.

item L.succ(item it) returns the successor item of item it, nil if it =
L.last().
Precondition: it is an item in L.

item L.cyclic succ(item l) returns the cyclic successor of item it, i.e., L.first()
if it = L.last(), L.succ(it) otherwise.

6.8. SINGLY LINKED LISTS (SLIST) 129

const E& L.contents(item it) returns the contents L[it] of item it.
Precondition: it is an item in L.

const E& L.inf(item it) returns L.contents(it).
Precondition: it is an item in L.

const E& L.front() returns the first element of L, i.e. the contents of
L.first().
Precondition: L is not empty.

const E& L.head() same as L.front().

const E& L.back() returns the last element of L, i.e. the contents of
L.last().
Precondition: L is not empty.

const E& L.tail() same as L.back().

item L.push(const E& x) adds a new item 〈x〉 at the front of L and returns
it.

item L.append(const E& x) appends a new item 〈x〉 to L and returns it.

item L.insert(const E& x, item pos)

inserts a new item 〈x〉 after item pos into L and
returns it.
Precondition: it is an item in L.

E L.pop() deletes the first item from L and returns its con-
tents.
Precondition: L is not empty.

void L.del succ item(item it) deletes the successor of item it from L.
Precondition: it is an item in L and has a succes-
sor.

void L.conc(slist<E>& L) appends list L1 to list L and makes L1 the empty
list.
Precondition: L ! = L1.

void L.clear() makes L the empty list.

E& L[item it] returns a reference to the contents of it.

item L += const E& x appends a new item 〈x〉 to L and returns it.

130 CHAPTER 6. BASIC DATA TYPES

6.9 Sets (set)

1. Definition

An instance S of the parameterized data type set<E> is a collection of elements of the

linearly ordered type E, called the element type of S. The size of S is the number of

elements in S, a set of size zero is called the empty set.

#include < LEDA/core/set.h >

2. Creation

set<E> S; creates an instance S of type set<E> and initializes it to the empty
set.

3. Operations

void S.insert(const E& x) adds x to S.

void S.del(const E& x) deletes x from S.

bool S.member(const E& x) returns true if x in S, false otherwise.

const E& S.choose() returns an element of S.
Precondition: S is not empty.

set<E, set impl> S.join(const set<E, set impl>& T)

returns S ∪ T .

set<E, set impl> S.diff(const set<E, set impl>& T)

returns S − T .

set<E, set impl> S.intersect(const set<E, set impl>& T)

returns S ∩ T .

set<E, set impl> S.symdiff(const set<E, set impl>& T)

returns the symetric difference of S and T .

set<E, set impl> S + const set<E, set impl>& T

returns S.join(T).

set<E, set impl> S − const set<E, set impl>& T

returns S.diff (T).

set<E, set impl> S & const set<E, set impl>& T

returns S.intersect(T).

6.9. SETS (SET) 131

set<E, set impl> S % const set<E, set impl>& T

returns S.symdiff (T).

set<E, set impl>& S += const set<E, set impl>& T

assigns S.join(T) to S and returns S.

set<E, set impl>& S −= const set<E, set impl>& T

assigns S.diff (T) to S and returns S.

set<E, set impl>& S &= const set<E, set impl>& T

assigns S.intersect(T) to S and returns S.

set<E, set impl>& S % = const set<E, set impl>& T

assigns S.symdiff (T) to S and returns S.

bool S ≤ const set<E, set impl>& T

returns true if S ⊆ T , false otherwise.

bool S ≥ const set<E, set impl>& T

returns true if T ⊆ S, false otherwise.

bool S == const set<E, set impl>& T

returns true if S = T , false otherwise.

bool S != const set<E, set impl>& T

returns true if S 6= T , false otherwise.

bool S < const set<E, set impl>& T

returns true if S ⊂ T , false otherwise.

bool S > const set<E, set impl>& T

returns true if T ⊂ S, false otherwise.

bool S.empty() returns true if S is empty, false otherwise.

int S.size() returns the size of S.

void S.clear() makes S the empty set.

Iteration

forall(x, S) { “the elements of S are successively assigned to x” }

132 CHAPTER 6. BASIC DATA TYPES

4. Implementation

Sets are implemented by randomized search trees [3]. Operations insert, del, member

take time O(log n), empty, size take time O(1), and clear takes time O(n), where n is the

current size of the set.

The operations join, intersect, and diff have the following running times: Let S1 and S2

be a two sets of type T with | S1 |= n1 and | S2 |= n2. Then S1.join(S2) and S1.diff(S2)

need time O(n2 log(n1 + n2)), S1.intersect(S2) needs time O(n1 log(n1 + n2).

6.10. INTEGER SETS (INT SET) 133

6.10 Integer Sets (int set)

1. Definition

An instance S of the data type int set is a subset of a fixed interval [a..b] of the integers,

called the range of S.

#include < LEDA/core/int set.h >

2. Creation

int set S(int a, int b);

creates an instance S of type int set for elements from [a..b] and
initializes it to the empty set.

int set S(int n); creates an instance S of type int set for elements from [0..n − 1]
and initializes it to the empty set.

3. Operations

void S.insert(int x) adds x to S.
Precondition: a ≤ x ≤ b.

void S.del(int x) deletes x from S.
Precondition: a ≤ x ≤ b.

bool S.member(int x) returns true if x in S, false otherwise.
Precondition: a ≤ x ≤ b.

int S.min() returns the minimal integer in the range of of S.

int S.max() returns the maximal integer in the range of of S.

void S.clear() makes S the empty set.

In any binary operation below, S and T must have the same range:

int set& S.join(const int set& T) replaces S by S ∪ T and returns it.

int set& S.intersect(const int set& T)

replaces S by S ∩ T and returns it.

int set& S.diff(const int set& T) replaces S by S \ T and returns it.

int set& S.symdiff(const int set& T)

replaces S by (S \ T) ∪ (T \ S) and returns it.

int set& S.complement() replaces S by [a..b] \ S and returns it.

134 CHAPTER 6. BASIC DATA TYPES

int set S | const int set& T returns the union of S and T .

int set S & const int set& T returns the intersection of S and T .

int set S − const int set& T returns the set difference of S and T .

int set S % const int set& T returns the symmetric difference of S and T .

int set ∼S returns the complement of S, i.e. [a..b] \ S.

4. Implementation

Integer sets are implemented by bit vectors. Operations insert, delete, member, min and

max take constant time. All other operations take time O(b− a+ 1).

6.11. DYNAMIC INTEGER SETS (D INT SET) 135

6.11 Dynamic Integer Sets (d int set)

1. Definition

An instance S of the data type d int set is a subset of the integers.

#include < LEDA/core/d int set.h >

2. Creation

d int set S; creates an instance S of type d int set initializes it to the empty
set.

3. Operations

int S.min() returns the smallest element in S.
Precondition: S is not empty.

int S.max() returns the largest element in S.
Precondition: S is not empty.

void S.insert(int x) adds x to S. As the sets range is expand-
ing dynamically during insertion for the range
[S.min(), S.max ()] inserting the extrema early
saves repeated reallocation time.

void S.del(int x) deletes x from S.

bool S.member(int x) returns true if x in S, false otherwise.

int S.choose() returns a random element of S.
Precondition: S is not empty.

bool S.empty() returns true if S is empty, false otherwise.

int S.size() returns the size of S.

void S.clear() makes S the empty set.

d int set S.join(const d int set& T) returns S ∪ T .

d int set S.intersect(const d int set& T)

returns S ∩ T .

d int set S.diff(const d int set& T) returns S − T .

d int set S.symdiff(const d int set& T)

returns the symmectric difference of S and T .

d int set S + const d int set& T returns the union S.join(T).

136 CHAPTER 6. BASIC DATA TYPES

d int set S − const d int set& T returns the difference S.diff (T).

d int set S & const d int set& T returns the intersection of S and T .

d int set S | const d int set& T returns the union S.join(T).

d int set S % const d int set& T returns the symmetric difference S.symdiff (T).

d int set& S += const d int set& T assigns S.join(T) to S and returns S.

d int set& S −= const d int set& T assigns S.diff (T) to S and returns S.

d int set& S &= const d int set& T assigns S.intersect(T) to S and returns S.

d int set& S |= const d int set& T assigns S.join(T) to S and returns S.

d int set& S % = const d int set& T

assigns S.symdiff (T) to S and returns S.

bool S != const d int set& T returns true if S 6= T , false otherwise.

bool S == const d int set& T returns true if S = T , false otherwise.

bool S ≥ const d int set& T returns true if T ⊆ S, false otherwise.

bool S ≤ const d int set& T returns true if S ⊆ T , false otherwise.

bool S < const d int set& T returns true if S ⊂ T , false otherwise.

bool S > const d int set& T returns true if T ⊂ S, false otherwise.

void S.get element list(list<int>& L)

fills L with all elements stored in the set in increas-
ing order.

Iteration

forall elements(x,S) { “the elements of S are successively assigned to x” }

4. Implementation

Dynamic integer sets are implemented by (dynamic) bit vectors. Operations member,

empty, size, min and max take constant time. The operations clear, intersection, union

and complement take time O(b−a+1), where a = max () and b = min(). The operations

6.11. DYNAMIC INTEGER SETS (D INT SET) 137

insert and del also take time O(b−a+1), if the bit vector has to be reallocated. Otherwise

they take constant time. Iterating over all elements (with the iteration macro) requires

time O(b− a+ 1) plus the time spent in the body of the loop.

138 CHAPTER 6. BASIC DATA TYPES

6.12 Partitions (partition)

1. Definition

An instance P of the data type partition consists of a finite set of items (partition item)

and a partition of this set into blocks.

#include < LEDA/core/partition.h >

2. Creation

partition P ; creates an instance P of type partition and initializes it to the empty
partition.

3. Operations

partition item P.make block() returns a new partition item it and adds the block
it to partition P .

partition item P.find(partition item p)

returns a canonical item of the block that contains
item p, i.e., iff P.same block(p, q) then P.find(p)
and P.find(q) return the same item.
Precondition: p is an item in P .

int P.size(partition item p)

returns the size of the block containing p.

int P.number of blocks() returns the number of blocks in P .

bool P.same block(partition item p, partition item q)

returns true if p and q belong to the same block of
partition P .
Precondition: p and q are items in P .

void P.union blocks(partition item p, partition item q)

unites the blocks of partition P containing items
p and q.
Precondition: p and q are items in P .

void P.split(const list<partition item>& L)

turns all items in L to singleton blocks.
Precondition: L is a union of blocks.

4. Implementation

Partitions are implemented by the union find algorithm with weighted union and path

compression (cf. [88]). Any sequence of n make block and m ≥ n other operations (except

6.12. PARTITIONS (PARTITION) 139

for split) takes time O(m α(m,n)). The cost of a split is proportional to the size of the

blocks dismantled.

5. Example

Spanning Tree Algorithms (cf. section 10).

140 CHAPTER 6. BASIC DATA TYPES

6.13 Parameterized Partitions (Partition)

1. Definition

An instance P of the data type Partition<E> consists of a finite set of items

(partition item) and a partition of this set into blocks. Each item has an associated

information of type E.

#include < LEDA/core/partition.h >

2. Creation

Partition<E> P ; creates an instance P of type Partition<E> and initializes it to the
empty partition.

3. Operations

partition item P.make block(const E& x)

returns a new partition item it, adds the block it
to partition P , and associates x with it .

partition item P.find(partition item p)

returns a canonical item of the block that contains
item p, i.e., iff P.same block(p, q) then P.find(p)
and P.find(q) return the same item.
Precondition: p is an item in P .

int P.size(partition item p)

returns the size of the block containing p.

int P.number of blocks() returns the number of blocks in P .

bool P.same block(partition item p, partition item q)

returns true if p and q belong to the same block of
partition P .
Precondition: p and q are items in P .

void P.union blocks(partition item p, partition item q)

unites the blocks of partition P containing items
p and q.
Precondition: p and q are items in P .

void P.split(const list<partition item>& L)

turns all items in L to singleton blocks.
Precondition: L is a union of blocks

const E& P.inf(partition item it)

returns the information associated with it .

6.13. PARAMETERIZED PARTITIONS (PARTITION) 141

void P.change inf(partition item it , const E& x)

changes the information associates with it to x.

142 CHAPTER 6. BASIC DATA TYPES

Chapter 7

Dictionary Types

7.1 Dictionaries (dictionary)

1. Definition

An instance D of the parameterized data type dictionary<K, I> is a collection of items

(dic item). Every item in D contains a key from the linearly ordered data type K, called

the key type of D, and an information from the data type I, called the information type of

D. IF K is a user-defined type, you have to provide a compare function (see Section 2.3).

The number of items in D is called the size of D. A dictionary of size zero is called the

empty dictionary. We use 〈k, i〉 to denote an item with key k and information i (i is said

to be the information associated with key k). For each k ∈ K there is at most one i ∈ I

with 〈k, i〉 ∈ D.

#include < LEDA/core/dictionary.h >

2. Types

dictionary<K, I> :: item the item type.

dictionary<K, I> ::key type the key type.

dictionary<K, I> :: inf type the information type.

dictionary<K, I> :: the compare key function type.

3. Creation

dictionary<K, I> D;

creates an instance D of type dictionary<K, I> based on the linear order
defined by the global compare function and initializes it with the empty
dictionary.

143

144 CHAPTER 7. DICTIONARY TYPES

dictionary<K, I> D(cmp key func cmp);

creates an instance D of type dictionary<K, I> based on the linear order
defined by the compare function cmp and initializes it with the empty
dictionary.

4. Operations

const K& D.key(dic item it) returns the key of item it.
Precondition: it is an item in D.

const I& D.inf(dic item it) returns the information of item it.
Precondition: it is an item in D.

I& D[dic item it] returns a reference to the information of item it.
Precondition: it is an item in D.

dic item D.insert(const K& k, const I& i)

associates the information i with the key k. If there
is an item <k, j> in D then j is replaced by i, else a
new item 〈k, i〉 is added to D. In both cases the item
is returned.

dic item D.lookup(const K& k)

returns the item with key k (nil if no such item exists
in D).

I D.access(const K& k) returns the information associated with key k.
Precondition: there is an item with key k in D.

void D.del(const K& k) deletes the item with key k from D (null operation, if
no such item exists).

void D.del item(dic item it)

removes item it from D.
Precondition: it is an item in D.

bool D.defined(const K& k)

returns true if there is an item with key k in D, false
otherwise.

void D.undefine(const K& k)

deletes the item with key kfrom D (null operation, if
no such item exists).

void D.change inf(dic item it , const I& i)

makes i the information of item it.
Precondition: it is an item in D.

void D.clear() makes D the empty dictionary.

7.1. DICTIONARIES (DICTIONARY) 145

int D.size() returns the size of D.

bool D.empty() returns true if D is empty, false otherwise.

Iteration

forall items(it,D) { “the items of D are successively assigned to it” }

forall rev items(it,D) { “the items of D are successively assigned to it in reverse order”

}

forall(i,D) { “the informations of all items of D are successively assigned to i” }

forall defined(k,D) { “the keys of all items of D are successively assigned to k” }

STL compatible iterators are provided when compiled with -DLEDA STL ITERATORS

(see LEDAROOT/demo/stl/dic.c for an example).

5. Implementation

Dictionaries are implemented by (2, 4)-trees. Operations insert, lookup, del item, del take

time O(log n), key, inf, empty, size, change inf take time O(1), and clear takes time O(n).

Here n is the current size of the dictionary. The space requirement is O(n).

6. Example

We count the number of occurrences of each string in a sequence of strings.

#include <LEDA/core/dictionary.h>

main()

{ dictionary<string,int> D;

string s;

dic_item it;

while (cin >> s)

{ it = D.lookup(s);

if (it==nil) D.insert(s,1);

else D.change_inf(it,D.inf(it)+1);

}

forall_items(it,D) cout << D.key(it) << " : " << D.inf(it) << endl;

}

146 CHAPTER 7. DICTIONARY TYPES

7.2 Dictionary Arrays (d array)

1. Definition

An instance A of the parameterized data type d array<I, E> (dictionary array) is an

injective mapping from the linearly ordered data type I, called the index type of A, to

the set of variables of data type E, called the element type of A. We use A(i) to denote

the variable with index i and we use dom(A) to denote the set of “used indices”. This set

is empty at the time of creation and is modified by array accesses. Each dictionary array

has an associated default value xdef . The variable A(i) has value xdef for all i 6∈ dom(A).

If I is a user-defined type, you have to provide a compare function (see Section 2.3).

Related data types are h arrays , maps , and dictionaries.

#include < LEDA/core/d array.h >

2. Types

d array<I, E> :: item the item type.

d array<I, E> :: index type the index type.

d array<I, E> ::element type

the element type.

3. Creation

d array<I, E> A; creates an injective function a from I to the set of unused
variables of type E, sets xdef to the default value of type
E (if E has no default value then xdef stays undefined) and
dom(A) to the empty set, and initializes A with a.

d array<I, E> A(E x); creates an injective function a from I to the set of unused
variables of type E, sets xdef to x and dom(A) to the empty
set, and initializes A with a.

4. Operations

E& A[const I& i] returns the variable A(i).

bool A.defined(const I& i)

returns true if i ∈ dom(A) and false otherwise.

void A.undefine(const I& i)

removes i from dom(A) and sets A(i) to xdef .

void A.clear() makes dom(A) empty.

7.2. DICTIONARY ARRAYS (D ARRAY) 147

int A.size() returns |dom(A)|.

void A.set default value(const E& x)

sets xdef to x.

Iteration

forall defined(i, A) { “the elements from dom(A) are successively assigned to i” }

forall(x,A) { “for all i ∈ dom(A) the entries A[i] are successively assigned to x” }

5. Implementation

Dictionary arrays are implemented by (2, 4)-trees [60]. Access operations A[i] take time

O(log dom(A)). The space requirement is O(dom(A)).

6. Example

Program 1:

We use a dictionary array to count the number of occurrences of the elements in a sequence

of strings.

#include <LEDA/core/d_array.h>

main()

{

d_array<string,int> N(0);

string s;

while (cin >> s) N[s]++;

forall_defined(s,N) cout << s << " " << N[s] << endl;

}

Program 2:

We use a d array<string , string> to realize an english/german dictionary.

#include <LEDA/core/d_array.h>

main()

148 CHAPTER 7. DICTIONARY TYPES

{

d_array<string,string> dic;

dic["hello"] = "hallo";

dic["world"] = "Welt";

dic["book"] = "Buch";

dic["key"] = "Schluessel";

string s;

forall_defined(s,dic) cout << s << " " << dic[s] << endl;

}

7.3. HASHING ARRAYS (H ARRAY) 149

7.3 Hashing Arrays (h array)

1. Definition

An instance A of the parameterized data type h array<I, E> (hashing array) is an injective

mapping from a hashed data type I , called the index type of A, to the set of variables

of arbitrary type E, called the element type of A. We use A(i) to denote the variable

indexed by i and we use dom(A) to denote the set of “used indices”. This set is empty

at the time of creation and is modified by array accesses. Each hashing array has an

associated default value xdef . The variable A(i) has value xdef for all i 6∈ dom(A). If I

is a user-defined type, you have to provide a Hash function (see Section 2.3).

Related data types are d arrays , maps , and dictionaries.

#include < LEDA/core/h array.h >

2. Creation

h array<I, E> A; creates an injective function a from I to the set of unused variables
of type E, sets xdef to the default value of type E (if E has no
default value then xdef stays undefined) and dom(A) to the empty
set, and initializes A with a.

h array<I, E> A(E x);

creates an injective function a from I to the set of unused vari-
ables of type E, sets xdef to x and dom(A) to the empty set, and
initializes A with a.

h array<I, E> A(E x, int table sz);

as above, but uses an initial table size of table sz instead of the
default size 1.

3. Operations

E& A[const I& i] returns the variable A(i).

bool A.defined(const I& i)

returns true if i ∈ dom(A) and false otherwise.

void A.undefine(const I& i)

removes i from dom(A) and sets A(i) to xdef .

void A.clear() makes dom(A) empty.

void A.clear(const E& x) makes dom(A) empty and sets xdef to x.

int A.size() returns |dom(A)|.

150 CHAPTER 7. DICTIONARY TYPES

bool A.empty() returns true if A is empty, false otherwise.

void A.set default value(const E& x)

sets xdef to x.

Iteration

forall defined(i, A) { “the elements from dom(A) are successively assigned to i” }
Remark: the current element may not be deleted resp. declared undefined during execu-

tion of the loop.

forall(x,A) { “for all i ∈ dom(A) the entries A[i] are successively assigned to x” }.

4. Implementation

Hashing arrays are implemented by hashing with chaining. Access operations take ex-

pected time O(1). In many cases, hashing arrays are more efficient than dictionary arrays

(cf. 7.2).

7.4. MAPS (MAP) 151

7.4 Maps (map)

1. Definition

An instance M of the parameterized data type map<I, E> is an injective mapping from

the data type I, called the index type of M , to the set of variables of data type E, called

the element type of M . I must be a pointer, item, or handle type or the type int. We use

M(i) to denote the variable indexed by i. All variables are initialized to xdef , an element

of E that is specified in the definition of M . A subset of I is designated as the domain of

M . Elements are added to dom(M) by the subscript operator; however, the domain may

also contain indices for which the access operator was never executed.

Related data types are d arrays , h arrays , and dictionaries.

#include < LEDA/core/map.h >

2. Types

map<I, E> :: item the item type.

map<I, E> :: index type the index type.

map<I, E> ::element type the element type.

3. Creation

map<I, E> M ; creates an injective function m from I to the set of unused
variables of type E, sets xdef to the default value of type E
(if E has no default value then xdef is set to an unspecified
element of E), and initializes M with m.

map<I, E> M(E x); creates an injective function m from I to the set of unused
variables of type E, sets xdef to x, and initializes M with m.

map<I, E> M(E x, int table sz);

as above, but uses an initial table size of table sz instead of
the default size 1.

4. Operations

E& M [const I& i] returns the variable M(i) and adds i to dom(M).
If M is a const-object then M(i) is read-only and
i is not added to dom(M).

bool M.defined(const I& i) returns true if i ∈ dom(M).

void M.clear() makes M empty.

void M.clear(const E& x) makes M empty and sets xdef to x.

void M.set default value(const E& x)

sets xdef to x.

E M.get default value() returns the default value xdef .

Iteration:

forall(x,M) { “the entries M [i] with i ∈ dom(M) are successively assigned to x” }

152 CHAPTER 7. DICTIONARY TYPES

Note that it is not possible to iterate over the indices in dom(M). If you need this feature

use the type h array instead.

5. Implementation

Maps are implemented by hashing with chaining and table doubling. Access operations

M [i] take expected time O(1).

7.5. TWO-DIMENSIONAL MAPS (MAP2) 153

7.5 Two-Dimensional Maps (map2)

1. Definition

An instance M of the parameterized data type map2<I1 , I2 , E> is an injective mapping

from the pairs in I1× I2, called the index type of M , to the set of variables of data type

E, called the element type of M . I must be a pointer, item, or handle type or the type

int. We use M(i, j) to denote the variable indexed by (i, j) and we use dom(M) to denote

the set of “used indices”. This set is empty at the time of creation and is modified by

map2 accesses.

Related data types are map, d arrays , h arrays , and dictionaries.

#include < LEDA/core/map2.h >

2. Types

map2<I1 , I2 , E> :: item the item type.

map2<I1 , I2 , E> :: index type1

the first index type.

map2<I1 , I2 , E> :: index type2

the second index type .

map2<I1 , I2 , E> ::element type

the element type.

3. Creation

map2<I1 , I2 , E> M ; creates an injective function m from I1 × I2 to the set of
unused variables of type E, sets xdef to the default value of
type E (if E has no default value then xdef stays undefined)
and dom(M) to the empty set, and initializes M with m.

map2<I1 , I2 , E> M(E x);

creates an injective function m from I1 × I2 to the set of
unused variables of type E, sets xdef to x and dom(M) to
the empty set, and initializes M with m.

4. Operations

E& M(const I1& i, const I2& j)

returns the variable M(i).

bool M.defined(const I1& i, const I2& j)

returns true if i ∈ dom(M) and false otherwise.

154 CHAPTER 7. DICTIONARY TYPES

void M.clear() clears M by making dom(M) the empty set.

5. Implementation

Maps are implemented by hashing with chaining and table doubling. Access operations

M(i, j) take expected time O(1).

7.6. SORTED SEQUENCES (SORTSEQ) 155

7.6 Sorted Sequences (sortseq)

1. Definition

An instance S of the parameterized data type sortseq<K, I> is a sequence of items

(seq item). Every item contains a key from a linearly ordered data type K, called the key

type of S, and an information from a data type I, called the information type of S. If

K is a user-defined type, you have to provide a compare function (see Section 2.3). The

number of items in S is called the size of S. A sorted sequence of size zero is called empty.

We use 〈k, i〉 to denote a seq item with key k and information i (called the information

associated with key k). For each k in K there is at most one item 〈k, i〉 in S and if item

〈k1 , i1 〉 precedes item 〈k2 , i2 〉 in S then k1 < k2 .

Sorted sequences are a very powerful data type. They can do everything that dictionaries

and priority queues can do. They also support many other operations, in particular finger

searches and operations conc, split , merge, reverse items , and delete subsequence.

The key type K must be linearly ordered. The linear order on K may change over time

subject to the condition that the order of the elements that are currently in the sorted

sequence remains stable. More precisely, whenever an operation (except for reverse items)

is applied to a sorted sequence S, the keys of S must form an increasing sequence according

to the currently valid linear order on K. For operation reverse items this must hold after

the execution of the operation. An application of sorted sequences where the linear order

on the keys evolves over time is the plane sweep algorithm for line segment intersection.

This algorithm sweeps an arrangement of segments by a vertical sweep line and keeps the

intersected segments in a sorted sequence sorted according to the y-coordinates of their

intersections with the sweep line. For intersecting segments this order depends on the

position of the sweep line.

Sorted sequences support finger searches. A finger search takes an item it in a sorted

sequence and a key k and searches for the key in the sorted sequence containing the item.

The cost of a finger search is proportional to the logarithm of the distance of the key from

the start of the search. A finger search does not need to know the sequence containing

the item. We use IT to denote the sequence containing it . In a call S.finger search(it , k)

the types of S and IT must agree but S may or may not be the sequence containing it .

#include < LEDA/core/sortseq.h >

2. Types

sortseq<K, I> :: item the item type seq item.

sortseq<K, I> ::key type the key type K.

sortseq<K, I> :: inf type the information type I.

156 CHAPTER 7. DICTIONARY TYPES

3. Creation

sortseq<K, I> S;

creates an instance S of type sortseq<K, I> based on the linear order
defined by the global compare function and and initializes it to the empty
sorted sequence.

sortseq<K, I> S(int (∗cmp) (const K& , const K&));

creates an instance S of type sortseq<K, I> based on the linear order
defined by the compare function cmp and initializes it with the empty
sorted sequence.

4. Operations

const K& S.key(seq item it) returns the key of item it .

const I& S.inf(seq item it) returns the information of item it .

I& S[seq item it] returns a reference to the information of item it.
Precondition: it is an item in S.

seq item S.lookup(const K& k) returns the item with key k (nil if there is no such
item).

seq item S.finger lookup(const K& k)

equivalent to S.lookup(k)

seq item S.finger lookup from front(const K& k)

equivalent to S.lookup(k)

seq item S.finger lookup from rear(const K& k)

equivalent to S.lookup(k)

seq item S.locate(const K& k) returns the item 〈k1 , i〉 in S such that k1 is minimal
with k1 ≥ k (nil if no such item exists).

seq item S.finger locate(const K& k)

equivalent to S.locate(k)

seq item S.finger locate from front(const K& k)

equivalent to S.locate(k)

seq item S.finger locate from rear(const K& k)

equivalent to S.locate(k)

seq item S.locate succ(const K& k)

equivalent to S.locate(k)

7.6. SORTED SEQUENCES (SORTSEQ) 157

seq item S.succ(const K& k) equivalent to S.locate(k)

seq item S.finger locate succ(const K& k)

equivalent to S.locate(k)

seq item S.finger locate succ from front(const K& k)

equivalent to S.locate(k)

seq item S.finger locate succ from rear(const K& k)

equivalent to S.locate(k)

seq item S.locate pred(const K& k)

returns the item 〈k1 , i〉 in S such that k1 is maxi-
mal with k1 ≤ k (nil if no such item exists).

seq item S.pred(const K& k) equivalent to S.locate pred(k)

seq item S.finger locate pred(const K& k)

equivalent to S.locate pred(k)

seq item S.finger locate pred from front(const K& k)

equivalent to S.locate pred(k)

seq item S.finger locate pred from rear(const K& k)

equivalent to S.locate pred(k)

seq item S.finger lookup(seq item it , const K& k)

equivalent to IT.lookup(k) where IT is the sorted
sequence containing it .
Precondition: S and IT must have the same type

seq item S.finger locate(seq item it , const K& k)

equivalent to IT.locate(k) where IT is the sorted
sequence containing it .
Precondition: S and IT must have the same type.

seq item S.finger locate succ(seq item it , const K& k)

equivalent to IT.locate succ(k) where IT is the
sorted sequence containing it .
Precondition: S and IT must have the same type

seq item S.finger locate pred(seq item it , const K& k)

equivalent to IT.locate pred(k) where IT is the
sorted sequence containing it .
Precondition: S and IT must have the same type.

seq item S.min item() returns the item with minimal key (nil if S is
empty).

158 CHAPTER 7. DICTIONARY TYPES

seq item S.max item() returns the item with maximal key (nil if S is
empty).

seq item S.succ(seq item it) returns the successor item of it in the sequence con-
taining it (nil if there is no such item).

seq item S.pred(seq item x) returns the predecessor item of it in the sequence
containing it (nil if there is no such item).

seq item S.insert(const K& k, const I& i)

associates information i with key k: If there is an
item 〈k, j〉 in S then j is replaced by i, else a new
item 〈k, i〉 is added to S. In both cases the item is
returned.

seq item S.insert at(seq item it , const K& k, const I& i)

Like IT.insert(k, i) where IT is the sequence con-
taining item it .
Precondition: it is an item in IT with
key(it) is maximal with key(it) < k or
key(it) is minimal with key(it) > k or
if key(it) = k then inf (it) is replaced by i. S and
IT have the same type.

seq item S.insert at(seq item it , const K& k, const I& i, int dir)

Like IT.insert(k, i) where IT is the sequence con-
taining item it .
Precondition: it is an item in IT with
key(it) is maximal with key(it) < k if dir =
leda ::before or
key(it) is minimal with k < key(it) if dir =
leda ::behind or
if key(it) = k then inf (it) is replaced by i. S and
IT have the same type.

int S.size() returns the size of S.

bool S.empty() returns true if S is empty, false otherwise.

void S.clear() makes S the empty sorted sequence.

void S.reverse items(seq item a, seq item b)

the subsequence of IT from a to b is reversed, where
IT is the sequence containing a and b.
Precondition: a appears before b in IT .

void S.flip items(seq item a, seq item b)

equivalent to S.reverse items(a, b).

7.6. SORTED SEQUENCES (SORTSEQ) 159

void S.del(const K& k)

removes the item with key k from S (null operation if no such item
exists).

void S.del item(seq item it)

removes the item it from the sequence containing it .

void S.change inf(seq item it , const I& i)

makes i the information of item it .

void S.split(seq item it , sortseq<K, I, seq impl>& S1 , sortseq<K, I, seq impl>& S2 ,
int dir = leda ::behind)

splits IT at item it , where IT is the sequence containing it , into se-
quences S1 and S2 and makes IT empty (if distinct from S1 and
S2). More precisely, if IT = x1, . . . , xk−1, it , xk+1, . . . , xn and dir =
leda :: behind then S1 = x1, . . . , xk−1, it and S2 = xk+1, . . . , xn. If
dir = leda ::before then S2 starts with it after the split.

void S.delete subsequence(seq item a, seq item b, sortseq<K, I, seq impl>& S1)

deletes the subsequence starting at a and ending at b from the sequence
IT containing both and assigns the subsequence to S1 .
Precondition: a and b belong to the same sequence IT , a is equal to or
before b and IT and S1 have the same type.

sortseq<K, I, seq impl>& S.conc(sortseq<K, I, seq impl>& S1 , int dir = leda ::behind)

appends S1 at the front (dir = leda :: before) or rear (dir =
leda ::behind) end of S, makes S1 empty and returns S.
Precondition: S.key(S.max item()) < S1.key(S1.min item()) if dir =
leda :: behind and S1.key(S1.max item()) < S.key(S.min item() if
dir = leda ::before.

void S.merge(sortseq<K, I, seq impl>& S1)

merges the sequence S1 into sequence S and makes S1 empty.
Precondition: all keys are distinct.

void S.print(ostream& out , string s, char c = ’ ’)

prints s and all elements of S separated by c onto stream out .

void S.print(string s, char c = ’ ’)

equivalent to S.print(cout , s, c).

bool S == const sortseq<K, I, seq impl>& S1

returns true if S agrees with S1 componentwise and false otherwise

sortseq<K, I, seq impl>∗ sortseq<K, I> ::my sortseq(seq item it)

returns a pointer to the sortseq containing it .
Precondition: The type of the sortseq containing it must be
sortseq<K, I>.

160 CHAPTER 7. DICTIONARY TYPES

Iteration

forall items(it, S) { “the items of S are successively assigned to it” }

forall rev items(it, S) { “the items of S are successively assigned to it in reverse order”

}

forall(i, S) { “the informations of all items of S are successively assigned to i” }

forall defined(k, S) { “the keys of all items of S are successively assigned to k” }

5. Implementation

Sorted sequences are implemented by skiplists [79]. Let n denote the current size of

the sequence. Operations insert , locate, lookup and del take time O(log n), operations

succ, pred , max , min item, key , inf , insert at and del item take time O(1). clear takes

time O(n) and reverse items O(l), where l is the length of the reversed subsequence.

Finger lookup(x) and finger locate(x) take time O(logmin(d, n− d)) if x is the d-th item

in S. Finger lookup from front(x) and finger locate from front(x) take time O(log d) if x

is the d-th item in S. Finger lookup from rear(x) and finger locate from rear(x) take time

O(log d) if x is the n−d-th item in S. Finger lookup(it , x) and finger locate(it , x) take time

O(logmin(d, n−d)) where d is the number of items between it and the item containing x.

Note that min(d, n−d) is the smaller of the distances from it to x if sequences are viewed

as circularly closed. Split , delete subsequence and conc take time O(logmin(n1, n2)) where

n1 and n2 are the sizes of the results of split and delete subsequence and the arguments of

conc respectively. Merge takes time O(log((n1 + n2)/n1)) where n1 and n2 are the sizes

of the two arguments. The space requirement of sorted sequences is linear in the length

of the sequence (about 25.5n Bytes for a sequence of size n plus the space for the keys

and the informations.).

6. Example

We use a sorted sequence to list all elements in a sequence of strings lying lexicographically

between two given search strings.

#include <LEDA/core/sortseq.h>

#include <iostream>

using leda::sortseq;

using leda::string;

using leda::seq_item;

using std::cin;

using std::cout;

7.6. SORTED SEQUENCES (SORTSEQ) 161

int main()

{

sortseq<string, int> S;

string s1, s2;

cout << "Input a sequence of strings terminated by ’STOP’\n";

while (cin >> s1 && s1 != "STOP")

S.insert(s1, 0);

while(true) {

cout << "\n\nInput a pair of strings:\n";

cin >> s1 >> s2;

cout << "All strings s with " << s1 <<" <= s <= " << s2 << ":";

if(s2 < s1) continue;

seq_item last = S.locate_pred(s2);

seq_item first = S.locate(s1);

if (!first || !last || first == S.succ(last)) continue;

seq_item it = first;

while(true) {

cout << "\n" << S.key(it);

if(it == last) break;

it = S.succ(it);

}

}

}

Further examples can be found in section Sorted Sequences of [66].

162 CHAPTER 7. DICTIONARY TYPES

Chapter 8

Priority Queues

8.1 Priority Queues (p queue)

1. Definition

An instance Q of the parameterized data type p queue<P, I> is a collection of items (type

pq item). Every item contains a priority from a linearly ordered type P and an information

from an arbitrary type I. P is called the priority type of Q and I is called the information

type of Q. If P is a user-defined type, you have to define the linear order by providing

the compare function (see Section 2.3). The number of items in Q is called the size of Q.

If Q has size zero it is called the empty priority queue. We use 〈p, i〉 to denote a pq item

with priority p and information i.

Remark: Iteration over the elements of Q using iteration macros such as forall is not

supported.

#include < LEDA/core/p queue.h >

2. Types

p queue<P, I> :: item the item type.

p queue<P, I> ::prio type the priority type.

p queue<P, I> :: inf type the information type.

3. Creation

p queue<P, I> Q; creates an instance Q of type p queue<P, I> based on
the linear order defined by the global compare function
compare(const P&, const P&) and initializes it with the
empty priority queue.

163

164 CHAPTER 8. PRIORITY QUEUES

p queue<P, I> Q(int (∗cmp)(const P& , const P&));

creates an instance Q of type p queue<P, I> based on the lin-
ear order defined by the compare function cmp and initializes
it with the empty priority queue. Precondition: cmp must
define a linear order on P .

4. Operations

const P& Q.prio(pq item it) returns the priority of item it.
Precondition: it is an item in Q.

const I& Q.inf(pq item it) returns the information of item it.
Precondition: it is an item in Q.

I& Q[pq item it] returns a reference to the information of item it.
Precondition: it is an item in Q.

pq item Q.insert(const P& x, const I& i)

adds a new item <x, i> to Q and returns it.

pq item Q.find min() returns an item with minimal priority (nil if Q is
empty).

P Q.del min() removes the item it = Q.find min() from Q and
returns the priority of it.
Precondition: Q is not empty.

void Q.del item(pq item it) removes the item it from Q.
Precondition: it is an item in Q.

void Q.change inf(pq item it , const I& i)

makes i the new information of item it.
Precondition: it is an item in Q.

void Q.decrease p(pq item it , const P& x)

makes x the new priority of item it.
Precondition: it is an item in Q and x is not larger
then prio(it).

int Q.size() returns the size of Q.

bool Q.empty() returns true, if Q is empty, false otherwise.

void Q.clear() makes Q the empty priority queue.

5. Implementation

Priority queues are implemented by binary heaps [93]. Operations insert, del item,

del min take time O(log n), find min, decrease p, prio, inf, empty take time O(1) and

clear takes time O(n), where n is the size of Q. The space requirement is O(n).

8.1. PRIORITY QUEUES (P QUEUE) 165

6. Example

Dijkstra’s Algorithm (cf. section 10)

166 CHAPTER 8. PRIORITY QUEUES

8.2 Bounded Priority Queues (b priority queue)

1. Definition

An instance Q of the parameterized data type b priority queue<I> is a collection of items

(type b pq item). Every item contains a priority from a fixed interval [a..b] of integers

(type int) and an information from an arbitrary type I. The number of items in Q is

called the size of Q. If Q has size zero it is called the empty priority queue. We use 〈p, i〉
to denote a b pq item with priority p ∈ [a..b] and information i.

Remark: Iteration over the elements of Q using iteration macros such as forall is not

supported.

#include < LEDA/core/b prio.h >

2. Creation

b priority queue<I> Q(int a, int b);

creates an instance Q of type b priority queue<I> with key type
[a..b] and initializes it with the empty priority queue.

3. Operations

b pq item Q.insert(int key , const I& inf)

adds a new item < key, inf > to Q and returns it.
Precondition: key ∈ [a..b]

void Q.decrease key(b pq item it , int newkey)

makes newkey the new priority of item it.
Precondition: it is an item in Q, newkey ∈ [a..b]
and newkey is not larger than prio(it).

void Q.del item(b pq item x) deletes item it from Q.
Precondition: it is an item in Q.

int Q.prio(b pq item x) returns the priority of item i.
Precondition: it is an item in Q.

const I& Q.inf(b pq item x) returns the information of item i.
Precondition: it is an item in Q.

b pq item Q.find min() returns an item with minimal priority (nil if Q is
empty).

I Q.del min() deletes the item it = Q.find min() from Q and
returns the information of it.
Precondition: Q is not empty.

void Q.clear() makes Q the empty bounded prioriy queue.

8.2. BOUNDED PRIORITY QUEUES (B PRIORITY QUEUE) 167

int Q.size() returns the size of Q.

bool Q.empty() returns true if Q is empty, false otherwise.

int Q.lower bound() returns the lower bound of the priority interval
[a..b].

int Q.upper bound() returns the upper bound of the priority intervall
[a..b].

4. Implementation

Bounded priority queues are implemented by arrays of linear lists. Operations insert,

find min, del item, decrease key, key, inf, and empty take time O(1), del min (= del item

for the minimal element) takes time O(d), where d is the distance of the minimal element

to the next bigger element in the queue (= O(b− a) in the worst case). clear takes time

O(b− a+n) and the space requirement is O(b− a+n), where n is the current size of the

queue.

168 CHAPTER 8. PRIORITY QUEUES

Chapter 9

Graphs and Related Data Types

9.1 Graphs (graph)

1. Definition

An instance G of the data type graph consists of a list V of nodes and a list E of edges

(node and edge are item types). Distinct graph have disjoint node and edge lists. The

value of a variable of type node is either the node of some graph, or the special value

nil (which is distinct from all nodes), or is undefined (before the first assignment to the

variable). A corresponding statement is true for the variables of type edge.

A graph with empty node list is called empty. A pair of nodes (v, w) ∈ V ×V is associated

with every edge e ∈ E; v is called the source of e and w is called the target of e, and v

and w are called endpoints of e. The edge e is said to be incident to its endpoints.

A graph is either directed or undirected. The difference between directed and undirected

graph is the way the edges incident to a node are stored and how the concept adjacent is

defined.

In directed graph two lists of edges are associated with every node v: adj edges(v) =

{e ∈ E |v = source(e)}, i.e., the list of edges starting in v, and in edges(v) = {e ∈ E |v =

target(e)}, i.e., the list of edges ending in v. The list adj edges(v) is called the adjacency

list of node v and the edges in adj edges(v) are called the edges adjacent to node v. For

directed graph we often use out edges(v) as a synonym for adj edges(v).

In undirected graph only the list adj edges(v) is defined for every every node v. Here it

contains all edges incident to v, i.e., adj edges(v) = {e ∈ E |v ∈ {source(e), target(e)}}.
An undirected graph may not contain self-loops, i.e., it may not contain an edge whose

source is equal to its target.

In a directed graph an edge is adjacent to its source and in an undirected graph it is

adjacent to its source and target. In a directed graph a node w is adjacent to a node v if

169

170 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

there is an edge (v, w) ∈ E; in an undirected graph w is adjacent to v if there is an edge

(v, w) or (w, v) in the graph.

A directed graph can be made undirected and vice versa: G.make undirected() makes

the directed graph G undirected by appending for each node v the list in edges(v) to

the list adj edges(v) (removing self-loops). Conversely, G.make directed() makes the

undirected graph G directed by splitting for each node v the list adj edges(v) into the lists

out edges(v) and in edges(v). Note that these two operations are not exactly inverse to

each other. The data type ugraph (cf. section 9.4) can only represent undirected graph.

Reversal Information, Maps and Faces

The reversal information of an edge e is accessed through G.reversal(e), it has type edge

and may or may not be defined (= nil). Assume that G.reversal(e) is defined and let

e′ = G.reversal(e). Then e = (v, w) and e′ = (w, v) for some nodes v and w, G.reversal(e′)

is defined and e = G.reversal(e′). In addtion, e 6= e′. In other words, reversal deserves its

name.

We call a directed graph bidirected if the reversal information can be properly defined for

all edges in G, resp. if there exists a bijective function rev : E → E with the properties

of reversal as described above and we call a bidirected graph a map if all edges have

their reversal information defined. Maps are the data structure of choice for embedded

graph. For an edge e of a map G let face cycle succ(e) = cyclic adj pred(reversal(e))

and consider the sequence e, face cycle succ(e), face cycle succ(face cycle succ(e)),

The first edge to repeat in this sequence is e (why?) and the set of edges appearing in

this sequence is called the face cycle containing e. Each edge is contained in some face

cycle and face cycles are pairwise disjoint. Let f be the number of face cycles, n be

the number of (non-isolated) nodes, m be the number of edges, and let c be the number

of (non-singleton) connected components. Then g = (m/2 − n − f)/2 + c is called the

genus of the map [91] (note that m/2 is the number of edges in the underlying undirected

graph). The genus is zero if and only if the map is planar, i.e., there is an embedding of

G into the plane such that for every node v the counter-clockwise ordering of the edges

around v agrees with the cyclic ordering of v’s adjacency list. (In order to check whether

a map is planar, you may use the function Is Plane Map() in 9.23.)

If a graph G is a map the faces of G can be constructed explicitly by G.compute faces().

Afterwards, the faces of G can be traversed by different iterators, e.g., forall faces(f,G)

iterates over all faces , forall adj faces(v) iterates over all faces adjacent to node v. By

using face maps or arrays (data types face map and face array) additional information

can be associated with the faces of a graph. Note that any update operation performed

on G invalidates the list of faces. See the section on face operations for a complete list of

available operations for faces.

#include < LEDA/graph/graph.h >

9.1. GRAPHS (GRAPH) 171

2. Creation

graph G; creates an object G of type graph and initializes it to the empty
directed graph.

graph G(int n slots , int e slots);

this constructor specifies the numbers of free data slots in the nodes
and edges of G that can be used for storing the entries of node and
edge arrays. See also the description of the use node data() and
use edge data() operations in 9.8 and 9.9.

3. Operations

void G.init(int n, int m) this operation has to be called for semi-dynamic
graph (if compiled with −DGRAPH REP = 2)
immediately after the constructor to specify upper
bounds n and m for the number of nodes and edges
respectively. This operation has no effect if called for
the (fully-dynamic) standard graph representation.

a) Access operations

int G.outdeg(node v) returns the number of edges adjacent to node v
(|adj edges(v)|).

int G.indeg(node v) returns the number of edges ending at v
(|in edges(v)|) if G is directed and zero if G is undi-
rected).

int G.degree(node v) returns outdeg(v) + indeg(v).

node G.source(edge e) returns the source node of edge e.

node G.target(edge e) returns the target node of edge e.

node G.opposite(node v, edge e)

returns target(e) if v = source(e) and source(e) oth-
erwise.

node G.opposite(edge e, node v)

same as above.

int G.number of nodes() returns the number of nodes in G.

int G.number of edges() returns the number of edges in G.

const list<node>& G.all nodes() returns the list V of all nodes of G.

const list<edge>& G.all edges() returns the list E of all edges of G.

172 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

list<edge> G.adj edges(node v) returns adj edges(v).

list<edge> G.out edges(node v) returns adj edges(v) if G is directed and the empty
list otherwise.

list<edge> G.in edges(node v) returns in edges(v) if G is directed and the empty
list otherwise.

list<node> G.adj nodes(node v) returns the list of all nodes adjacent to v.

node G.first node() returns the first node in V .

node G.last node() returns the last node in V .

node G.choose node() returns a random node of G (nil if G is empty).

node G.succ node(node v) returns the successor of node v in V
(nil if it does not exist).

node G.pred node(node v) returns the predecessor of node v in V
(nil if it does not exist).

edge G.first edge() returns the first edge in E.

edge G.last edge() returns the last edge in E.

edge G.choose edge() returns a random edge of G (nil if G is empty).

edge G.succ edge(edge e) returns the successor of edge e in E
(nil if it does not exist).

edge G.pred edge(edge e) returns the predecessor of edge e in E
(nil if it does not exist).

edge G.first adj edge(node v) returns the first edge in the adjacency list of v
(nil if this list is empty).

edge G.last adj edge(node v) returns the last edge in the adjacency list of v
(nil if this list is empty).

edge G.adj succ(edge e) returns the successor of edge e in the adjacency list
of node source(e) (nil if it does not exist).

edge G.adj pred(edge e) returns the predecessor of edge e in the adjacency
list of node source(e) (nil if it does not exist).

edge G.cyclic adj succ(edge e) returns the cyclic successor of edge e in the adja-
cency list of node source(e).

edge G.cyclic adj pred(edge e) returns the cyclic predecessor of edge e in the adja-
cency list of node source(e).

9.1. GRAPHS (GRAPH) 173

edge G.first in edge(node v) returns the first edge of in edges(v)
(nil if this list is empty).

edge G.last in edge(node v) returns the last edge of in edges(v)
(nil if this list is empty).

edge G.in succ(edge e) returns the successor of edge e in
in edges(target(e)) (nil if it does not exist).

edge G.in pred(edge e) returns the predecessor of edge e in
in edges(target(e)) (nil if it does not exist).

edge G.cyclic in succ(edge e) returns the cyclic successor of edge e in
in edges(target(e)) (nil if it does not exist).

edge G.cyclic in pred(edge e) returns the cyclic predecessor of edge e in
in edges(target(e)) (nil if it does not exist).

bool G.is directed() returns true iff G is directed.

bool G.is undirected() returns true iff G is undirected.

bool G.empty() returns true iff G is empty.

b) Update operations

node G.new node() adds a new node to G and returns it.

node G.new node(node u, int dir)

adds a new node v to G and returns it. v is inserted
in front of (dir = leda :: before) or behind (dir =
leda ::behind) node u into the list of all nodes.

edge G.new edge(node v, node w)

adds a new edge (v, w) to G by appending it to
adj edges(v) and to in edges(w) (if G is directed)
or adj edges(w) (if G is undirected), and returns it.

edge G.new edge(edge e, node w, int dir = leda ::behind)

adds a new edge x = (source(e), w) to G. x
is inserted in front of (dir = leda :: before)
or behind (dir = leda :: behind) edge e into
adj edges(source(e)) and appended to in edges(w)
(if G is directed) or adj edges(w) (if G is undi-
rected). Here leda ::before and leda ::behind are pre-
defined constants. The operation returns the new
edge x.
Precondition: source(e) 6= w if G is undirected.

174 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

edge G.new edge(node v, edge e, int dir = leda ::behind)

adds a new edge x = (v, target(e)) to G. x is
appended to adj edges(v) and inserted in front of
(dir = leda :: before) or behind (dir = leda :: behind)
edge e into in edges(target(e)) (if G is directed) or
adj edges(target(e)) (if G is undirected). The oper-
ation returns the new edge x.
Precondition: target(e) 6= v if G is undirected.

edge G.new edge(edge e1 , edge e2 , int d1 = leda ::behind , int d2 = leda ::behind)

adds a new edge x = (source(e1), target(e2)) to
G. x is inserted in front of (if d1 = leda :: before)
or behind (if d1 = leda :: behind) edge e1 into
adj edges(source(e1)) and in front of (if d2 =
leda :: before) or behind (if d2 = leda :: behind) edge
e2 into in edges(target(e2)) (if G is directed) or
adj edges(target(e2)) (if G is undirected). The op-
eration returns the new edge x.

node G.merge nodes(node v1 , node v2)

experimental.

node G.merge nodes(edge e1 , node v2)

experimental.

node G.split edge(edge e, edge& e1 , edge& e2)

experimental

void G.hide edge(edge e) removes edge e temporarily from G until restored by
G.restore edge(e).

void G.hide edges(const list<edge>& el)

hides all edges in el .

bool G.is hidden(edge e) returns true if e is hidden and false otherwise.

list<edge> G.hidden edges() returns the list of all hidden edges of G.

void G.restore edge(edge e) restores e by appending it to adj edges(source(e))
and to in edges(target(e)) (adj edges(target(e)) if
G is undirected). Precondition: e is hidden and nei-
ther source(e) nor target(e) is hidden.

void G.restore edges(const list<edge>& el)

restores all edges in el .

void G.restore all edges() restores all hidden edges.

9.1. GRAPHS (GRAPH) 175

void G.hide node(node v) removes node v temporarily from G until restored
by G.restore node(v). All non-hidden edges in
adj edges(v) and in edges(v) are hidden too.

void G.hide node(node v, list<edge>& h edges)

as above, in addition, the list of leaving or entering
edges which are hidden as a result of hiding v are
appended to h edges .

bool G.is hidden(node v) returns true if v is hidden and false otherwise.

list<node> G.hidden nodes() returns the list of all hidden nodes of G.

void G.restore node(node v) restores v by appending it to the list of all nodes.
Note that no edge adjacent to v that was hidden by
G.hide node(v) is restored by this operation.

void G.restore all nodes() restores all hidden nodes.

void G.del node(node v) deletes v and all edges incident to v from G.

void G.del edge(edge e) deletes the edge e from G.

void G.del nodes(const list<node>& L)

deletes all nodes in L from G.

void G.del edges(const list<edge>& L)

deletes all edges in L from G.

void G.del all nodes() deletes all nodes from G.

void G.del all edges() deletes all edges from G.

void G.del all faces() deletes all faces from G.

void G.move edge(edge e, node v, node w)

moves edge e to source v and target w by append-
ing it to adj edges(v) and to in edges(w) (if G is
directed) or adj edges(w) (if G is undirected).

void G.move edge(edge e, edge e1 , node w, int d = leda ::behind)

moves edge e to source source(e1) and target w
by inserting it in front of (if d = leda :: before)
or behind (if d = leda :: behind) edge e1 into
adj edges(source(e1)) and by appending it to
in edges(w) (if G is directed) or adj edges(w) (if
G is undirected).

176 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

void G.move edge(edge e, node v, edge e2 , int d = leda ::behind)

moves edge e to source v and target target(e2) by
appending it to adj edges(v)) and inserting it in
front of (if d = leda :: before) or behind (if d =
leda :: behind) edge e2 into in edges(target(e2)) (if
G is directed) or adj edges(target(e2)) (if G is undi-
rected).

void G.move edge(edge e, edge e1 , edge e2 , int d1 = leda ::behind ,
int d2 = leda ::behind)

moves edge e to source source(e1) and target
target(e2) by inserting it in front of (if d1 =
leda :: before) or behind (if d1 = leda :: behind) edge
e1 into adj edges(source(e1)) and in front of (if
d2 = leda ::before) or behind (if d2 = leda ::behind)
edge e2 into in edges(target(e2)) (if G is directed)
or adj edges(target(e2)) (if G is undirected).

edge G.rev edge(edge e) reverses e (move edge(e, target(e), source(e))).

void G.rev all edges() reverses all edges of G.

void G.sort nodes(int (∗cmp)(const node& , const node&))

the nodes of G are sorted according to the ordering
defined by the comparing function cmp. Subsequent
executions of forall nodes step through the nodes in
this order. (cf. TOPSORT1 in section 10).

void G.sort edges(int (∗cmp)(const edge& , const edge&))

the edges of G and all adjacency lists are sorted ac-
cording to the ordering defined by the comparing
function cmp. Subsequent executions of forall edges
step through the edges in this order. (cf. TOP-
SORT1 in section 10).

void G.sort nodes(const node array<T>& A)

the nodes of G are sorted according to the entries of
node array A (cf. section 9.8).
Precondition: T must be numerical, i.e., number
type int , float , double, integer , rational or real .

void G.sort edges(const edge array<T>& A)

the edges of G are sorted according to the entries of
edge array A (cf. section 9.9).
Precondition: T must be numerical, i.e., number
type int , float , double, integer , rational or real .

9.1. GRAPHS (GRAPH) 177

void G.bucket sort nodes(int l, int h, int (∗ord)(const node&))

sorts the nodes of G using bucket sort
Precondition: l ≤ ord(v) ≤ h for all nodes v.

void G.bucket sort edges(int l, int h, int (∗ord)(const edge&))

sorts the edges of G using bucket sort
Precondition: l ≤ ord(e) ≤ h for all edges e.

void G.bucket sort nodes(int (∗ord)(const node&))

same as G.bucket sort nodes(l, h, ord) with l (h)
equal to the minimal (maximal) value of ord(v).

void G.bucket sort edges(int (∗ord)(const edge&))

same as G.bucket sort edges(l, h, ord) with l (h)
equal to the minimal (maximal) value of ord(e).

void G.bucket sort nodes(const node array<int>& A)

same as G.bucket sort nodes(ord) with ord(v) =
A[v] for all nodes v of G.

void G.bucket sort edges(const edge array<int>& A)

same as G.bucket sort edges(ord) with ord(e) = A[e]
for all edges e of G.

void G.set node position(node v, node p)

moves node v in the list V of all nodes such that p
becomes the predecessor of v. If p = nil then v is
moved to the front of V .

void G.set edge position(edge e, edge p)

moves edge e in the list E of all edges such that p
becomes the predecessor of e. If p = nil then e is
moved to the front of E.

void G.permute edges() the edges of G and all adjacency lists are randomly
permuted.

list<edge> G.insert reverse edges() for every edge (v, w) in G the reverse edge (w, v)
is inserted into G. Returns the list of all inserted
edges.
Remark: the reversal information is not set by this
function.

void G.make undirected() makes G undirected by appending in edges(v) to
adj edges(v) for all nodes v.

void G.make directed() makes G directed by splitting adj edges(v) into
out edges(v) and in edges(v).

void G.clear() makes G the empty graph.

178 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

void G.join(graph& H) merges H into G by moving all objects (nodes,edges,
and faces) from H to G. H is empty afterwards.

c) Reversal Edges and Maps

void G.make bidirected() makes G bidirected by inserting missing reversal
edges.

void G.make bidirected(list<edge>& R)

makes G bidirected by inserting missing reversal
edges. Appends all inserted edges to list R.

bool G.is bidirected() returns true if every edge has a reversal and false
otherwise.

bool G.make map() sets the reversal information of a maximal number
of edges of G. Returns true if G is bidirected and
false otherwise.

void G.make map(list<edge>& R)

makes G bidirected by inserting missing reversal
edges and then turns it into a map setting the re-
versals for all edges. Appends all inserted edges to
list R.

bool G.is map() tests whether G is a map.

edge G.reversal(edge e) returns the reversal information of edge e (nil if not
defined).

void G.set reversal(edge e, edge r)

makes r the reversal of e and vice versa. If the re-
versal information of e was defined prior to the op-
eration, say as e’, the reversal information of e’ is
set to nil. The same holds for r.
Precondition: e = (v, w) and r = (w, v) for some
nodes v and w.

edge G.face cycle succ(edge e) returns the cyclic adjacency predecessor of
reversal(e).
Precondition: reversal(e) is defined.

edge G.face cycle pred(edge e) returns the reversal of the cyclic adjacency successor
s of e.
Precondition: reversal(s) is defined.

edge G.split map edge(edge e) splits edge e = (v, w) and its reversal r = (w, v) into
edges (v, u), (u, w), (w, u), and (u, v). Returns the
edge (u, w).

9.1. GRAPHS (GRAPH) 179

edge G.new map edge(edge e1 , edge e2)

inserts a new edge e = (source(e1), source(e2)) after
e1 into the adjacency list of source(e1) and an edge
r reversal to e after e2 into the adjacency list of
source(e2).

list<edge> G.triangulate map() triangulates the map G by inserting additional
edges. The list of inserted edges is returned.
Precondition: G must be connected.
The algorithm ([49]) has running time O(|V |+ |E|).

void G.dual map(graph& D) constructs the dual of G in D. The algorithm has
linear running time.
Precondition: G must be a map.

For backward compatibility

edge G.reverse(edge e) returns reversal(e) (historical).

edge G.succ face edge(edge e) returns face cycle succ(e) (historical).

edge G.next face edge(edge e) returns face cycle succ(e) (historical).

edge G.pred face edge(edge e) returns face cycle pred(e) (historical).

d) Faces and Planar Maps

void G.compute faces() constructs the list of face cycles of G.
Precondition: G is a map.

face G.face of(edge e) returns the face of G to the left of edge e.

face G.adj face(edge e) returns G.face of (e).

void G.print face(face f) prints face f .

int G.number of faces() returns the number of faces of G.

face G.first face() returns the first face of G.
(nil if empty).

face G.last face() returns the last face of G.

face G.choose face() returns a random face of G (nil if G is empty).

face G.succ face(face f) returns the successor of face f in the face list of G
(nil if it does not exist).

face G.pred face(face f) returns the predecessor of face f in the face list of
G
(nil if it does not exist).

180 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

const list<face>& G.all faces() returns the list of all faces of G.

list<face> G.adj faces(node v) returns the list of all faces of G adjacent to node v
in counter-clockwise order.

list<node> G.adj nodes(face f) returns the list of all nodes of G adjacent to face f
in counter-clockwise order.

list<edge> G.adj edges(face) returns the list of all edges of G bounding face f in
counter-clockwise order.

int G.size(face f) returns the number of edges bounding face f .

edge G.first face edge(face f) returns the first edge of face f in G.

edge G.split face(edge e1 , edge e2)

inserts the edge e = (source(e1), source(e2)) and its
reversal into G and returns e.
Precondition: e1 and e2 are bounding the same face
F .
The operation splits F into two new faces.

face G.join faces(edge e) deletes edge e and its reversal r and updates the
list of faces accordingly. The function returns a face
that is affected by the operations (see the LEDA
book for details).

void G.make planar map() makes G a planar map by reordering the edges such
that for every node v the ordering of the edges in
the adjacency list of v corresponds to the counter-
clockwise ordering of these edges around v for some
planar embedding of G and constructs the list of
faces.
Precondition: G is a planar bidirected graph (map).

list<edge> G.triangulate planar map()

triangulates planar map G and recomputes its list
of faces

e) Operations for undirected graphs

9.1. GRAPHS (GRAPH) 181

edge G.new edge(node v, edge e1 , node w, edge e2 , int d1 = leda ::behind ,
int d2 = leda ::behind)

adds a new edge (v, w) to G by inserting it in
front of (if d1 = leda :: before) or behind (if d1 =
leda ::behind) edge e1 into adj edges(v) and in front
of (if d2 = leda :: before) or behind (if d2 =
leda ::behind) edge e2 into adj edges(w), and returns
it.
Precondition: e1 is incident to v and e2 is incident
to w and v 6= w.

edge G.new edge(node v, edge e, node w, int d = leda ::behind)

adds a new edge (v, w) to G by inserting it in
front of (if d = leda :: before) or behind (if d =
leda ::behind) edge e into adj edges(v) and append-
ing it to adj edges(w), and returns it.
Precondition: e is incident to v and v 6= w.

edge G.new edge(node v, node w, edge e, int d = leda ::behind)

adds a new edge (v, w) to G by appending it to to
adj edges(v), and by inserting it in front of (if d =
leda :: before) or behind (if d = leda :: behind) edge e
into adj edges(w), and returns it.
Precondition: e is incident to w and v 6= w.

edge G.adj succ(edge e, node v)

returns the successor of edge e in the adjacency list
of v.
Precondition: e is incident to v.

edge G.adj pred(edge e, node v)

returns the predecessor of edge e in the adjacency
list of v.
Precondition: e is incident to v.

edge G.cyclic adj succ(edge e, node v)

returns the cyclic successor of edge e in the adja-
cency list of v.
Precondition: e is incident to v.

edge G.cyclic adj pred(edge e, node v)

returns the cyclic predecessor of edge e in the adja-
cency list of v.
Precondition: e is incident to v.

f) I/O Operations

182 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

void G.write(ostream& O = cout)

writes G to the output stream O.

void G.write(string s) writes G to the file with name s.

int G.read(istream& I = cin)

reads a graph from the input stream I and assigns
it to G.

int G.read(string s) reads a graph from the file with name s and assigns
it to G. Returns 1 if file s does not exist, 2 if the edge
and node parameter types of ∗this and the graph in
the file s do not match, 3 if file s does not contain a
graph, and 0 otherwise.

bool G.write gml(ostream& O = cout , void (∗node cb)(ostream& , const graph∗,
const node) = 0, void (∗edge cb)(ostream& , const graph∗,
const edge) = 0)

writes G to the output stream O in GML format
([48]). If node cb is not equal to 0, it is called
while writing a node v with output stream O, the
graph and v as parameters. It can be used to
write additional user defined node data. The output
should conform with GML format (see manual page
gml graph). edge cb is called while writing edges. If
the operation fails, false is returned.

bool G.write gml(string s, void (∗node cb)(ostream& , const graph∗,
const node) = 0, void (∗edge cb)(ostream& , const graph∗,
const edge) = 0)

writes G to the file with name s in GML format.
For a description of node cb and edge cb, see above.
If the operation fails, false is returned.

bool G.read gml(string s) reads a graph in GML format from the file with
name s and assigns it toG. Returns true if the graph
is successfully read; otherwise false is returned.

bool G.read gml(istream& I = cin)

reads a graph in GML format from the input stream
I and assigns it to G. Returns true if the graph is
successfully read; otherwise false is returned.

void G.print node(node v, ostream& O = cout)

prints node v on the output stream O.

9.1. GRAPHS (GRAPH) 183

void G.print edge(edge e, ostream& O = cout)

prints edge e on the output stream O. If G is di-
rected e is represented by an arrow pointing from
source to target. If G is undirected e is printed as
an undirected line segment.

void G.print(string s, ostream& O = cout)

prints G with header line s on the output stream O.

void G.print(ostream& O = cout)

prints G on the output stream O.

g) Non-Member Functions

node source(edge e) returns the source node of edge e.

node target(edge e) returns the target node of edge e.

graph∗ graph of(node v) returns a pointer to the graph that v belongs to.

graph∗ graph of(edge e) returns a pointer to the graph that e belongs to.

graph∗ graph of(face f) returns a pointer to the graph that f belongs to.

face face of(edge e) returns the face of edge e.

h) Iteration

All iteration macros listed in this section traverse the corresponding node and edge lists

of the graph, i.e. they visit nodes and edges in the order in which they are stored in these

lists.

forall nodes(v,G)

{ “the nodes of G are successively assigned to v” }

forall edges(e,G)

{ “the edges of G are successively assigned to e” }

forall rev nodes(v,G)

{ “the nodes of G are successively assigned to v in reverse order” }

forall rev edges(e,G)

{ “the edges of G are successively assigned to e in reverse order” }

forall hidden edges(e,G)

{ “all hidden edges of G are successively assigned to e” }

184 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

forall adj edges(e, w)

{ “the edges adjacent to node w are successively assigned to e” }

forall out edges(e, w)

a faster version of forall adj edges for directed graphs.

forall in edges(e, w)

{ “the edges of in edges(w) are successively assigned to e” }

forall inout edges(e, w)

{ “the edges of out edges(w) and in edges(w) are successively assigned to e” }

forall adj undirected edges(e, w)

like forall adj edges on the underlying undirected graph, no matter whether the graph

is directed or undirected actually.

forall adj nodes(v, w)

{ “the nodes adjacent to node w are successively assigned to v” }

Faces

Before using any of the following face iterators the list of faces has to be computed by

calling G.compute faces(). Note, that any update operation invalidates this list.

forall faces(f,M)

{ “the faces of M are successively assigned to f” }

forall face edges(e, f)

{ “the edges of face f are successively assigned to e” }

forall adj faces(f, v)

{ “the faces adjacent to node v are successively assigned to f” }

4. Implementation

Graphs are implemented by doubly linked lists of nodes and edges. Most operations

take constant time, except for all nodes, all edges, del all nodes, del all edges, make map,

make planar map, compute faces, all faces, make bidirected, clear, write, and read which

take time O(n +m), and adj edges, adj nodes, out edges, in edges, and adj faces which

take time O(output size) where n is the current number of nodes and m is the current

number of edges. The space requirement is O(n+m).

9.2. PARAMETERIZED GRAPHS (GRAPH) 185

9.2 Parameterized Graphs (GRAPH)

1. Definition

A parameterized graph G is a graph whose nodes and edges contain additional (user

defined) data. Every node contains an element of a data type vtype, called the node type

of G and every edge contains an element of a data type etype called the edge type of G.

We use <v,w, y> to denote an edge (v, w) with information y and <x> to denote a node

with information x.

All operations defined for the basic graph type graph are also defined on instances of

any parameterized graph type GRAPH <vtype, etype>. For parameterized graph there are

additional operations to access or update the information associated with its nodes and

edges. Instances of a parameterized graph type can be used wherever an instance of the

data type graph can be used, e.g., in assignments and as arguments to functions with

formal parameters of type graph&. If a function f(graph& G) is called with an argument

Q of type GRAPH <vtype, etype> then inside f only the basic graph structure of Q can

be accessed. The node and edge entries are hidden. This allows the design of generic

graph algorithms, i.e., algorithms accepting instances of any parametrized graph type as

argument.

#include < LEDA/graph/graph.h >

2. Types

GRAPH <vtype, etype> ::node value type

the type of node data (vtype).

GRAPH <vtype, etype> ::edge value type

the type of edge data (etype).

3. Creation

GRAPH <vtype, etype> G; creates an instance G of type GRAPH <vtype, etype> and ini-
tializes it to the empty graph.

4. Operations

const vtype& G.inf(node v) returns the information of node v.

const vtype& G[node v] returns a reference to G.inf(v).

const etype& G.inf(edge e) returns the information of edge e.

const etype& G[edge e] returns a reference to G.inf(e).

186 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

node array<vtype>& G.node data() makes the information associated with the nodes of G
available as a node array of type node array<vtype>.

edge array<etype>& G.edge data() makes the information associated with the edges of G
available as an edge array of type edge array<etype>.

void G.assign(node v, const vtype& x)

makes x the information of node v.

void G.assign(edge e, const etype& x)

makes x the information of edge e.

node G.new node(const vtype& x)

adds a new node <x> to G and returns it.

node G.new node(node u, const vtype& x, int dir)

adds a new node v = <x> to G and returns it. v
is inserted in front of (dir = leda :: before) or behind
(dir = leda ::behind) node u into the list of all nodes.

edge G.new edge(node v, node w, const etype& x)

adds a new edge <v,w, x> to G by appending it to
adj edges(v) and to in edges(w) and returns it.

edge G.new edge(edge e, node w, const etype& x, int dir = leda ::behind)

adds a new edge <source(e), w, x> to G by inserting
it behind (dir = leda :: behind) or in front of (dir =
leda :: before) edge e into adj edges(source(e)) and
appending it to in edges(w). Returns the new edge.

edge G.new edge(node v, edge e, const etype& x, int dir = leda ::behind)

adds a new edge <v, target(e), x> to G by insert-
ing it behind (dir = leda :: behind) or in front of
(dir = leda :: before) edge e into in edges(target(e))
and appending it to adj edges(v). Returns the new
edge.

edge G.new edge(edge e1 , edge e2 , const etype& x, int d1 = leda ::behind ,
int d2 = leda ::behind)

adds a new edge x = (source(e1), target(e2), x) to
G. x is inserted in front of (if d1 = leda :: before)
or behind (if d1 = leda :: behind) edge e1 into
adj edges(source(e1)) and in front of (if d2 =
leda :: before) or behind (if d2 = leda :: behind) edge
e2 into in edges(target(e2)) (if G is directed) or
adj edges(target(e2)) (if G is undirected). The oper-
ation returns the new edge x.

9.2. PARAMETERIZED GRAPHS (GRAPH) 187

edge G.new edge(node v, edge e1 , node w, edge e2 , const etype& x,
int d1 = leda ::behind , int d2 = leda ::behind)

adds a new edge (v, w, x) to G by inserting it
in front of (if d1 = leda :: before) or behind (if
d1 = leda :: behind) edge e1 into adj edges(v) and
in front (if d2 = leda :: before) or behind (if d2 =
leda ::behind) edge e2 into adj edges(w), and returns
it.
Precondition: G is undirected, v 6= w, e1 is incident
to v, and e2 is incident to w.

edge G.new edge(node v, edge e, node w, const etype& x, int d = leda ::behind)

adds a new edge (v, w, x) to G by inserting it in
front of (if d = leda :: before) or behind (if d =
leda ::behind) edge e into adj edges(v) and appending
it to adj edges(w), and returns it.
Precondition: G is undirected, v 6= w, e1 is incident
to v, and e is incident to v.

void G.sort nodes(const list<node>& vl)

makes vl the node list of G.
Precondition: vl contains exactly the nodes of G.

void G.sort edges(const list<edge>& el)

makes el the edge list of G.
Precondition: el contains exactly the edges of G.

void G.sort nodes() the nodes of G are sorted increasingly according to
their contents.
Precondition: vtype is linearly ordered.

void G.sort edges() the edges of G are sorted increasingly according to
their contents.
Precondition: etype is linearly ordered.

void G.write(string fname) writes G to the file with name fname. The out-
put operators operator ≪ (ostream&, const vtype&)
and operator ≪ (ostream&, const etype&)(cf. sec-
tion 1.6) must be defined.

int G.read(string fname) reads G from the file with name fname. The in-
put operators operator ≫ (istream&, vtype&) and
operator ≫ (istream&, etype&) (cf. section 1.6) must
be defined. Returns error code
1 if file fname does not exist
2 if graph is not of type GRAPH <vtype, etype>
3 if file fname does not contain a graph
0 if reading was successful.

188 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

5. Implementation

Parameterized graph are derived from directed graph. All additional operations for ma-

nipulating the node and edge entries take constant time.

9.3. STATIC GRAPHS (STATIC GRAPH) 189

9.3 Static Graphs (static graph)

1. Definition

1.1 Motivation. The data type static graph representing static graph is the result of

two observations:

First, most graph algorithms do not change the underlying graph, they work on a constant

or static graph and second, different algorithms are based on different models (we call

them categories) of graph.

The LEDA data type graph represents all types of graph used in the library, such as

directed, undirected, and bidirected graph, networks, planar maps, and geometric graph.

It provides the operations for all of these graph in one fat interface. For efficiency reasons

it makes sense to provide special graph data types for special purposes. The template data

type static graph, which is parameterized with the graph category, provides specialized

implementations for some of these graph types.

1.2 Static Graphs. A static graph consists of a fixed sequence of nodes and edges. The

parameterized data type static graph<category , node data, edge data> is used to represent

static graph. The first template parameter category defines the graph category and is

taken from {directed graph, bidirectional graph, opposite graph} (see 1.3 for the details).

The last two parameters are optional and can be used to define user-defined data structures

to be included into the node and edge objects (see 1.4 for the details). An instance G of

the parameterized data type static graph contains a sequence V of nodes and a sequence

E of edges. New nodes or edges can be appended only in a construction phase which has

to be started by calling G.start construction() and terminated by G.finish construction().

For every node or edge x we define index(x) to be equal to the rank of x in its sequence.

During the construction phase, the sequence of the source node index of all inserted edges

must be non-decreasing. After the construction phase both sequences V and E are fixed.

1.3 Graph Categories. We distinguish between five categories where currently only

the first three are supported by static graph:

• Directed Graphs (directed graph) represent the concept of a directed graph by pro-

viding the ability to iterate over all edges incident to a given node v and to ask for

the target node of a given edge e.

• Bidirectional Graphs (bidirectional graph) extend directed graph by supporting in

addition iterations over all incoming edges at a given node v and to ask for the

source node of a given edge e.

190 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

• Opposite Graphs (opposite graph) are a variant of the bidirectional graph category.

They do not support the computation of the source or target node of a given edge

but allow walking from one terminal v of an edge e to the other opposite one.

Not yet implemented are bidirected and undirected graph.

1.4 Node and Edge Data. Static graph support several efficient ways - efficient com-

pared to using node arrays , edge arrays , node maps , and edge maps - to associate data

with the edges and nodes of the graph.

1.4.1 Dynamic Slot Assignment: It is possible to attach two optional template pa-

rameters data slots<int> at compile time:

static_graph<directed_graph, data_slots<3>, data_slots<1> > G;

specifies a static directed graph G with three additional node slots and one additional

edge slot. Node and edge arrays can use these data slots, instead of allocating an external

array. This method is also supported for the standard LEDA data type graph. Please see

the manual page for node array resp. edge array (esp. the operations use node data resp.

use edge data) for the details.

The method is called dynamic slot assignment since the concrete arrays are assigned

during runtime to the slots.

1.4.2 Static Slot Assignment: This method is even more efficient. A variant of the

node and edge arrays, the so-called node slot and edge slot data types, are assigned to

the slots during compilation time. These types take three parameters: the element type

of the array, an integer slot number, and the type of the graph:

node_slot<E, graph_t, slot>;

edge_slot<E, graph_t, slot>;

Here is an example for the use of static slot assignment in a maxflow graph algorithm.

It uses three node slots for storing distance, excess, and a successor node, and two edge

slots for storing the flow and capacity.

typedef static_graph<opposite_graph, data_slots<3>, data_slots<2> > maxflow_graph;

node_slot<node, maxflow_graph, 0> succ;

node_slot<int, maxflow_graph, 1> dist;

node_slot<edge, maxflow_graph, 2> excess;

edge_slot<int, maxflow_graph, 0> flow;

edge_slot<int, maxflow_graph, 1> cap;

9.3. STATIC GRAPHS (STATIC GRAPH) 191

When using the data types node slot resp. edge slot one has to include the files

LEDA/graph/edge slot.h.

1.4.3 Customizable Node and Edge Types: It is also possible to pass any structure

derived from data slots<int> as second or third parameter. Thereby the nodes and edges

are extended by named data members. These are added in addition to the data slots

specified in the base type. In the example

struct flow_node:public data_slots<1>

{ int excess;

int level;

}

struct flow_edge:public data_slots<2>

{ int flow;

int cap;

}

typedef static_graph<bidirectional_graph, flow_node, flow_edge> flow_graph;

there are three data slots (one of them unnamed) associated with each node and four data

slots (two of them unnamed) associated with each edge of a flow graph.

The named slots can be used as follows:

flow_graph::node v;

forall_nodes(v, G) v->excess = 0;

#include < LEDA/graph/static graph.h >

2. Creation

static graph<category, node data = data slots < 0 >, edgedata = data slots < 0 > > G;

creates an empty static graph G. category is either directed graph, or bidirectional graph,

or opposite graph. The use of the other parameters is explained in the section Node and

Edge Data given above.

3. Types

static graph ::node the node type. Note: It is different from graph ::node.

static graph ::edge the edge type. Note: It is different from graph ::edge.

192 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

4. Operations

The interface consists of two parts. The first part - the basic interface - is independent

from the actual graph category, the specified operations are common to all graph. The

second part of the interface is different for every category and contains macros to iterate

over incident edges or adjacent nodes and methods for traversing a given edge.

void G.start construction(int n, int m)

starts the construction phase for a graph
with up to n nodes and m edges.

node G.new node() creates a new node, appends it to V , and re-
turns it. The operation may only be called
during construction phase and at most n
times.

edge G.new edge(node v, node w)

creates the edge (v, w), appends it to E, and
returns it. The operation may only be called
during construction phase and at most m
times.
Precondition: All edges (u, v) of G with
index(u) < index(v) have been created be-
fore.

void G.finish construction()

terminates the construction phase.

int forall nodes(v, G) v iterates over the node sequence.

int forall edges(e, G) e iterates over the edge sequence.

Static Directed Graphs (static graph<directed graph>)

For this category the basic interface of static graph is extended by the operations:

node G.target(edge e) returns the target node of e.

node G.outdeg(node v) returns the number of outgoing edges of v.

int forall out edges(e, v) e iterates over all edges with source(e) = v.

Static Bidirectional Graphs (static graph<bidirectional graph>)

For this category the basic interface of static graph is extended by the operations:

node G.target(edge e) returns the target node of e.

node G.source(edge e) returns the source node of e.

9.3. STATIC GRAPHS (STATIC GRAPH) 193

node G.outdeg(node v) returns the number of outgoing edges of v.

node G.indeg(node v) returns the number of incoming edges of v.

int forall out edges(e, v) e iterates over all edges with source(e) = v.

int forall in edges(e, v) e iterates over all edges with target(e) = v.

Static Opposite Graphs (static graph<opposite graph>)

For this category the basic interface of static graph is extended by the operations:

node G.opposite(edge e, node v)

returns the opposite to v along e.

node G.outdeg(node v) returns the number of outgoing edges of v.

node G.indeg(node v) returns the number of incoming edges of v.

int forall out edges(e, v) e iterates over all edges with source(e) = v.

int forall in edges(e, v) e iterates over all edges with target(e) = v.

5. Example

The simple example illustrates how to create a small graph and assign some values. To

see how static graph can be used in a max flow algorithm - please see the source file mfs.c

in the directory test/flow.

#include <LEDA/graph/graph.h>

#include <LEDA/graph/node_slot.h>

#include <LEDA/graph/edge_slot.h>

#include <LEDA/core/array.h>

using namespace leda;

struct node_weight:public data_slots<0>

{ int weight; }

struct edge_cap:public data_slots<0>

{ int cap; }

typedef static_graph<opposite_graph, node_weight, edge_cap> static_graph;

typedef static_graph::node st_node;

typedef static_graph::edge st_edge;

194 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

int main ()

{

static_graph G;

array<st_node> v(4);

array<st_edge> e(4);

G.start_construction(4,4);

for(int i =0; i < 4; i++) v[i] = G.new_node();

e[0] = G.new_edge(v[0], v[1]);

e[1] = G.new_edge(v[0], v[2]);

e[2] = G.new_edge(v[1], v[2]);

e[3] = G.new_edge(v[3], v[1]);

G.finish_construction();

st_node v;

st_edge e;

forall_nodes(v, G) v->weight = 1;

forall_edges(e, G) e->cap = 10;

return 0;

}

9.4. UNDIRECTED GRAPHS (UGRAPH) 195

9.4 Undirected Graphs (ugraph)

1. Definition

An instance U of the data type ugraph is an undirected graph as defined in section 9.1.

#include < LEDA/graph/ugraph.h >

2. Creation

ugraph U ; creates an instance U of type ugraph and initializes it to the empty
undirected graph.

ugraph U(const graph& G);

creates an instance U of type ugraph and initializes it with an undi-
rected copy of G.

3. Operations

see section 9.1.

4. Implementation

see section 9.1.

9.5 Parameterized Ugraph (UGRAPH)

1. Definition

A parameterized undirected graph G is an undirected graph whose nodes and edges con-

tain additional (user defined) data (cf. 9.2). Every node contains an element of a data

type vtype, called the node type of G and every edge contains an element of a data type

etype called the edge type of G.

#include < LEDA/graph/ugraph.h >

UGRAPH <vtype, etype> U ;

creates an instance U of type ugraph and initializes it to the empty
undirected graph.

2. Operations

see section 9.2.

196 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

3. Implementation

see section 9.2.

9.6. PLANAR MAPS (PLANAR MAP) 197

9.6 Planar Maps (planar map)

1. Definition

An instance M of the data type planar map is the combinatorial embedding of a planar

graph, i.e., M is bidirected (for every edge (v, w) of M the reverse edge (w, v) is also in

M) and there is a planar embedding of M such that for every node v the ordering of the

edges in the adjacency list of v corresponds to the counter-clockwise ordering of these

edges around v in the embedding.

#include < LEDA/graph/planar map.h >

2. Creation

planar map M(const graph& G);

creates an instance M of type planar map and initializes it to the
planar map represented by the directed graph G.
Precondition: G represents a bidirected planar map, i.e. for every
edge (v, w) in G the reverse edge (w, v) is also in G and there is
a planar embedding of G such that for every node v the ordering
of the edges in the adjacency list of v corresponds to the counter-
clockwise ordering of these edges around v in the embedding.

3. Operations

edge M.new edge(edge e1 , edge e2)

inserts the edge e = (source(e1), source(e2)) and its
reversal into M and returns e.
Precondition: e1 and e2 are bounding the same face
F .
The operation splits F into two new faces.

face M.del edge(edge e) deletes the edge e and its reversal from M . The two
faces adjacent to e are united to one new face which
is returned.

edge M.split edge(edge e) splits edge e = (v, w) and its reversal r = (w, v) into
edges (v, u), (u, w), (w, u), and (u, v). Returns the
edge (u, w).

node M.new node(const list<edge>& el)

splits the face bounded by the edges in el by inserting
a new node u and connecting it to all source nodes
of edges in el.
Precondition: all edges in el bound the same face.

node M.new node(face f) splits face f into triangles by inserting a new node u
and connecting it to all nodes of f . Returns u.

198 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

list<edge> M.triangulate() triangulates all faces of M by inserting new edges.
The list of inserted edges is returned.

4. Implementation

Planar maps are implemented by parameterized directed graph. All operations take con-

stant time, except for new edge and del edge which take time O(f) where f is the number

of edges in the created faces and triangulate and straight line embedding which take time

O(n) where n is the current size (number of edges) of the planar map.

9.7. PARAMETERIZED PLANAR MAPS (PLANAR MAP) 199

9.7 Parameterized Planar Maps (PLANAR MAP)

1. Definition

A parameterized planar map M is a planar map whose nodes, edges and faces contain

additional (user defined) data. Every node contains an element of a data type vtype,

called the node type of M ,every edge contains an element of a data type etype, called the

edge type of M , and every face contains an element of a data type ftype called the face

type of M . All operations of the data type planar map are also defined for instances of

any parameterized planar map type. For parameterized planar maps there are additional

operations to access or update the node and face entries.

#include < LEDA/graph/planar map.h >

2. Creation

PLANAR MAP<vtype, etype, ftype>

M(const GRAPH <vtype, etype>& G);

creates an instance M of type PLANAR MAP<vtype, etype, ftype>
and initializes it to the planar map represented by the parameter-
ized directed graph G. The node and edge entries of G are copied
into the corresponding nodes and edges of M . Every face f of M
is assigned the default value of type ftype.
Precondition: G represents a planar map.

3. Operations

const vtype& M.inf(node v) returns the information of node v.

const etype& M.inf(edge e) returns the information of edge e.

const ftype& M.inf(face f) returns the information of face f .

vtype& M [node v] returns a reference to the information of node v.

etype& M [edge e] returns a reference to the information of edge e.

ftype& M [face f] returns a reference to the information of face f .

void M.assign(node v, const vtype& x)

makes x the information of node v.

void M.assign(edge e, const etype& x)

makes x the information of edge e.

void M.assign(face f, const ftype& x)

makes x the information of face f .

200 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

edge M.new edge(edge e1 , edge e2 , const ftype& y)

inserts the edge e = (source(e1), source(e2)) and its
reversal edge e′ into M .
Precondition: e1 and e2 are bounding the same face
F .
The operation splits F into two new faces f , adjacent
to edge e, and f ′, adjacent to edge e′, with inf(f) =
inf (F) and inf(f ′) = y.

edge M.split edge(edge e, const vtype& x)

splits edge e = (v, w) and its reversal r = (w, v) into
edges (v, u), (u, w), (w, u), and (u, v). Assigns infor-
mation x to the created node u and returns the edge
(u, w).

node M.new node(list<edge>& el , const vtype& x)

splits the face bounded by the edges in el by inserting
a new node u and connecting it to all source nodes of
edges in el. Assigns information x to u and returns
u.
Precondition: all edges in el bound the same face.

node M.new node(face f, const vtype& x)

splits face f into triangles by inserting a new node u
with information x and connecting it to all nodes of
f . Returns u.

4. Implementation

Parameterized planar maps are derived from planar maps. All additional operations for

manipulating the node and edge contents take constant time.

9.8. NODE ARRAYS (NODE ARRAY) 201

9.8 Node Arrays (node array)

1. Definition

An instance A of the parameterized data type node array<E> is a partial mapping from

the node set of a graph G to the set of variables of type E, called the element type of the

array. The domain I of A is called the index set of A and A(v) is called the element at

position v. A is said to be valid for all nodes in I. The array access operator A[v] checks

its precondition (A must be valid for v). The check can be turned off by compiling with

the flag -DLEDA_CHECKING_OFF.

#include < LEDA/graph/node array.h >

2. Creation

node array<E> A; creates an instance A of type node array<E> with empty index set.

node array<E> A(const graph t& G);

creates an instance A of type node array<E> and initializes the
index set of A to the current node set of graph G.

node array<E> A(const graph t& G, E x);

creates an instance A of type node array<E>, sets the index set of
A to the current node set of graph G and initializes A(v) with x
for all nodes v of G.

node array<E> A(const graph t& G, int n, E x);

creates an instance A of type node array<E> valid for up to n nodes
of graph G and initializes A(v) with x for all nodes v of G.
Precondition: n ≥ |V |.
A is also valid for the next n− |V | nodes added to G.

3. Operations

const graph t& A.get graph() returns a reference to the graph of A.

E& A[node v] returns the variable A(v).
Precondition: A must be valid for v.

void A.init(const graph t& G) sets the index set I of A to the node set of G, i.e., makes
A valid for all nodes of G.

void A.init(const graph t& G, E x)

makes A valid for all nodes of G and sets A(v) = x for
all nodes v of G.

202 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

void A.init(const graph t& G, int n, E x)

makes A valid for at most n nodes of G and sets A(v) =
x for all nodes v of G.
Precondition: n ≥ |V |.
A is also valid for the next n− |V | nodes added to G.

bool A.use node data(const graph t& G)

use free data slots in the nodes of G (if available) for
storing the entries of A. If no free data slot is available
in G, an ordinary node array<E>is created. The num-
ber of additional data slots in the nodes and edges of a
graph can be specified in the graph :: graph(int n slots ,
int e slots) constructor. The result is true if a free slot
is available and false otherwise.

bool A.use node data(const graph t& G, E x)

use free data slots in the nodes of G (if available) for
storing the entries of A and initializes A(v) = x for all
nodes v of G. If no free data slot is available in G, an
ordinary node array<E> is created. The number of ad-
ditional data slots in the nodes and edges of a graph can
be specified in the graph ::graph(int n slots , int e slots)
constructor. The result is true if a free slot is available
and false otherwise.

4. Implementation

Node arrays for a graph G are implemented by C++vectors and an internal numbering

of the nodes and edges of G. The access operation takes constant time, init takes time

O(n), where n is the number of nodes in G. The space requirement is O(n).

Remark: A node array is only valid for a bounded number of nodes of G. This number is

either the number of nodes of G at the moment of creation of the array or it is explicitely

set by the user. Dynamic node arrays can be realized by node maps (cf. section 9.11).

9.9. EDGE ARRAYS (EDGE ARRAY) 203

9.9 Edge Arrays (edge array)

1. Definition

An instance A of the parameterized data type edge array<E> is a partial mapping from

the edge set of a graph G to the set of variables of type E, called the element type of the

array. The domain I of A is called the index set of A and A(e) is called the element at

position e. A is said to be valid for all edges in I. The array access operator A[e] checks

its precondition (A must be valid for e). The check can be turned off by compiling with

the flag -DLEDA_CHECKING_OFF.

#include < LEDA/graph/edge array.h >

2. Creation

edge array<E> A; creates an instance A of type edge array<E> with empty index set.

edge array<E> A(const graph t& G);

creates an instance A of type edge array<E> and initializes the
index set of A to be the current edge set of graph G.

edge array<E> A(const graph t& G, E x);

creates an instance A of type edge array<E>, sets the index set of
A to the current edge set of graph G and initializes A(v) with x for
all edges v of G.

edge array<E> A(const graph t& G, int n, E x);

creates an instance A of type edge array<E> valid for up to n edges
of graph G and initializes A(e) with x for all edges e of G.
Precondition: n ≥ |E|.
A is also valid for the next n− |E| edges added to G.

3. Operations

const graph t& A.get graph() returns a reference to the graph of A.

E& A[edge e] returns the variable A(e).
Precondition: A must be valid for e.

void A.init(const graph t& G) sets the index set I of A to the edge set of G, i.e., makes
A valid for all edges of G.

void A.init(const graph t& G, E x)

makes A valid for all edges of G and sets A(e) = x for
all edges e of G.

204 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

void A.init(const graph t& G, int n, E x)

makes A valid for at most n edges of G and sets A(e) = x
for all edges e of G.
Precondition: n ≥ |E|.
A is also valid for the next n− |E| edges added to G.

bool A.use edge data(const graph t& G, E x)

use free data slots in the edges of G (if available) for
storing the entries of A. The number of additional data
slots in the nodes and edges of a graph can be specified
in the graph ::graph(int n slots , int e slots) constructor.
The result is true if a free slot is available and false
otherwise.

4. Implementation

Edge arrays for a graph G are implemented by C++vectors and an internal numbering

of the nodes and edges of G. The access operation takes constant time, init takes time

O(n), where n is the number of edges in G. The space requirement is O(n).

Remark: An edge array is only valid for a bounded number of edges of G. This number

is either the number of edges of G at the moment of creation of the array or it is explicitely

set by the user. Dynamic edge arrays can be realized by edge maps (cf. section 9.12).

9.10. FACE ARRAYS (FACE ARRAY) 205

9.10 Face Arrays (face array)

1. Definition

An instance A of the parameterized data type face array<E> is a partial mapping from

the face set of a graph G to the set of variables of type E, called the element type of the

array. The domain I of A is called the index set of A and A(f) is called the element at

position f . A is said to be valid for all faces in I. The array access operator A[f] checks

its precondition (A must be valid for f). The check can be turned off by compiling with

the flag -DLEDA_CHECKING_OFF.

#include < LEDA/graph/face array.h >

2. Creation

face array<E> A; creates an instance A of type face array<E> with empty index set.

face array<E> A(const graph t& G);

creates an instance A of type face array<E> and initializes the index
set of A to the current face set of graph G.

face array<E> A(const graph t& G, E x);

creates an instance A of type face array<E>, sets the index set of
A to the current face set of graph G and initializes A(f) with x for
all faces f of G.

face array<E> A(const graph t& G, int n, E x);

creates an instance A of type face array<E> valid for up to n faces
of graph G and initializes A(f) with x for all faces f of G.
Precondition: n ≥ |V |.
A is also valid for the next n− |V | faces added to G.

3. Operations

const graph t& A.get graph() returns a reference to the graph of A.

E& A[face f] returns the variable A(f).
Precondition: A must be valid for f .

void A.init(const graph t& G) sets the index set I of A to the face set of G, i.e., makes
A valid for all faces of G.

void A.init(const graph t& G, E x)

makes A valid for all faces of G and sets A(f) = x for
all faces f of G.

206 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

void A.init(const graph t& G, int n, E x)

makes A valid for at most n faces of G and sets A(f) = x
for all faces f of G.
Precondition: n ≥ |V |.
A is also valid for the next n− |V | faces added to G.

bool A.use face data(const graph t& G, E x)

use free data slots in the faces of G (if available) for
storing the entries of A. The number of additional data
slots in the nodes and edges of a graph can be specified
in the graph ::graph(int n slots , int e slots) constructor.
The result is true if a free slot is available and false
otherwise.

4. Implementation

Node arrays for a graph G are implemented by C++vectors and an internal numbering of

the faces and edges of G. The access operation takes constant time, init takes time O(n),

where n is the number of faces in G. The space requirement is O(n).

Remark: A face array is only valid for a bounded number of faces of G. This number is

either the number of faces of G at the moment of creation of the array or it is explicitely

set by the user. Dynamic face arrays can be realized by face maps (cf. section 9.11).

9.11. NODE MAPS (NODE MAP) 207

9.11 Node Maps (node map)

1. Definition

An instance of the data type node map<E> is a map for the nodes of a graph G, i.e.,

equivalent to map<node, E> (cf. 7.4). It can be used as a dynamic variant of the data

type node array (cf. 9.8). New: Since node map<E> is derived from node array<E>

node maps can be passed (by reference) to functions with node array parameters. In

particular, all LEDA graph algorithms expecting a node array<E>& argument can be

passed a node map<E> instead.

#include < LEDA/graph/node map.h >

2. Creation

node map<E> M ; introduces a variable M of type node map<E> and initializes it to
the map with empty domain.

node map<E> M(const graph t& G);

introduces a variableM of type node map<E> and initializes it with
a mapping m from the set of all nodes of G into the set of variables
of type E. The variables in the range of m are initialized by a call
of the default constructor of type E.

node map<E> M(const graph t& G, E x);

introduces a variableM of type node map<E> and initializes it with
a mapping m from the set of all nodes of G into the set of variables
of type E. The variables in the range of m are initialized with a
copy of x.

3. Operations

const graph t& M.get graph() returns a reference to the graph of M .

void M.init() makes M a node map with empty domain.

void M.init(const graph t& G)

makes M a mapping m from the set of all nodes of G into
the set of variables of type E. The variables in the range
of m are initialized by a call of the default constructor of
type E.

void M.init(const graph t& G, E x)

makes M a mapping m from the set of all nodes of G into
the set of variables of type E. The variables in the range
of m are initialized with a copy of x.

208 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

bool M.use node data(const graph t& G, E x)

use free data slots in the nodes of G (if available) for stor-
ing the entries of A. The number of additional data slots
in the nodes and edges of a graph can be specified in the
graph ::graph(int n slots , int e slots) constructor. The re-
sult is true if a free slot is available and false otherwise.

E& M [node v] returns the variable M(v).

4. Implementation

Node maps either use free node slots or they are implemented by an efficient hashing

method based on the internal numbering of the nodes or they use. In each case an access

operation takes expected time O(1).

9.12. EDGE MAPS (EDGE MAP) 209

9.12 Edge Maps (edge map)

1. Definition

An instance of the data type edge map<E> is a map for the edges of a graph G, i.e.,

equivalent to map<edge, E> (cf. 7.4). It can be used as a dynamic variant of the data

type edge array (cf. 9.9). New: Since edge map<E> is derived from edge array<E> edge

maps can be passed (by reference) to functions with edge array parameters. In particular,

all LEDA graph algorithms expecting an edge array<E>& argument can be passed an

edge map<E>& instead.

#include < LEDA/graph/edge map.h >

2. Creation

edge map<E> M ; introduces a variable M of type edge map<E> and initializes it to
the map with empty domain.

edge map<E> M(const graph t& G);

introduces a variable M of type edge map<E> and initializes it with
a mapping m from the set of all edges of G into the set of variables
of type E. The variables in the range of m are initialized by a call
of the default constructor of type E.

edge map<E> M(const graph t& G, E x);

introduces a variable M of type edge map<E> and initializes it with
a mapping m from the set of all edges of G into the set of variables
of type E. The variables in the range of m are initialized with a
copy of x.

3. Operations

const graph t& M.get graph() returns a reference to the graph of M .

void M.init() makes M a edge map with empty domain.

void M.init(const graph t& G)

makes M a mapping m from the set of all edges of G into
the set of variables of type E. The variables in the range
of m are initialized by a call of the default constructor of
type E.

void M.init(const graph t& G, E x)

makes M a mapping m from the set of all edges of G into
the set of variables of type E. The variables in the range
of m are initialized with a copy of x.

210 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

bool M.use edge data(const graph t& G, E x)

use free data slots in the edges of G (if available) for stor-
ing the entries of A. The number of additional data slots
in the nodes and edges of a graph can be specified in the
graph ::graph(int n slots , int e slots) constructor. The re-
sult is true if a free slot is available and false otherwise.

E& M [edge e] returns the variable M(v).

4. Implementation

Edge maps are implemented by an efficient hashing method based on the internal num-

bering of the edges. An access operation takes expected time O(1).

9.13. FACE MAPS (FACE MAP) 211

9.13 Face Maps (face map)

1. Definition

An instance of the data type face map<E> is a map for the faces of a graph G, i.e.,

equivalent to map<face, E> (cf. 7.4). It can be used as a dynamic variant of the data

type face array (cf. 9.10). New: Since face map<E> is derived from face array<E>

face maps can be passed (by reference) to functions with face array parameters. In

particular, all LEDA graph algorithms expecting a face array<E>& argument can be

passed a face map<E> instead.

#include < LEDA/graph/face map.h >

2. Creation

face map<E> M ; introduces a variable M of type face map<E> and initializes it to
the map with empty domain.

face map<E> M(const graph t& G);

introduces a variable M of type face map<E> and initializes it with
a mapping m from the set of all faces of G into the set of variables
of type E. The variables in the range of m are initialized by a call
of the default constructor of type E.

face map<E> M(const graph t& G, E x);

introduces a variable M of type face map<E> and initializes it with
a mapping m from the set of all faces of G into the set of variables
of type E. The variables in the range of m are initialized with a
copy of x.

3. Operations

const graph t& M.get graph() returns a reference to the graph of M .

void M.init() makes M a face map with empty domain.

void M.init(const graph t& G)

makes M a mapping m from the set of all faces of G into
the set of variables of type E. The variables in the range
of m are initialized by a call of the default constructor of
type E.

void M.init(const graph t& G, E x)

makes M a mapping m from the set of all faces of G into
the set of variables of type E. The variables in the range
of m are initialized with a copy of x.

212 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

E& M [face f] returns the variable M(v).

4. Implementation

Face maps are implemented by an efficient hashing method based on the internal num-

bering of the faces. An access operation takes expected time O(1).

9.14. TWO DIMENSIONAL NODE ARRAYS (NODE MATRIX) 213

9.14 Two Dimensional Node Arrays (node matrix)

1. Definition

An instance M of the parameterized data type node matrix<E> is a partial mapping from

the set of node pairs V × V of a graph to the set of variables of data type E, called the

element type of M . The domain I of M is called the index set of M . M is said to be valid

for all node pairs in I. A node matrix can also be viewed as a node array with element

type node array<E> (node array<node array<E> >).

#include < LEDA/graph/node matrix.h >

2. Creation

node matrix<E> M ; creates an instance M of type node matrix<E> and initializes the
index set of M to the empty set.

node matrix<E> M(const graph t& G);

creates an instance M of type node matrix<E> and initializes the
index set to be the set of all node pairs of graph G, i.e., M is made
valid for all pairs in V × V where V is the set of nodes currently
contained in G.

node matrix<E> M(const graph t& G, E x);

creates an instance M of type node matrix<E> and initializes the
index set of M to be the set of all node pairs of graph G, i.e., M
is made valid for all pairs in V × V where V is the set of nodes
currently contained in G. In addition, M(v, w) is initialized with x
for all nodes v, w ∈ V .

3. Operations

void M.init(const graph t& G)

sets the index set of M to V × V , where V is the
set of all nodes of G.

void M.init(const graph t& G, E x)

sets the index set of M to V × V , where V is the
set of all nodes of G and initializes M(v, w) to x
for all v, w ∈ V .

const node array<E>& M [node v] returns the node array M(v).

const E& M(node v, node w) returns the variable M(v, w).
Precondition: M must be valid for v and w.

214 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

4. Implementation

Node matrices for a graph G are implemented by vectors of node arrays and an internal

numbering of the nodes of G. The access operation takes constant time, the init operation

takes time O(n2), where n is the number of nodes currently contained in G. The space

requirement is O(n2). Note that a node matrix is only valid for the nodes contained in

G at the moment of the matrix declaration or initialization (init). Access operations for

later added nodes are not allowed.

9.15. TWO-DIMENSIONAL NODE MAPS (NODE MAP2) 215

9.15 Two-Dimensional Node Maps (node map2)

1. Definition

An instance of the data type node map2<E> is a map2 for the pairs of nodes of a graph

G, i.e., equivalent to map2<node, node, E> (cf. 7.5). It can be used as a dynamic variant

of the data type node matrix (cf. 9.14).

#include < LEDA/graph/node map2.h >

2. Creation

node map2<E> M ; introduces a variable M of type node map2<E> and initializes it to
the map2 with empty domain.

node map2<E> M(const graph t& G);

introduces a variable M of type node map2<E> and initializes it
with a mapping m from the set of all nodes of G into the set of
variables of type E. The variables in the range of m are initialized
by a call of the default constructor of type E.

node map2<E> M(const graph t& G, E x);

introduces a variable M of type node map2<E> and initializes it
with a mapping m from the set of all nodes of G into the set of
variables of type E. The variables in the range of m are initialized
with a copy of x.

3. Operations

void M.init() makes M a node map2 with empty domain.

void M.init(const graph t& G)

makesM to a mappingm from the set of all nodes ofG into
the set of variables of type E. The variables in the range
of m are initialized by a call of the default constructor of
type E.

void M.init(const graph t& G, E x)

makes M to a mapping m from the set of all nodes of G
into the set of variables of type E. The variables in the
range of m are initialized with a copy of x.

E& M(node v, node w) returns the variable M(v, w).

bool M.defined(node v, node w)

returns true if (v, w) ∈ dom(M) and false otherwise.

216 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

4. Implementation

Node maps are implemented by an efficient hashing method based on the internal num-

bering of the nodes. An access operation takes expected time O(1).

9.16. SETS OF NODES (NODE SET) 217

9.16 Sets of Nodes (node set)

1. Definition

An instance S of the data type node set is a subset of the nodes of a graph G. S is said

to be valid for the nodes of G.

#include < LEDA/graph/node set.h >

2. Creation

node set S(const graph& G);

creates an instance S of type node set valid for all nodes currently
contained in graph G and initializes it to the empty set.

3. Operations

void S.insert(node x) adds node x to S.

void S.del(node x) removes node x from S.

bool S.member(node x) returns true if x in S, false otherwise.

node S.choose() returns a node of S.

int S.size() returns the size of S.

bool S.empty() returns true iff S is the empty set.

void S.clear() makes S the empty set.

4. Implementation

A node set S for a graph G is implemented by a combination of a list L of nodes and a

node array of list items associating with each node its position in L. All operations take

constant time, except for clear which takes time O(S). The space requirement is O(n),

where n is the number of nodes of G.

218 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

9.17 Sets of Edges (edge set)

1. Definition

An instance S of the data type edge set is a subset of the edges of a graph G. S is said

to be valid for the edges of G.

#include < LEDA/graph/edge set.h >

2. Creation

edge set S(const graph& G);

creates an instance S of type edge set valid for all edges currently
in graph G and initializes it to the empty set.

3. Operations

void S.insert(edge x) adds edge x to S.

void S.del(edge x) removes edge x from S.

bool S.member(edge x) returns true if x in S, false otherwise.

edge S.choose() returns an edge of S.

int S.size() returns the size of S.

bool S.empty() returns true iff S is the empty set.

void S.clear() makes S the empty set.

4. Implementation

An edge set S for a graph G is implemented by a combination of a list L of edges and an

edge array of list items associating with each edge its position in L. All operations take

constant time, except for clear which takes time O(S). The space requirement is O(n),

where n is the number of edges of G.

9.18. LISTS OF NODES (NODE LIST) 219

9.18 Lists of Nodes (node list)

1. Definition

An instance of the data type node list is a doubly linked list of nodes. It is implemented

more efficiently than the general list type list<node> (6.7). However, it can only be used

with the restriction that every node is contained in at most one node list . Also many

operations supported by list<node> (for instance size) are not supported by node list .

#include < LEDA/graph/node list.h >

2. Creation

node list L; introduces a variable L of type node list and initializes it with the
empty list.

3. Operations

void L.append(node v) appends v to list L.

void L.push(node v) adds v at the front of L.

void L.insert(node v, node w) inserts v after w into L.
Precondition: w ∈ L.

node L.pop() deletes the first node from L and returns it.
Precondition: L is not empty.

node L.pop back() deletes the last node from L and returns it.
Precondition: L is not empty.

void L.del(node v) deletes v from L.
Precondition: v ∈ L.

bool L.member(node v) returns true if v ∈ L and false otherwise.

bool L(node v) returns true if v ∈ L and false otherwise.

node L.head() returns the first node in L (nil if L is empty).

node L.tail() returns the last node in L (nil if L is empty).

node L.succ(node v) returns the successor of v in L.
Precondition: v ∈ L.

node L.pred(node v) returns the predecessor of v in L.
Precondition: v ∈ L.

node L.cyclic succ(node v) returns the cyclic successor of v in L.
Precondition: v ∈ L.

220 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

node L.cyclic pred(node v) returns the cyclic predecessor of v in L.
Precondition: v ∈ L.

bool L.empty() returns true if L is empty and false otherwise.

void L.clear() makes L the empty list.

forall(x, L) { “the elements of L are successively assigned to x” }

9.19. NODE PARTITIONS (NODE PARTITION) 221

9.19 Node Partitions (node partition)

1. Definition

An instance P of the data type node partition is a partition of the nodes of a graph G.

#include < LEDA/graph/node partition.h >

2. Creation

node partition P (const graph& G);

creates a node partition P containing for every node v in G a block
{v}.

3. Operations

int P.same block(node v, node w)

returns positive integer if v and w belong to the same
block of P , 0 otherwise.

void P.union blocks(node v, node w)

unites the blocks of P containing nodes v and w.

void P.split(const list<node>& L)

makes all nodes in L to singleton blocks.
Precondition: L is a union of blocks.

node P.find(node v) returns a canonical representative node of the block
that contains node v.

void P.make rep(node v) makes v the canonical representative of the block con-
taining v.

int P.size(node v) returns the size of the block that contains node v.

int P.number of blocks() returns the number of blocks of P .

node P (node v) returns P .find(v).

4. Implementation

A node partition for a graph G is implemented by a combination of a partition P and

a node array of partition item associating with each node in G a partition item in P .

Initialization takes linear time, union blocks takes time O(1) (worst-case), and same block

and find take time O(α(n)) (amortized). The cost of a split is proportional to the cost of

the blocks dismantled. The space requirement is O(n), where n is the number of nodes

of G.

222 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

9.20 Node Priority Queues (node pq)

1. Definition

An instance Q of the parameterized data type node pq<P> is a partial function from the

nodes of a graph G to a linearly ordered type P of priorities. The priority of a node is

sometimes called the information of the node. For every graph G only one node pq<P>

may be used and every node of G may be contained in the queue at most once (cf. section

8.1 for general priority queues).

#include < LEDA/graph/node pq.h >

2. Creation

node pq<P> Q(const graph t& G);

creates an instance Q of type node pq<P> for the nodes of graph G
with dom(Q) = ∅.

3. Operations

void Q.insert(node v, const P& x)

adds the node v with priority x to Q.
Precondition: v 6∈ dom(Q).

const P& Q.prio(node v) returns the priority of node v.
Precondition: v ∈ dom(Q).

bool Q.member(node v) returns true if v in Q, false otherwise.

void Q.decrease p(node v, const P& x)

makes x the new priority of node v.
Precondition: x ≤ Q.prio(v).

node Q.find min() returns a node with minimal priority (nil if Q is empty).

void Q.del(node v) removes the node v from Q.

node Q.del min() removes a node with minimal priority from Q and re-
turns it (nil if Q is empty).

node Q.del min(P& x) as above, in addition the priority of the removed node
is assigned to x.

void Q.clear() makes Q the empty node priority queue.

int Q.size() returns |dom(Q)|.

9.20. NODE PRIORITY QUEUES (NODE PQ) 223

int Q.empty() returns positive integer if Q is the empty node priority
queue, 0 otherwise.

const P& Q.inf(node v) returns the priority of node v.

4. Implementation

Node priority queues are implemented by binary heaps and node arrays. Operations

insert, del node, del min, decrease p take time O(logm), find min and empty take time

O(1) and clear takes time O(m), where m is the size of Q. The space requirement is O(n),

where n is the number of nodes of G.

224 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

9.21 Bounded Node Priority Queues (b node pq)

1. Definition

An instance of the data type b node pq<N> is a priority queue of nodes with integer

priorities with the restriction that the size of the minimal interval containing all priorities

in the queue is bounded by N , the sequence of the priorities of the results of calls of

the method del min is monotone increasing, and every node is contained in at most one

queue. When applied to the empty queue the del min - operation returns a special default

minimum node defined in the constructor of the queue.

#include < LEDA/graph/b node pq.h >

2. Creation

b node pq<N> PQ ; introduces a variable PQ of type b node pq<N> and initializes it
with the empty queue with default minimum node nil.

b node pq<N> PQ(node v);

introduces a variable PQ of type b node pq<N> and initializes it
with the empty queue with default minimum node v.

3. Operations

node PQ.del min() removes the node with minimal priority from PQ and
returns it (the default minimum node if PQ is empty).

void PQ.insert(node w, int p) adds node w with priority p to PQ .

void PQ.del(node w, int = 0) deletes node w from PQ .

4. Implementation

Bounded node priority queues are implemented by cyclic arrays of doubly linked node

lists.

5. Example

Using a b node pq in Dijktra’s shortest paths algorithm.

int dijkstra(const GRAPH<int,int>& g, node s, node t)

{ node_array<int> dist(g,MAXINT);

b_node_pq<100> PQ(t); // on empty queue del_min returns t

dist[s] = 0;

9.21. BOUNDED NODE PRIORITY QUEUES (B NODE PQ) 225

for (node v = s; v != t; v = PQ.del_min())

{ int dv = dist[v];

edge e;

forall_adj_edges(e,v)

{ node w = g.opposite(v,e);

int d = dv + g.inf(e);

if (d < dist[w])

{ if (dist[w] != MAXINT) PQ.del(w);

dist[w] = d;

PQ.insert(w,d);

}

}

}

return dist[t];

}

226 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

9.22 Graph Generators (graph gen)

void complete graph(graph& G, int n)

creates a complete graph G with n nodes.

void complete ugraph(graph& G, int n)

creates a complete undirected graph G with n nodes.

void random graph noncompact(graph& G, int n, int m)

generates a random graph with n nodes and m edges.
No attempt is made to store all edges in the same
adjacency list consecutively. This function is only in-
cluded for pedagogical reasons.

void random graph(graph& G, int n, int m, bool no anti parallel edges ,
bool loopfree, bool no parallel edges)

generates a random graph with n nodes and m edges.
All edges in the same adjacency list are stored con-
secutively.
If no parallel edges is true then no parallel edges are
generated, if loopfree is true then no self loops are
generated, and if no anti parallel edges is true then
no anti parallel edges are generated.

void random graph(graph& G, int n, int m)

same as random graph(G, n,m, false, false, false).

void random simple graph(graph& G, int n, int m)

same as random graph(G, n,m, false, false, true).

void random simple loopfree graph(graph& G, int n, int m)

same as random graph(G, n,m, false, true, true).

void random simple undirected graph(graph& G, int n, int m)

same as random graph(G, n,m, true, true, true).

void random graph(graph& G, int n, double p)

generates a random graph with n nodes. Each edge
of the complete graph with n nodes is included with
probability p .

void test graph(graph& G)

creates interactively a user defined graph G.

void complete bigraph(graph& G, int a, int b, list<node>& A, list<node>& B)

creates a complete bipartite graph G with a nodes on
side A and b nodes on side B. All edges are directed
from A to B.

9.22. GRAPH GENERATORS (GRAPH GEN) 227

void random bigraph(graph& G, int a, int b, int m, list<node>& A,
list<node>& B, int k = 1)

creates a random bipartite graph G with a nodes on
side A, b nodes on side B, and m edges. All edges are
directed from A to B.
If k > 1 then A and B are divided into k groups of
about equal size and the nodes in the i-th group of A
have their edges to nodes in the i− 1-th and i+ 1-th
group in B. All indices are modulo k.

void test bigraph(graph& G, list<node>& A, list<node>& B)

creates interactively a user defined bipartite graph G
with sides A and B. All edges are directed from A to
B.

void grid graph(graph& G, int n)

creates a grid graph G with n× n nodes.

void grid graph(graph& G, node array<double>& xcoord ,
node array<double>& ycoord , int n)

creates a grid graph G of size n × n embedded into
the unit square. The embedding is given by xcoord[v]
and ycoord[v] for every node v of G.

void d3 grid graph(graph& G, int n)

creates a three-dimensional grid graphG with n×n×n
nodes.

void d3 grid graph(graph& G, node array<double>& xcoord ,
node array<double>& ycoord , node array<double>& zcoord ,
int n)

creates a three-dimensional grid graph G of size n ×
n×n embedded into the unit cube. The embedding is
given by xcoord[v], ycoord[v], and zcoord[v] for every
node v of G.

void cmdline graph(graph& G, int argc, char ∗ ∗argv)
builds graph G as specified by the command line ar-

guments:

prog −→ test graph()
prog n −→ complete graph(n)
prog n m −→ test graph(n,m)
prog file −→ G.read graph(file)

Planar graph: Combinatorial Constructions

A maximal planar map with n nodes, n ≥ 3, has 3n − 6 uedges. It is constructed

iteratively. For n = 1, the graph consists of a single isolated node, for n = 2, the graph

consists of two nodes and one uedge, for n = 3 the graph consists of three nodes and three

228 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

uedges. For n > 3, a random maximal planar map with n − 1 nodes is constructed first

and then an additional node is put into a random face.

The generator with the additional parameter m first generates a maximal planar map and

then deletes all but m edges.

The generators with the word map replaced by graph, first generate a map and then delete

one edge from each uedge.

void maximal planar map(graph& G, int n)

creates a maximal planar map G with n nodes.

void random planar map(graph& G, int n, int m)

creates a random planar map G with n nodes and m
edges.

void maximal planar graph(graph& G, int n)

creates a maximal planar graph G with n nodes.

void random planar graph(graph& G, int n, int m)

creates a random planar graph G with n nodes and m
edges.

Planar graph: Geometric Constructions

We have two kinds of geometric constructions: triangulations of point sets and intersection

graph of line segments. The functions triangulation map choose points in the unit square

and compute a triangulation of them and the functions random planar graph construct

the intersection graph of segments.

The generators with the word map replaced by graph, first generate a map and then delete

one edge from each uedge.

void triangulation map(graph& G, node array<double>& xcoord ,
node array<double>& ycoord , int n)

chooses n random points in the unit square and re-
turns their triangulation as a plane map in G. The
coordinates of node v are returned as xcoord [v] and
ycoord [v]. The coordinates are random number of the
form x/K where K = 220 and x is a random integer
between 0 (inclusive) and K (exclusive).

void triangulation map(graph& G, list<node>& outer face,
node array<double>& xcoord ,
node array<double>& ycoord , int n)

as above, in addition the list of nodes of the outer face
(convex hull) is returned in outer face in clockwise
order.

9.22. GRAPH GENERATORS (GRAPH GEN) 229

void triangulation map(graph& G, int n)

as above, but only the map is returned.

void random planar map(graph& G, node array<double>& xcoord ,
node array<double>& ycoord , int n, int m)

chooses n random points in the unit square and com-
putes their triangulation as a plane map in G. It then
keeps all but m uedges. The coordinates of node v are
returned as xcoord [v] and ycoord [v].

void triangulation graph(graph& G, node array<double>& xcoord ,
node array<double>& ycoord , int n)

calls triangulation map and keeps only one of the
edges comprising a uedge.

void triangulation graph(graph& G, list<node>& outer face,
node array<double>& xcoord ,
node array<double>& ycoord , int n)

calls triangulation map and keeps only one of the
edges comprising a uedge.

void triangulation graph(graph& G, int n)

calls triangulation map and keeps only one of the
edges comprising a uedge.

void random planar graph(graph& G, node array<double>& xcoord ,
node array<double>& ycoord , int n, int m)

calls random planar map and keeps only one of the
edges comprising a uedge.

void triangulated planar graph(graph& G, int n)

old name for triangulation graph.

void triangulated planar graph(graph& G, node array<double>& xcoord ,
node array<double>& ycoord , int n)

old name for triangulation graph.

void triangulated planar graph(graph& G, list<node>& outer face,
node array<double>& xcoord ,
node array<double>& ycoord , int n)

old name for triangulation graph.

230 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

void random planar graph(graph& G, node array<double>& xcoord ,
node array<double>& ycoord , int n)

creates a random planar graph G with n nodes embed-
ded into the unit sqare. The embedding is given by
xcoord[v] and ycoord[v] for every node v of G. The
generator chooses n segments whose endpoints have
random coordinates of the form x/K, where K is the
smallest power of two greater or equal to n, and x is
a random integer in 0 to K − 1. It then constructs
the arrangement defined by the segments and keeps
the n nodes with the smallest x-coordinates. Finally,
it adds edges to make the graph connected.

void random planar graph(graph& G, int n)

creates a random planar graph G with n nodes. Uses
the preceding function.

Series-Parallel Graphs

void random sp graph(graph& G, int n, int m)

creates a random series-parallel graph G with n nodes
and m edges.

9.23. MISCELLANEOUS GRAPH FUNCTIONS (GRAPH MISC) 231

9.23 Miscellaneous Graph Functions (graph misc)

1. Operations

#include < LEDA/graph/graph misc.h >

void CopyGraph(graph& H, const graph& G)

constructs a copy H of graph G.

void CopyGraph(GRAPH <node, edge>& H, const graph& G)

constructs a copy H of graph G such that H[v] is
the node of G that corresponds to v and H[e] is
the edge of G that corresponds to e.

void CopyGraph(GRAPH <node, edge>& H, const graph& G,
const list<node>& V, const list<edge>& E)

constructs a copy H of the subgraph (V,E) of G
such that H[v] is the node of G that corresponds
to v and H[e] is the edge of G that corresponds to
e. Precondition: V is a subset of the nodes of G
and E is a subset of V × V .

void CopyGraph(GRAPH <node, edge>& H, const graph& G,
const list<edge>& E)

constructs a copy H of the subgraph of G induced
by the edges in E.

bool Is Simple(const graph& G) returns true if G is simple, i.e., has no parallel
edges, false otherwise.

bool Is Simple(const graph& G, list<edge>& el)

as above, but returns in addition the list of all
edges sorted lexicographically by source and target
node, i.e, all parallel edges appear consecutively in
el .

bool Is Loopfree(const graph& G)

returns true if G is loopfree, i.e., has no edge whose
source is equal to its target.

bool Is Simple Loopfree(const graph& G)

returns true if G is simple and loopfree.

bool Is Undirected Simple(const graph& G)

returns true if G viewed as an undirected graph
is simple, i.e., G is loopfree, simple, and has no
anti-parallel edges.

232 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

bool Is Bidirected(const graph& G)

returns true if every edge has a reversal and false
otherwise.

bool Is Bidirected(const graph& G, edge array<edge>& rev)

computes for every edge e = (v, w) in G its reversal
rev[e] = (w, v) in G (nil if not present). Returns
true if every edge has a reversal and false other-
wise.

bool Is Map(const graph& G) tests whether G is a map.

int Genus(const graph& G) computes the genus of G.
Precondition: G must be a map.

bool Is Plane Map(const graph& G)

tests whether G is a plane map, i.e, whether G is
a map of genus zero.

bool Is Planar Map(const graph& G)

old name for Is Plane Map

bool Is Acyclic(const graph& G)

returns true if the directed G is acyclic and false
otherwise.

bool Is Acyclic(const graph& G, list<edge>& L)

as above; in addition, constructs a list of edges L
whose deletion makes G acyclic.

bool Is Connected(const graph& G)

returns true if the undirected graph underlying G
is connected and false otherwise.

bool Is Biconnected(const graph& G)

returns true if the undirected graph underlying G
is biconnected and false otherwise.

bool Is Biconnected(const graph& G, node& s)

as above, computes a split vertex s if the result is
false.

bool Is Triconnected(const graph& G)

returns true if the undirected graph underlying G
is triconnected and false otherwise. The running
time is O(n(n+m))).

9.23. MISCELLANEOUS GRAPH FUNCTIONS (GRAPH MISC) 233

bool Is Triconnected(const graph& G, node& s1 , node& s2)

as above, computes a split pair s1, s2 if the result
is false.

bool Is Bipartite(const graph& G)

returns true if G is bipartite and false otherwise.

bool Is Bipartite(const graph& G, list<node>& A, list<node>& B)

returns true if G is bipartite and false otherwise.
If G is bipartite the two sides are returned in A
and B, respectively. If G is not bipartite the node
sequence of an odd-length circle is returned in A..

bool Is Planar(const graph& G) returns true if G is planar and false otherwise.

bool Is Series Parallel(const graph& G)

returns true if G is series-parallel and false other-
wise.

void Make Acyclic(graph& G) makes G acyclic by removing all DFS back edges.

list<edge> Make Simple(graph& G) makes G simple by removing all but one from each
set of parallel edges. Returns the list of remaining
edges with parallel edges in the original graph.

void Make Bidirected(graph& G, list<edge>& L)

makes G bidirected by inserting missing reversal
edges. Appends all inserted edges to list L.

list<edge> Make Bidirected(graph& G)

makes G bidirected by inserting missing reversal
edges. Returns the list of inserted edges.

void Make Connected(graph& G, list<edge>& L)

makes G connected; appends all inserted edges to
list L.

list<edge> Make Connected(graph& G)

makes G connected; returns the list of inserted
edges.

void Make Biconnected(graph& G, list<edge>& L)

makes G biconnected; appends all inserted edges
to list L.

list<edge> Make Biconnected(graph& G)

makes G biconnected; returns the list of inserted
edges.

234 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

list<node> Delete Loops(graph& G) returns the list of nodes with self-loops and deletes
all self-loops.

9.24. MARKOV CHAINS (MARKOV CHAIN) 235

9.24 Markov Chains (markov chain)

1. Definition

We consider a Markov Chain to be a graph G in which each edge has an associated non-

negative integer weight w[e]. For every node (with at least one outgoing edge) the total

weight of the outgoing edges must be positive. A random walk in a Markov chain starts

at some node s and then performs steps according to the following rule:

Initially, s is the current node. Suppose node v is the current node and that e0, . . . , ed−1

are the edges out of v. If v has no outgoing edge no further step can be taken. Otherwise,

the walk follows edge ei with probability proportional to w[ei] for all i, 0 ≤ i < d. The

target node of the chosen edge becomes the new current node.

#include < LEDA/graph/markov chain.h >

2. Creation

markov chain M(const graph& G, const edge array<int>& w, node s = nil);

creates a Markov chain for the graph G with edge weights w. The
node s is taken as the start vertex (G.first node() if s is nil).

3. Operations

void M.step(int T = 1) performs T steps of the Markov chain.

node M.current node() returns current vertex.

int M.current outdeg() returns the outdegree of the current vertex.

int M.number of steps() returns number of steps performed.

int M.number of visits(node v)

returns number of visits to node v.

double M.rel freq of visit(node v)

returns number of visits divided by the total number
of steps.

236 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

9.25 Dynamic Markov Chains (dy-

namic markov chain)

1. Definition

A Markov Chain is a graph G in which each edge has an associated non-negative integer

weight w[e]. For every node (with at least one outgoing edge) the total weight of the

outgoing edges must be positive. A random walk in a Markov chain starts at some node

s and then performs steps according to the following rule:

Initially, s is the current node. Suppose node v is the current node and that e0, . . . , ed−1

are the edges out of v. If v has no outgoing edge no further step can be taken. Otherwise,

the walk follows edge ei with probability proportional to w[ei] for all i, 0 ≤ i < d. The

target node of the chosen edge becomes the new current node.

#include < LEDA/graph/markov chain.h >

2. Creation

dynamic markov chain M(const graph& G, const edge array<int>& w, node s = nil);

creates a Markov chain for the graph G with edge weights w. The
node s is taken as the start vertex (G.first node() if s is nil).

3. Operations

void M.step(int T = 1) performs T steps of the Markov chain.

node M.current node() returns current vertex.

int M.current outdeg() returns the outdegree of the current vertex.

int M.number of steps() returns number of steps performed.

int M.number of visits(node v)

returns number of visits to node v.

double M.rel freq of visit(node v)

returns number of visits divided by the total number
of steps.

int M.set weight(edge e, int g)

changes the weight of edge e to g and returns the old
weight of e

9.26. GML PARSER FOR GRAPHS (GML GRAPH) 237

9.26 GML Parser for Graphs (gml graph)

1. Definition

An instance parser of the data type gml graph is a parser for graph in GML format [48]. It

is possible to extend the parser by user defined rules. This parser is used by the read gml

of class graph. The following is a small example graph (a triangle) in GML format.

This is a comment.

graph [# Lists start with ’[’.

directed 1 # This is a directed graph (0 for undirected).

The following is an object of type string.

It will be ignored unless you specify a rule for graph.text.

text "This is a string object."

node [id 1] # This defines a node with id 1.

node [id 2]

node [id 3]

edge [# This defines an edge leading from node 1 to node 2.

source 1

target 2

]

edge [

source 2

target 3

]

edge [

source 3

target 1

]

] # Lists end with ’]’.

An input in GML format is a list of GML objects. Each object consists of a key word

and a value. A value may have one out of four possible types, an integer (type gml int),

a double (type gml double), a string (type gml string), or a list of GML objects (type

gml list). Since a value can be a list of objects, we get a tree structure on the input. We

can describe a class C of objects being in the same list and having the same key word by

the so-called path. The path is the list of key words leading to an object in the class C.

In principle, every data structure can be expressed in GML format. This parser specializes

on graphs. A graph is represented by an object with key word graph and type gml list.

The nodes of the graph are objects with path graph.node and type gml list. Each node

has a unique identifier, which is represented by an object of type gml int with path

graph.node.id. An edge is an object of type gml list with the path graph.edge. Each edge

238 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

has a source and a target. These are objects of type gml int with path graph.edge.source

and graph.edge.target, respectively. The integer values of source and target refer to node

identifiers. There are some global graph attributes, too. An object of type gml int with

path graph.directed determines whether the graph is undirected (value 0) or directed

(every other integer). The type of node parameters and edge parameters in parame-

terized graph (see manual page GRAPH) can be given by objects of type gml string

with path graph.nodeType and graph.edgeType, respectively. Parameters of nodes and

edges are represented by objects of type gml string with path graph.node.parameter and

graph.edge.parameter, respectively.

No list has to be in a specific order, e.g., you can freely mix node and edge objects in

the graph list. If there are several objects in a class where just one object is required like

graph.node.id, only the last such object is taken into account.

Objects in classes with no predefined rules are simply ignored. This means that an

application A might add specific objects to a graph description in GML format and this

description is still readable for another application B which simply does not care about

the objects which are specific for A.

This parser supports reading user defined objects by providing a mechanism for dealing

with those objects by means of callback functions. You can specify a rule for, e.g., objects

with path graph.node.weight and type gml double like in the following code fragment.

...

bool get node weight(const gml object* gobj, graph* G, node v)

{
double w = gobj->get double();

do something with w, the graph and the corresponding node v

return true; or false if the operation failed

}
...

main()

{
char* filename;

...

graph G;

gml graph parser(G);

parser.append("graph"); parser.append("node");

parser.append("weight");

parser.add node rule for cur path(get node weight,gml double);

// or short parser.add node rule(get node weight,gml double,"weight");

bool parsing ok = parser.parse(filename);

...

}

You can add rules for the graph, for nodes, and for edges. The difference be-

tween them is the type. The type of node rules is as in the example above

9.26. GML PARSER FOR GRAPHS (GML GRAPH) 239

bool (*gml node rule)(const gml object*, graph*, node), the type for edge rules

is bool (*gml edge rule)(const gml object*, graph*, edge), and the type for

graph rules is bool (*gml graph rule)(const gml object*, graph*). A GML

object is represented by an instance of class gml object. You can get its

value by using double gml object::get double(), int gml object::get int() or

char* gml object::get string(). If one of your rules returns false during parsing,

then parsing fails and the graph is cleared.

#include < LEDA/graph/gml graph.h >

2. Creation

gml graph parser(graph& G);

creates an instance parser of type gml graph and initializes it for
graph G.

gml graph parser(graph& G, const char ∗ filename);

creates an instance parser of type gml graph and reads graph G
from the file filename.

gml graph parser(graph& G, istream& ins);

creates an instance parser of type gml graph and reads graph G
from the input stream ins .

3. Operations

3.1 Parsing

bool parser.parse(const char ∗ filename)

parses the input taken from the file filename using the current
set of rules. The graph specified in the constructor is set up
accordingly. This operation returns false and clears the graph,
if syntax or parse errors occur. Otherwise true is returned.

bool parser.parse(istream& ins)

parses the input taken from the input stream ins .

bool parser.parse string(string s)

parses the input taken from string s.

3.2 Path Manipulation

void parser.reset path() resets the current path to the empty path.

void parser.append(const char ∗ key)
appends key to the current path.

240 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

void parser.goback() removes the last key word from the current path. If the cur-
rent path is empty this operation has no effect.

3.3 User Defined Rules

void parser.add graph rule for cur path(gml graph rule f, gml value type t)

adds graph rule f for value type t and for the current path.

void parser.add node rule for cur path(gml node rule f, gml value type t)

adds node rule f for value type t and for the current path.

void parser.add edge rule for cur path(gml edge rule f, gml value type t)

adds edge rule f for value type t and for the current path.

void parser.add graph rule(gml graph rule f, gml value type t, char ∗ key = 0)

adds graph rule f for value type t and path graph.key to
parser , if key is specified. Otherwise, f is added for the cur-
rent path.

void parser.add node rule(gml node rule f, gml value type t, char ∗ key = 0)

adds node rule f for path graph.node.key (or the current path,
if no key is specified) and value type t to parser .

void parser.add edge rule(gml edge rule f, gml value type t, char ∗ key = 0)

adds edge rule f for path graph.edge.key (or the current path,
if no key is specified) and value type t to parser .

void parser.add new graph rule(gml graph rule f)

adds graph rule f to parser . During parsing f is called when-
ever an object o with path graph and type gml list is encoun-
tered. f is called before objects in the list of o are parsed.

void parser.add new node rule(gml node rule f)

adds node rule f for path graph.node and value type gml list
to parser . f is called before objects in the corresponding list
are parsed.

void parser.add new edge rule(gml edge rule f)

adds edge rule f for path graph.edge and value type gml list
to parser . f is called before objects in the corresponding list
are parsed.

void parser.add graph done rule(gml graph rule f)

adds graph rule f to parser . During parsing f is called when-
ever an object o with path graph and type gml list is en-
countered. f is called after all objects in the list of o are
parsed.

9.26. GML PARSER FOR GRAPHS (GML GRAPH) 241

void parser.add node done rule(gml node rule f)

adds node rule f to parser for path graph.node and value type
gml list. f is called after all objects in the corresponding list
are parsed.

void parser.add edge done rule(gml edge rule f)

adds edge rule f to parser for path graph.edge and value type
gml list. f is called after all objects in the corresponding list
are parsed.

4. Implementation

The data type gml graph is realized using lists and maps. It inherits from gml parser

which uses gml object, gml objecttree, and gml pattern. gml pattern uses dictionaries.

242 CHAPTER 9. GRAPHS AND RELATED DATA TYPES

9.27 The LEDA graph input/output format

The following passage describes the format of the output produced by the function
graph::write(ostream& out). The output consists of several lines which are separated
by endl. Comment-lines have a # character in the first column and are ignored. The
output can be partitioned in three sections:

Header Section
The first line always contains the string LEDA.GRAPH. If the graph type is not parameter-
ized, i.e. graph or ugraph, the following two lines both contain the string void. In case
the graph is parameterized, i.e. GRAPH or UGRAPH, these lines contain a description of the
node type and the edge type, which is obtained by calling the macro LEDA TYPE NAME.The
fourth line specifies if the graph is either directed (-1) or undirected (-2).

Nodes Section
The first line contains n, the number of nodes in the graph. The nodes are ordered and
numbered according to their position in the node list of the graph. Each of the following
n lines contains the information which is associated with the respective node of the graph.
When the information of a node (or an edge) is sent to an output stream, it is always
enclosed by the strings |{ and }|. If the graph is not parameterized, then the string
between these parantheses is empty, so that all the n lines contain the string |{}|.

Edges Section
The first line contains m, the number of edges in the graph. The edges of the graph are
ordered by two criteria: first according to the number of their source node and second
according to their position in the adjacency list of the source node. Each of the next m
lines contains the description of an edge which consists of four space-separated parts:

(a) the number of the source node

(b) the number of the target node

(c) the number of the reversal edge or 0, if no such edge is set

(d) the information associated with the edge (cf. nodes section)

Note: For the data type planar map the order of the edges is important, because the
ordering of the edges in the adjacency list of a node corresponds to the counter-clockwise
ordering of these edges around the node in the planar embedding. And the information
about reversal edges is also vital for this data type.

Chapter 10

Graph Algorithms

This chapter gives a summary of the graph algorithms contained in LEDA, basic graph

algorithms for reachability problems, shortest path algorithms, matching algorithms, flow

algorithms,

All graph algorithms are generic, i.e., they accept instances of any user defined parame-

terized graph type GRAPH<vtype, etype> as arguments.

All graph algorithms are available by including the header file

<LEDA/graph/graph alg.h>. Alternatively, one may include a more specific header file.

An important subclass of graph algorithms are network algorithms. The input to most

network algorithms is a graph whose edges or nodes are labeled with numbers, e.g.,

shortest path algorithms get edge costs, network flow algorithms get edge capacities,

and min cost flow algorithms get edge capacities and edge costs. We use NT to denote

the number type used for the edge and node labels.

Most network algorithms come in three kinds: A templated version in which NT is a

template parameter, and reinstantiated and precompiled versions for the number types

int (always) and double (except for a small number of functions). The function name of the

templated version ends in T. Thus MAX FLOW T is the name of the templated version

of the max flow algorithm and MAX FLOW is the name of the instantiated version.

In order to use the templated version a file <LEDA/graph/templates/XXX.h> must be

included, e.g., in order to use the templated version of the maxflow algorithm, one must

include <LEDA/graph/templates/max flow.h>

Special care should be taken when using network algorithms with a number type NT

that can incur rounding error, e.g., the type double. The functions perform correctly if

the arithmetic is exact. This is the case if all numerical values in the input are integers

(albeit stored as a number of type NT), if none of the intermediate results exceeds the

maximal integer representable by the number type (252 in the case of doubles), and if no

round-off errors occur during the computation. We give more specific information on the

243

244 CHAPTER 10. GRAPH ALGORITHMS

arithmetic demand for each function below. If the arithmetic incurs rounding error, the

computation may fail in two ways: give a wrong answer or run forever.

10.1 Basic Graph Algorithms (basic graph alg)

bool TOPSORT(const graph& G, node array<int>& ord)

TOPSORT takes as argument a directed graph G(V,E). It sorts G topo-
logically (if G is acyclic) by computing for every node v ∈ V an integer
ord[v] such that 1 ≤ ord[v] ≤ |V | and ord[v] < ord[w] for all edges
(v, w) ∈ E. TOPSORT returns true if G is acyclic and false otherwise.
The algorithm ([52]) has running time O(|V |+ |E|).

bool TOPSORT(const graph& G, list<node>& L)

a variant of TOPSORT that computes a list L of nodes in topological
order (if G is acyclic). It returns true if G is acyclic and false otherwise.

bool TOPSORT1(graph& G)

a variant of TOPSORT that rearranges nodes and edges of G in topo-
logical order (edges are sorted by the topological number of their target
nodes).

list<node> DFS(const graph& G, node s, node array<bool>& reached)

DFS takes as argument a directed graph G(V,E), a node s of G and a
node array reached of boolean values. It performs a depth first search
starting at s visiting all reachable nodes v with reached[v] = false. For
every visited node v reached[v] is changed to true. DFS returns the list
of all reached nodes. The algorithm ([87]) has running time O(|V |+ |E|).

list<edge> DFS NUM(const graph& G, node array<int>& dfsnum,
node array<int>& compnum)

DFS NUM takes as argument a directed graph G(V,E). It performs a
depth first search of G numbering the nodes of G in two different ways.
dfsnum is a numbering with respect to the calling time and compnum
a numbering with respect to the completion time of the recursive calls.
DFS NUM returns a depth first search forest of G (list of tree edges).
The algorithm ([87]) has running time O(|V |+ |E|).

10.1. BASIC GRAPH ALGORITHMS (BASIC GRAPH ALG) 245

list<node> BFS(const graph& G, node s, node array<int>& dist)

BFS takes as argument a directed graph G(V,E),a node s of G and a
node array dist of integers. It performs a breadth first search starting at
s visiting all nodes v with dist[v] = −1 reachable from s. The dist value
of every visited node is replaced by its distance to s. BFS returns the list
of all visited nodes. The algorithm ([60]) has running time O(|V |+ |E|).

list<node> BFS(const graph& G, node s, node array<int>& dist ,
node array<edge>& pred)

performs a bread first search as described above and computes for every
node v the predecessor edge pred[v] in the bfs shortest path tree. (You can
use the function COMPUTE SHORTEST PATH to extract paths from
the tree (cf. Section 10.2).)

int COMPONENTS(const graph& G, node array<int>& compnum)

COMPONENTS takes a graph G(V,E) as argument and computes the
connected components of the underlying undirected graph, i.e., for every
node v ∈ V an integer compnum[v] from [0 . . . c−1] where c is the number
of connected components of G and v belongs to the i-th connected com-
ponent iff compnum[v] = i. COMPONENTS returns c. The algorithm
([60]) has running time O(|V |+ |E|).

int STRONG COMPONENTS(const graph& G, node array<int>& compnum)

STRONG COMPONENTS takes a directed graph G(V,E) as argument
and computes for every node v ∈ V an integer compnum[v] from [0 . . . c−
1] where c is the number of strongly connected components of G and v
belongs to the i-th strongly connected component iff compnum[v] = i.
STRONG COMPONENTS returns c. The algorithm ([60]) has running
time O(|V |+ |E|).

246 CHAPTER 10. GRAPH ALGORITHMS

int BICONNECTED COMPONENTS(const graph& G,
edge array<int>& compnum)

BICONNECTED COMPONENTS computes the biconnected compo-
nents of the undirected version of G. A biconnected component of an
undirected graph is a maximal biconnected subgraph and a biconnected
graph is a graph which cannot be disconnected by removing one of its
nodes. A graph having only one node is biconnected.
Let c be the number of biconnected component and let c′ be the number
of biconnected components containing at least one edge, c−c′ is the num-
ber of isolated nodes in G, where a node v is isolated if is not connected
to a node different from v (it may be incident to self-loops). The function
returns c and labels each edge of G (which is not a self-loop) by an integer
in [0 . . . c′ − 1]. Two edges receive the same label iff they belong to the
same biconnected component. The edge labels are returned in compnum.
Be aware that self-loops receive no label since self-loops are ignored when
interpreting a graph as an undirected graph.
The algorithm ([22]) has running time O(|V |+ |E|).

GRAPH <node, edge> TRANSITIVE CLOSURE(const graph& G)

TRANSITIVE CLOSURE takes a directed graph G = (V,E) as argu-
ment and computes the transitive closure of G. It returns a directed
graph G′ = (V ′, E ′) such that G’.inf (.) is a bijective mapping from V ′

to V and (v, w) ∈ E ′ ⇔ there is a path from G’.inf (v’) to G’.inf (w’) in
G. (The edge information of G′ is undefined.) The algorithm ([42]) has
running time O(|V | · |E|).

GRAPH <node, edge> TRANSITIVE REDUCTION(const graph& G)

TRANSITIVE REDUCTION takes a directed graph G = (V,E) as ar-
gument and computes the transitive reduction of G. It returns a directed
graph G′ = (V ′, E ′). The function G’.inf (.) is a bijective mapping from
V ′ to V . The graph G and G′ have the same reachability relation, i.e.
there is a path from v′ to w′ in G′ ⇔ there is a path from G’.inf (v’)
to G’.inf (w’) in G. And there is no graph with the previous property
and less edges than G′. (The edge information of G′ is undefined.) The
algorithm ([42]) has running time O(|V | · |E|).

void MAKE TRANSITIVELY CLOSED(graph& G)

MAKE TRANSITIVELY CLOSED transforms G into its transitive clo-
sure by adding edges.

void MAKE TRANSITIVELY REDUCED(graph& G)

MAKE TRANSITIVELY REDUCED transforms G into its transitive re-
duction by removing edges.

10.2. SHORTEST PATH ALGORITHMS (SHORTEST PATH) 247

10.2 Shortest Path Algorithms (shortest path)

Let G be a graph, s a node in G, and c a cost function on the edges of G. Edge costs

may be positive or negative. For a node v let µ(v) be the length of a shortest path from

s to v (more precisely, the infimum of the lengths of all paths from s to v). If v is not

reachable from s then µ(v) = +∞ and if v is reachable from s through a cycle of negative

cost then µ(v) = −∞. Let V +, V f , and V − be the set of nodes v with µ(v) = +∞,

−∞ < µ(v) < +∞, and µ(v) = −∞, respectively.

The solution to a single source shortest path problem (G, s, c) is a pair (dist , pred) where

dist is a node array<NT> and pred is a node array<edge> with the following properties.

Let P = {pred [v] ; v ∈ V and pred [v] 6= nil }. A P -cycle is a cycle all of whose edges

belong to P and a P -path is a path all of whose edges belong to P .

• v ∈ V + iff v 6= s and pred [v] = nil and v ∈ V f ∪ V − iff v = s or pred [v] 6= nil .

• s ∈ V f if pred [s] = nil and s ∈ V − otherwise.

• v ∈ V f if v is reachable from s by a P -path and s ∈ V f . P restricted to V f forms

a shortest path tree and dist [v] = µ(s, v) for v ∈ V f .

• All P -cycles have negative cost and v ∈ V − iff v lies on a P -cycle or is reachable

from a P -cycle by a P -path.

Most functions in this section are template functions. The template parameter NT can be

instantiated with any number type. In order to use the template version of the function

the .h-file

#include <LEDA/graph/templates/shortest_path.h>

must be included. The functions are pre-instantiated with int and double. The function

names of the pre-instantiated versions are without the suffix _T.

Special care should be taken when using the functions with a number type NT that

can incur rounding error, e.g., the type double. The functions perform correctly if all

arithmetic performed is without rounding error. This is the case if all numerical values

in the input are integers (albeit stored as a number of type NT) and if none of the

intermediate results exceeds the maximal integer representable by the number type (252

in the case of doubles). All intermediate results are sums and differences of input values,

in particular, the algorithms do not use divisions and multiplications. All intermediate

values are bounded by nC where n is the number of nodes and C is the maximal absolute

value of any edge cost.

248 CHAPTER 10. GRAPH ALGORITHMS

template <class NT>

bool SHORTEST PATH T(const graph& G, node s, const edge array<NT>& c,
node array<NT>& dist , node array<edge>& pred)

SHORTEST PATH solves the single source shortest path
problem in the graph G(V,E) with respect to the source node
s and the cost-function given by the edge array c.
The procedure returns false if there is a negative cycle in G
that is reachable from s and returns true otherwise.
It runs in linear time on acyclic graph, in time O(m +
n log n) if all edge costs are non-negative, and runs in time
O(min(D,n)m) otherwise. Here D is the maximal number of
edges on any shortest path.

list<edge> COMPUTE SHORTEST PATH(const graph& G, node s, node t,
const node array<edge>& pred)

computes a shortest path from s to t assuming that pred stores
a valid shortest path tree with root s (as it can be computed
with the previous function). The returned list contains the
edges on a shortest path from s to t. The running time is
linear in the length of the path.

template <class NT>

node array<int> CHECK SP T(const graph& G, node s, const edge array<NT>& c,
const node array<NT>& dist ,
const node array<edge>& pred)

checks whether the pair (dist , pred) is a correct solution to the
shortest path problem (G, s, c) and returns a node array<int>
label with label [v] < 0 if v has distance −∞ (−2 for nodes
lying on a negative cycle and −1 for a node reachable from
a negative cycle), label [v] = 0 if v has finite distance, and
label [v] > 0 if v has distance +∞. The program aborts if the
check fails. The algorithm takes linear time.

template <class NT>

void ACYCLIC SHORTEST PATH T(const graph& G, node s,
const edge array<NT>& c,
node array<NT>& dist , node array<edge>& pred)

solves the single source shortest path problem with respect to
source s. The algorithm takes linear time.
Precondition: G must be acyclic.

template <class NT>

void DIJKSTRA T(const graph& G, node s, const edge array<NT>& cost ,
node array<NT>& dist , node array<edge>& pred)

solves the shortest path problem in a graph with non-negative
edges weights.
Precondition: The costs of all edges are non-negative.

10.2. SHORTEST PATH ALGORITHMS (SHORTEST PATH) 249

template <class NT>

void DIJKSTRA T(const graph& G, node s, const edge array<NT>& cost ,
node array<NT>& dist)

as above, but pred is not computed.

template <class NT>

NT DIJKSTRA T(const graph& G, node s, node t, const edge array<NT>& c,
node array<edge>& pred)

computes a shortest path from s to t and returns its length.
The cost of all edges must be non-negative. The return value
is unspecified if there is no path from s to t. The array pred
records a shortest path from s to t in reverse order, i.e., pred [t]
is the last edge on the path. If there is no path from s to t
or if s = t then pred [t] = nil . The worst case running time is
O(m+ n log n), but frequently much better.

template <class NT>

bool BELLMAN FORD B T(const graph& G, node s, const edge array<NT>& c,
node array<NT>& dist , node array<edge>& pred)

BELLMAN FORD B solves the single source shortest path
problem in the graph G(V,E) with respect to the source node
s and the cost-function given by the edge array c.
BELLMAN FORD B returns false if there is a negative cycle
in G that is reachable from s and returns true otherwise. The
algorithm ([11]) has running time O(min(D,n)m) where D
is the maximal number of edges on any shortest path. The
algorithm is only included for pedagogical purposes.

void BF GEN(GRAPH <int , int>& G, int n, int m, bool non negative = true)

generates a graph with at most n nodes and at most m edges.
The edge costs are stored as edge data. The running time
of BELLMAN FORD B on this graph is Ω(nm). The edge
weights are non-negative if non negative is true and are arbi-
trary otherwise.
Precondition: m ≥ 2n and m ≤ n2/2.

template <class NT>

bool BELLMAN FORD T(const graph& G, node s, const edge array<NT>& c,
node array<NT>& dist , node array<edge>& pred)

BELLMAN FORD T solves the single source shortest path
problem in the graph G(V,E) with respect to the source node
s and the cost-function given by the edge array c.
BELLMAN FORD T returns false if there is a negative cycle
in G that is reachable from s and returns true otherwise. The
algorithm ([11]) has running time O(min(D,n)m) where D is
the maximal number of edges in any shortest path.
The algorithm is never significantly slower than BELL-
MAN FORD B and frequently much faster.

250 CHAPTER 10. GRAPH ALGORITHMS

template <class NT>

bool ALL PAIRS SHORTEST PATHS T(graph& G, const edge array<NT>& c,
node matrix<NT>& DIST)

returns true if G has no negative cycle and returns false oth-
erwise. In the latter case all values returned in DIST are
unspecified. In the former case the following holds for all v
and w: if µ(v, w) < ∞ then DIST (v, w) = µ(v, w) and if
µ(v, w) = ∞ then the value of DIST (v, w) is arbitrary. The
procedure runs in time O(nm+ n2 log n).

bool K SHORTEST PATHS(graph& G, node s, node t, const edge array<int>& c, int k,
list<list<edge> ∗ >& sps , int& nops)

K SHORTEST PATHS solves the k shortest simple paths
problem in the graph G(V,E) with respect to the source
node s, the target node t, and the cost-function given by the
edge array c. k is an input parameter specifying the number
of paths to be computed.
sps reports the nops shortest simple paths computed, each
specified as a list of edges from s to t. nops is an output pa-
rameter that gives the number of reported paths. It is usually
k, except in the case that there are more than k shortest paths
of the same length, then all of them are reported or in the case
that there are less than k paths from s to t. In both cases, nops
deviates from k and specifies the number of reported paths.

rational MINIMUMRATIO CYCLE(graph& G, const edge array<int>& c,
const edge array<int>& p, list<edge>& C start)

Returns a minimum cost to profit ratio cycle C start and the
ratio of the cycle. For a cycle C let c(C) be the sum of the c-
values of the edges on the cycle and let p(C) be the sum of the
p-values of the edges on the cycle. The cost to profit ratio of
the cycle is the quotient c(C)/p(C). The cycle C start realizes
the minimum ratio for any cycle C. The procedure runs in
time O(nm log(n · C · P)) where C and P are the maximum
cost and profit of any edge, respectively. The function returns
zero if there is no cycle in G.
Precondition: There are no cycles of cost zero or less with
respect to either c or p.

10.3. MAXIMUM FLOW (MAX FLOW) 251

10.3 Maximum Flow (max flow)

Let G = (V,E) be a directed graph, let s and t be distinct vertices in G and let cap :

E −→ IR≥0 be a non-negative function on the edges of G. For an edge e, we call cap(e)

the capacity of e. An (s, t)-flow or simply flow is a function f : E −→ IR≥0 satisfying the

capacity constraints and the flow conservation constraints:

(1) 0 ≤ f(e) ≤ cap(e) for every edge e ∈ E

(2)
∑

e;source(e)=v

f(e) =
∑

e;target(e)=v

f(e) for every node v ∈ V \{s, t}

The value of the flow is the net flow into t (equivalently, the net flow out of s). The net

flow into t is the flow into t minus the flow out of t. A flow is maximum if its value is at

least as large as the value of any other flow.

All max flow implementations are template functions. The template parameter NT can

be instantiated with any number type. In order to use the template version of the function

the files

#include <LEDA/graph/graph_alg.h>

#include <LEDA/graph/templates/max_flow.h>

must be included.

There are pre-instantiations for the number types int and double. The pre-instantiated

versions have the same function names except for the suffix _T. In order to use them either

#include <LEDA/graph/max_flow.h>

or

#include <LEDA/graph/graph_alg.h>

has to be included (the latter file includes the former). The connection between template

functions and pre-instantiated functions is discussed in detail in the section “Templates

for Network Algorithms” of the LEDA book.

Special care should be taken when using the template functions with a number type NT

that can incur rounding error, e.g., the type double. The section “Algorithms on Weighted

Graphs and Arithmetic Demand” of the LEDA book contains a general discussion of this

issue. The template functions are only guaranteed to perform correctly if all arithmetic

performed is without rounding error. This is the case if all numerical values in the input

are integers (albeit stored as a number of type NT) and if none of the intermediate

results exceeds the maximal integer representable by the number type (253 − 1 in the

case of doubles). All intermediate results are sums and differences of input values, in

particular, the algorithms do not use divisions and multiplications.

252 CHAPTER 10. GRAPH ALGORITHMS

The algorithms have the following arithmetic demands. Let C be the maximal absolute

value of any edge capacity. If all capacities are integral then all intermediate values are

bounded by d · C, where d is the out-degree of the source.

The pre-instantiations for number type double compute the maximum flow for a modified

capacity function cap1 , where for every edge e

cap1 [e] = sign(cap[e])⌊|cap[e]| · S⌋/S
and S is the largest power of two such that S < 253/(d · C).

The value of the maximum flow for the modified capacity function and the value of the

maximum flow for the original capacity function differ by at most m · d · C · 2−52.

The following functions are available:

template <class NT>

INLINE NT MAX FLOWT(const graph& G, node s, node t,
const edge array<NT>& cap, edge array<NT>& f)

computes a maximum (s, t)-flow f in the network (G, s, t, cap) and returns the
value of the flow.
The implementation uses the preflow-push method of Goldberg and Tarjan [45]
with the local and global relabeling heuristic and the gap heuristic. The highest
level rule is used to select active nodes. The section on maximum flow of the
LEDA book gives full information.

template <class NT>

INLINE NT MAX FLOWT(const graph& G, node s, node t,
const edge array<NT>& cap, edge array<NT>& f,
list<node>& st cut)

as above, also computes a minimum s− t cut in G.

template <class NT>

INLINE bool CHECKMAX FLOWT(const graph& G, node s, node t,
const edge array<NT>& cap,
const edge array<NT>& f)

checks whether f is a maximum flow in the network (G, s, t, cap). The functions
returns false if this is not the case.

bool MAX FLOW SCALE CAPS(const graph& G, node s, edge array<double>& cap)

replaces cap[e] by cap1 [e] for every edge e, where cap1 [e] is as defined above.
The function returns false if the scaling changed some capacity, and returns
true otherwise.

template <class NT>

INLINE NT MAX FLOWT(graph& G, node s, node t, const edge array<NT>& lcap,
const edge array<NT>& ucap, edge array<NT>& f)

computes a maximum (s, t)-flow f in the network (G, s, t, ucap) s.th. f(e) ≤
lcap[e] for every edge e. If a feasible flow exists, its value returned; otherwise
the return value is -1.

10.4. MIN COST FLOW ALGORITHMS (MIN COST FLOW) 253

void max flow gen rand(GRAPH <int , int>& G, node& s, node& t, int n, int m)

A random graph with n nodes, m edges, and random edge capacities in [2,11]
for the edges out of s and in [1,10] for all other edges.

void max flow gen CG1(GRAPH <int , int>& G, node& s, node& t, int n)

A generator suggested by Cherkassky and Goldberg.

void max flow gen CG2(GRAPH <int , int>& G, node& s, node& t, int n)

Another generator suggested by Cherkassky and Goldberg.

void max flow gen AMO(GRAPH <int , int>& G, node& s, node& t, int n)

A generator suggested by Ahuja, Magnanti, and Orlin.

10.4 Min Cost Flow Algorithms (min cost flow)

bool FEASIBLE FLOW(const graph& G, const node array<int>& supply ,
const edge array<int>& lcap,
const edge array<int>& ucap, edge array<int>& flow)

FEASIBLE FLOW takes as arguments a directed
graph G, two edge arrays lcap and ucap giving for
each edge a lower and upper capacity bound, an
edge array cost specifying for each edge an integer
cost and a node array supply defining for each node
v a supply or demand (if supply[v] < 0). If a feasible
flow (fulfilling the capacity and mass balance condi-
tions) exists it computes such a flow and returns true,
otherwise false is returned.

bool FEASIBLE FLOW(const graph& G, const node array<int>& supply ,
const edge array<int>& cap, edge array<int>& flow)

as above, but assumes that lcap[e] = 0 for every edge
e ∈ E.

254 CHAPTER 10. GRAPH ALGORITHMS

bool MIN COST FLOW(const graph& G, const edge array<int>& lcap,
const edge array<int>& ucap,
const edge array<int>& cost ,
const node array<int>& supply ,
edge array<int>& flow)

MIN COST FLOW takes as arguments a directed
graph G(V,E), an edge array lcap (ucap) giving
for each edge a lower (upper) capacity bound, an
edge array cost specifying for each edge an integer
cost and a node array supply defining for each node
v a supply or demand (if supply[v] < 0). If a feasible
flow (fulfilling the capacity and mass balance condi-
tions) exists it computes such a flow of minimal cost
and returns true, otherwise false is returned.

bool MIN COST FLOW(const graph& G, const edge array<int>& cap,
const edge array<int>& cost ,
const node array<int>& supply ,
edge array<int>& flow)

This variant of MIN COST FLOW assumes that
lcap[e] = 0 for every edge e ∈ E.

int MIN COSTMAX FLOW(const graph& G, node s, node t,
const edge array<int>& cap,
const edge array<int>& cost ,
edge array<int>& flow)

MIN COST MAX FLOW takes as arguments a di-
rected graph G(V,E), a source node s, a sink node
t, an edge array cap giving for each edge in G a
capacity, and an edge array cost specifying for each
edge an integer cost. It computes for every edge e
in G a flow flow[e] such that the total flow from s
to t is maximal, the total cost of the flow is min-
imal, and 0 ≤ flow[e] ≤ cap[e] for all edges e.
MIN COST MAX FLOW returns the total flow from
s to t.

10.5 Minimum Cut (min cut)

A cut C in a network is a set of nodes that is neither empty nor the entire set of nodes.

The weight of a cut is the sum of the weights of the edges having exactly one endpoint in

C.

10.5. MINIMUM CUT (MIN CUT) 255

int MIN CUT(const graph& G, const edge array<int>& weight ,
list<node>& C, bool use heuristic = true)

MIN CUT takes a graph G and an edge array weight
that gives for each edge a non-negative integer weight.
The algorithm ([84]) computes a cut of minimum
weight. A cut of minimum weight is returned in C
and the value of the cut is the return value of the
function. The running time is O(nm+ n2 log n). The
function uses a heuristic to speed up its computation.
Precondition: The edge weights are non-negative.

list<node> MIN CUT(const graph& G, const edge array<int>& weight)

as above, but the cut C is returned.

int CUT VALUE(const graph& G, const edge array<int>& weight ,
const list<node>& C)

returns the value of the cut C.

256 CHAPTER 10. GRAPH ALGORITHMS

10.6 Maximum Cardinality Matchings in Bipartite

Graphs (mcb matching)

A matching in a graph G is a subset M of the edges of G such that no two share an

endpoint. A node cover is a set of nodes NC such that every edge has at least one endpoint

in NC . The maximum cardinality of a matching is at most the minimum cardinality of a

node cover. In bipartite graph, the two quantities are equal.

list<edge> MAX CARD BIPARTITEMATCHING(graph& G)

returns a maximum cardinality matching.
Precondition: G must be bipartite.

list<edge> MAX CARD BIPARTITEMATCHING(graph& G, node array<bool>& NC)

returns a maximum cardinality matching and a minimum cardinal-
ity node cover NC . The node cover has the same cardinality as the
matching and hence proves the optimality of the matching. Precon-
dition: G must be bipartite.

bool CHECKMCB(const graph& G, const list<edge>& M,
const node array<bool>& NC)

checks that M is a matching in G, i.e., that at most one edge in M
is incident to any node of G, that NC is a node cover, i.e., for every
edge of G at least one endpoint is in NC and that M and NC have
the same cardinality. The function writes diagnostic output to cerr,
if one of the conditions is violated.

list<edge> MAX CARD BIPARTITEMATCHING(graph& G, const list<node>& A,
const list<node>& B)

returns a maximum cardinality matching. Precondition: G must be
bipartite. The bipartition of G is given by A and B. All edges of G
must be directed from A to B.

list<edge> MAX CARD BIPARTITEMATCHING(graph& G, const list<node>& A,
const list<node>& B,
node array<bool>& NC)

returns a maximum cardinality matching. A minimal node cover is
returned in NC . The node cover has the same cardinality as the
matching and hence proves the maximality of the matching. Precon-
dition: G must be bipartite. The bipartition of G is given by A and
B. All edges of G must be directed from A to B.

We offer several implementations of bipartite matching algorithms. All of them require

10.7. BIPARTITEWEIGHTEDMATCHINGS ANDASSIGNMENTS (MWB MATCHING)257

that the bipartition (A,B) is given and that all edges are directed from A to B; all of

them return a maximum cardinality matching and a minimum cardinality node cover.

The initial characters of the inventors are used to distinguish between the algorithms.

The common interface is

list<edge> MAX_CARD_BIPARTITE_MATCHING_XX(graph& G,

const list<node>& A,

const list<node>& B,

node_array<bool>& NC,

bool use_heuristic = true);

where XX is to be replaced by either HK, ABMP, FF, or FFB. All algorithms can be

asked to use a heuristic to find an initial matching. This is the default.

HK stands for the algorithm due to Hopcroft and Karp [46]. It has running time O(
√
nm).

ABMP stands for algorithm due to Alt, Blum, Mehlhorn, and Paul [1]. The algorithm has

running time O(
√
nm). The algorithm consists of two major phases. In the first phase

all augmenting paths of length less than Lmax are found, and in the second phase the

remaining augmenting paths are determined. The default value of Lmax is 0.1
√
n. Lmax

is an additional optional parameter of the procedure.

FF stands for the algorithm due to Ford and Fulkerson [35]. The algorithm has running

time O(nm) and FFB stands for a simple and slow version of FF. The algorithm FF has

an additional optional parameter use bfs of type bool . If set to true, breadth-first-search

is used in the search for augmenting paths, and if set to false, depth-first-search is used.

Be aware that the algorithms XX change the graph G. They leave the graph structure

unchanged but reorder adjacency lists (and hence change the embedding). If this is

undesirable you must restore the original order of the adjacency lists as follows.

edge_array<int> edge_number(G); int i = 0;

forall_nodes(v,G)

forall_adj_edges(e,G) edge_number[e] = i++;

call matching algorithm;

G.sort_edges(edge_number);

10.7 Bipartite Weighted Matchings and Assignments

(mwb matching)

We give functions

258 CHAPTER 10. GRAPH ALGORITHMS

• to compute maximum and minimum weighted matchings in bipartite graph,

• to check the optimality of matchings, and

• to scale edge weights, so as to avoid round-off errors in computations with the

number type double.

All functions for computing maximum or minimum weighted matchings provide a proof

of optimality in the form of a potential function pot ; see the chapter on bipartite weighted

matchings of the LEDA book for a discussion of potential functions.

The functions in this section are template functions. The template parameter NT can be

instantiated with any number type. In order to use the template version of the function

the appropriate .h-file must be included.

#include <LEDA/graph/templates/mwb_matching.h>

There are pre-instantiations for the number types int and double.The pre-instantiated

versions have the same function names except for the suffix _T. In order to use them

either

#include <LEDA/graph/mwb_matching.h>

or

#include <LEDA/graph/graph_alg.h>

has to be included (the latter file includes the former). The connection between template

functions and pre-instantiated functions is discussed in detail in the section “Templates

for Network Algorithms” of the LEDA book. The function names of the pre-instantiated

versions and the template versions only differ by an additional suffix _T in the names of

the latter ones.

Special care should be taken when using the template functions with a number type NT

that can incur rounding error, e.g., the type double. The section “Algorithms on Weighted

Graphs and Arithmetic Demand” of the LEDA book contains a general discussion of this

issue. The template functions are only guaranteed to perform correctly if all arithmetic

performed is without rounding error. This is the case if all numerical values in the input

are integers (albeit stored as a number of type NT) and if none of the intermediate

results exceeds the maximal integer representable by the number type (253 − 1 in the

case of doubles). All intermediate results are sums and differences of input values, in

particular, the algorithms do not use divisions and multiplications.

The algorithms have the following arithmetic demands. Let C be the maximal absolute

value of any edge cost. If all weights are integral then all intermediate values are bounded

by 3C in the case of maximum weight matchings and by 4nC in the case of the other

matching algorithms. Let f = 3 in the former case and let f = 4n in the latter case.

10.7. BIPARTITEWEIGHTEDMATCHINGS ANDASSIGNMENTS (MWB MATCHING)259

The pre-instantiations for number type double compute the optimal matching for a mod-

ified weight function c1 , where for every edge e

c1 [e] = sign(c[e])⌊|c[e]| · S⌋/S
and S is the largest power of two such that S < 253/(f · C).

The weight of the optimal matching for the modified weight function and the weight of

the optimal matching for the original weight function differ by at most n · f · C · 2−52.

template <class NT>

list<edge> MAXWEIGHT BIPARTITEMATCHING T(graph& G,
const edge array<NT>& c,
node array<NT>& pot)

computes a matching of maximal cost and a potential function pot that
is tight with respect to M . The running time of the algorithm is O(n ·
(m+ n log n)). The argument pot is optional.
Precondition: G must be bipartite.

template <class NT>

list<edge> MAXWEIGHT BIPARTITEMATCHING T(graph& G,
const list<node>& A,
const list<node>& B,
const edge array<NT>& c,
node array<NT>& pot)

As above. It is assumed that the partition (A, B) witnesses that G is
bipartite and that all edges of G are directed from A to B. If A and
B have different sizes then is is advisable that A is the smaller set; in
general, this leads to smaller running time. The argument pot is optional.

template <class NT>

bool CHECKMWBMT(const graph& G, const edge array<NT>& c,
const list<edge>& M, const node array<NT>& pot)

checks that pot is a tight feasible potential function with respect to M
and that M is a matching. Tightness of pot implies that M is a maximum
weighted matching.

template <class NT>

list<edge> MAXWEIGHT ASSIGNMENT T(graph& G, const edge array<NT>& c,
node array<NT>& pot)

computes a perfect matching of maximal cost and a potential function
pot that is tight with respect to M . The running time of the algorithm
is O(n · (m+ n log n)). If G contains no perfect matching the empty set
of edges is returned. The argument pot is optional.
Precondition: G must be bipartite.

260 CHAPTER 10. GRAPH ALGORITHMS

template <class NT>

list<edge> MAXWEIGHT ASSIGNMENT T(graph& G, const list<node>& A,
const list<node>& B,
const edge array<NT>& c,
node array<NT>& pot)

As above. It is assumed that the partition (A, B) witnesses that G is
bipartite and that all edges of G are directed from A to B. The argument
pot is optional.

template <class NT>

bool CHECKMAXWEIGHT ASSIGNMENT T(const graph& G,
const edge array<NT>& c,
const list<edge>& M,
const node array<NT>& pot)

checks that pot is a tight feasible potential function with respect to M
and that M is a perfect matching. Tightness of pot implies that M is a
maximum cost assignment.

template <class NT>

list<edge> MINWEIGHT ASSIGNMENT T(graph& G, const edge array<NT>& c,
node array<NT>& pot)

computes a perfect matching of minimal cost and a potential function
pot that is tight with respect to M . The running time of the algorithm
is O(n · (m+ n log n)). If G contains no perfect matching the empty set
of edges is returned. The argument pot is optional.
Precondition: G must be bipartite.

template <class NT>

list<edge> MINWEIGHT ASSIGNMENT T(graph& G, const list<node>& A,
const list<node>& B,
const edge array<NT>& c,
node array<NT>& pot)

As above. It is assumed that the partition (A, B) witnesses that G is
bipartite and that all edges of G are directed from A to B. The argument
pot is optional.

template <class NT>

10.8. MAXIMUMCARDINALITYMATCHINGS IN GENERAL GRAPHS (MC MATCHING)261

bool CHECKMINWEIGHT ASSIGNMENT T(const graph& G,
const edge array<NT>& c,
const list<edge>& M,
const node array<NT>& pot)

checks that pot is a tight feasible potential function with respect to M
and that M is a perfect matching. Tightness of pot implies that M is a
minimum cost assignment.

template <class NT>

list<edge> MWMCBMATCHING T(graph& G, const list<node>& A,
const list<node>& B, const edge array<NT>& c,
node array<NT>& pot)

Returns a maximum weight matching among the matchings of maximum
cardinality. The potential function pot is tight with respect to a modified
cost function which increases the cost of every edge by L = 1+2kC where
C is the maximum absolute value of any weight and k = min(|A|, |B|).
It is assumed that the partition (A, B) witnesses that G is bipartite and
that all edges of G are directed from A to B. If A and B have different
sizes, it is advisable that A is the smaller set; in general, this leads to
smaller running time. The argument pot is optional.

bool MWBM SCALEWEIGHTS(const graph& G, edge array<double>& c)

replaces c[e] by c1 [e] for every edge e, where c1 [e] was defined above
and f = 3. This scaling function is appropriate for the maximum weight
matching algorithm. The function returns false if the scaling changed
some weight, and returns true otherwise.

bool MWA SCALEWEIGHTS(const graph& G, edge array<double>& c)

replaces c[e] by c1 [e] for every edge e, where c1 [e] was defined above
and f = 4n. This scaling function should be used for the algorithms
that compute minimum of maximum weight assignments or maximum
weighted matchings of maximum cardinality. The function returns false
if the scaling changed some weight, and returns true otherwise.

10.8 Maximum Cardinality Matchings in General

Graphs (mc matching)

A matching in a graph G is a subset M of the edges of G such that no two share an

endpoint.

An odd-set cover OSC of G is a labeling of the nodes of G with non-negative integers

such that every edge of G (which is not a self-loop) is either incident to a node labeled 1

or connects two nodes labeled with the same i, i ≥ 2.

262 CHAPTER 10. GRAPH ALGORITHMS

Let ni be the number of nodes labeled i and consider any matching N . For i, i ≥ 2, let

Ni be the edges in N that connect two nodes labeled i. Let N1 be the remaining edges in

N . Then |Ni| ≤ ⌊ni/2⌋ and |N1| ≤ n1 and hence

|N | ≤ n1 +
∑

i≥2

⌊ni/2⌋

for any matching N and any odd-set cover OSC .

It can be shown that for a maximum cardinality matching M there is always an odd-set

cover OSC with

|M | = n1 +
∑

i≥2

⌊ni/2⌋,

thus proving the optimality of M . In such a cover all ni with i ≥ 2 are odd, hence the

name.

list<edge> MAX CARDMATCHING EDMONDS(const graph& G,
node array<int>& OSC ,
int heur = 1)

computes a maximum cardinality matching M in a general graph G and
returns it as a list of edges. The original algorithm was developed by
Edmond in [27]. An efficient implementation was presented by Gabow
and Edmond in [39]. It has running time O(nm·α(n,m)). With heur = 1
the algorithm uses a greedy heuristic to find an initial matching. An odd-
set cover that proves the maximality of M is returned in OSC .

list<edge> MAX CARDMATCHING KECECIOGLU(const graph& G,
node array<int>& OSC ,
int heur = 1)

a variant of Gabow/Edmond’s algorithm using an heuristic proposed by
J. Kececioglu and J. Pecquer.

list<edge> MAX CARDMATCHING GABOW(const graph& G,
node array<int>& OSC)

a new algorithm by Gabow ([40]) with running time O(
√
n · m). The

implementation was done by Ansaripour,Danaei and Mehlhorn ([2]).

bool CHECKMAX CARDMATCHING(const graph& G, const list<edge>& M,
const node array<int>& OSC)

checks whether M is a maximum cardinality matching in G and OSC is
a proof of optimality. Aborts if this is not the case.

list<edge> MAX CARDMATCHING(const graph& G, node array<int>& OSC ,
int heur = 1)

computes a maximum cardinality matching in a general G and an odd-set
cover OSC by calling MAX CARD MATCHING GABOW .

list<edge> MAX CARDMATCHING(const graph& G, int heur = 0)

as above, but no proof of optimality is returned.

10.9. GENERAL WEIGHTED MATCHINGS (MW MATCHING) 263

10.9 General Weighted Matchings (mw matching)

We give functions

• to compute maximum-weight matchings,

• to compute maximum-weight or minimum-weight perfect matchings, and

• to check the optimality of weighted matchings

in general graph.

You may skip the following subsections and restrict on reading the function signatures

and the corresponding comments in order to use these functions. If you are interested in

technical details, or if you would like to ensure that the input data is well chosen, or if

you would like to know the exact meaning of all output parameters, you should continue

reading.

The functions in this section are template functions. It is intended that in the near

future the template parameter NT can be instantiated with any number type. Please

note that for the time being the template functions are only guaranteed to

perform correctly for the number type int. In order to use the template version of

the function the appropriate .h-file must be included.

#include <LEDA/graph/templates/mw_matching.h>

There are pre-instantiations for the number types int . In order to use them either

#include <LEDA/graph/mw_matching.h>

or

#include <LEDA/graph/graph_alg.h>

has to be included (the latter file includes the former). The connection between template

functions and pre-instantiated functions is discussed in detail in the section “Templates

for Network Algorithms” of the LEDA book. The function names of the pre-instantiated

versions and the template versions only differ by an additional suffix _T in the names of

the latter ones.

Proof of Optimality. Most of the functions for computing maximum or minimum

weighted matchings provide a proof of optimality in the form of a dual solution represented

by pot , BT and b. We briefly discuss their semantics: Each node is associated with a

potential which is stored in the node array pot . The array BT (type array<two tuple<NT ,

int> >) is used to represent the nested family of odd cardinality sets which is constructed

264 CHAPTER 10. GRAPH ALGORITHMS

during the course of the algorithm. For each (non-trivial) blossom B, a two tuple (zB, pB)

is stored in BT , where zB is the potential and pB is the parent index of B. The parent

index pB is set to −1 if B is a surface blossom. Otherwise, pB stores the index of the

entry in BT corresponding to the immediate super-blossom of B. The index range of

BT is [0, . . . , k − 1], where k denotes the number of (non-trivial) blossoms. Let B′ be a

sub-blossom of B and let the corresponding index of B′ and B in BT be denoted by i′

and i, respectively. Then, i′ < i. In b (type node array<int>) the parent index for each

node u is stored (−1 if u is not contained in any blossom).

Heuristics for Initial Matching Constructions. Each function can be asked to start

with either an empty matching (heur = 0), a greedy matching (heur = 1) or an (adapted)

fractional matching (heur = 2); by default, the fractional matching heuristic is used.

Graph Structure. All functions assume the underlying graph (type graph) to be con-

nected, simple, and loopfree. They work on the underlying undirected graph of the

directed graph parameter.

Edge Weight Restrictions. The algorithms use divisions. In order to avoid rounding

errors for the number type int , please make sure that all edge weights are multiples

of 4; the algorithm will automatically multiply all edge weights by 4 if this

condition is not met. (Then, however, the returned dual solution is valid only with

respect to the modified weight function.) Moreover, in the maximum-weight (non-perfect)

matching case all edge weights are assumed to be non-negative.

Arithmetic Demand. The arithmetic demand for integer edge weights is as follows.

Let C denote the maximal absolute value of any edge weight and let n be the number of

nodes of the graph.

In the perfect weighted matching case we have for a potential pot [u] of a node u and for

a potential zB of a blossom B:

−nC/2 ≤ pot [u] ≤ (n+ 1)C/2 and − nC ≤ zB ≤ nC.

In the non-perfect matching case we have for a potential pot [u] of a node u and for a

potential zB of a blossom B:

0 ≤ pot [u] ≤ C and 0 ≤ zB ≤ C.

The function CHECK WEIGHTS may be used to test whether the edge weights are

feasible or not. It is automatically called at the beginning of each of the algorithms

provided in this chapter.

10.9. GENERAL WEIGHTED MATCHINGS (MW MATCHING) 265

Single Tree vs. Multiple Tree Approach: All functions can either run a single tree

approach or a multiple tree approach. In the single tree approach, one alternating tree is

grown from a free node at a time. In the multiple tree approach, multiple alternating trees

are grown simultaneously from all free nodes. On large instances, the multiple tree ap-

proach is significantly faster and therefore is used by default. If #define SST APPROACH

is defined before the template file is included all functions will run the single tree approach.

Worst-Case Running Time: All functions for computing maximum or minimum

weighted (perfect or non-perfect) matchings guarantee a running time of O(nm log n),

where n and m denote the number of nodes and edges, respectively.

template <class NT>

list<edge> MAXWEIGHTMATCHING T(const graph& G, const edge array<NT>& w,
bool check = true, int heur = 2)

computes a maximum-weight matching M of the underlying undirected
graph of graph G with weight function w. If check is set to true, the opti-
mality of M is checked internally. The heuristic used for the construction
of an initial matching is determined by heur .
Precondition: All edge weights must be non-negative.

template <class NT>

list<edge> MAXWEIGHTMATCHING T(const graph& G, const edge array<NT>& w,
node array<NT>& pot , array<two tuple<NT ,
int> >& BT , node array<int>& b,
bool check = true, int heur = 2)

computes a maximum-weight matching M of the underlying undirected
graph of graph G with weight function w. The function provides a proof
of optimality in the form of a dual solution given by pot , BT and b.
If check is set to true, the optimality of M is checked internally. The
heuristic used for the construction of an initial matching is determined
by heur .
Precondition: All edge weights must be non-negative.

template <class NT>

bool CHECKMAXWEIGHTMATCHING T(const graph& G,
const edge array<NT>& w,
const list<edge>& M,
const node array<NT>& pot ,
const array<two tuple<NT , int>
>& BT , const node array<int>& b)

checks if M together with the dual solution represented by pot , BT and
b are optimal. The function returns true if M is a maximum-weight
matching of G with weight function w.

266 CHAPTER 10. GRAPH ALGORITHMS

template <class NT>

list<edge> MAXWEIGHT PERFECTMATCHING T(const graph& G,
const edge array<NT>& w,
bool check = true,
int heur = 2)

computes a maximum-weight perfect matching M of the underlying undi-
rected graph of graph G and weight function w. If G contains no perfect
matching the empty set of edges is returned. If check is set to true, the
optimality of M is checked internally. The heuristic used for the con-
struction of an initial matching is determined by heur .

template <class NT>

list<edge> MAXWEIGHT PERFECTMATCHING T(const graph& G,
const edge array<NT>& w,
node array<NT>& pot ,
array<two tuple<NT , int>
>& BT , node array<int>& b,
bool check = true,
int heur = 2)

computes a maximum-weight perfect matching M of the underlying undi-
rected graph of graph G with weight function w. If G contains no perfect
matching the empty set of edges is returned. The function provides a
proof of optimality in the form of a dual solution given by pot , BT and
b. If check is set to true, the optimality of M is checked internally. The
heuristic used for the construction of an initial matching is determined
by heur .

template <class NT>

bool CHECKMAXWEIGHT PERFECTMATCHING T(const graph& G,
const edge array<NT>& w,
const list<edge>& M,
const node array<NT>& pot ,
const array<two tuple<NT ,
int> >& BT ,
const node array<int>& b)

checks if M together with the dual solution represented by pot , BT and
b are optimal. The function returns true iff M is a maximum-weight
perfect matching of G with weight function w.

template <class NT>

10.9. GENERAL WEIGHTED MATCHINGS (MW MATCHING) 267

list<edge> MINWEIGHT PERFECTMATCHING T(const graph& G,
const edge array<NT>& w,
bool check = true,
int heur = 2)

computes a minimum-weight perfect matching M of the underlying undi-
rected graph of graph G with weight function w. If G contains no perfect
matching the empty set of edges is returned. If check is set to true, the
optimality of M is checked internally. The heuristic used for the con-
struction of an initial matching is determined by heur .

template <class NT>

list<edge> MINWEIGHT PERFECTMATCHING T(const graph& G,
const edge array<NT>& w,
node array<NT>& pot ,
array<two tuple<NT , int>
>& BT , node array<int>& b,
bool check = true,
int heur = 2)

computes a minimum-weight perfect matching M of the underlying undi-
rected graph of graph G with weight function w. If G contains no perfect
matching the empty set of edges is returned. The function provides a
proof of optimality in the form of a dual solution given by pot , BT and
b. If check is set to true, the optimality of M is checked internally. The
heuristic used for the construction of an initial matching is determined
by heur .

template <class NT>

bool CHECKMINWEIGHT PERFECTMATCHING T(const graph& G,
const edge array<NT>& w,
const list<edge>& M,
const node array<NT>& pot ,
const array<two tuple<NT ,
int> >& BT ,
const node array<int>& b)

checks if M together with the dual solution represented by pot , BT and
b are optimal. The function returns true iff M is a minimum-weight
matching of G with weight function w.

template <class NT>

268 CHAPTER 10. GRAPH ALGORITHMS

bool CHECKWEIGHTS T(const graph& G, edge array<NT>& w, bool perfect)

returns true, if w is a feasible weight function for G; false otherwise.
perfect must be set to true in the perfect matching case; otherwise it
must be set to false. If the edge weights are not multiplicatives of 4 all
edge weights will be scaled by a factor of 4. The modified weight function
is returned in w then. This function is automatically called by each of
the maximum weighted machting algorithms provided in this chapter, the
user does not have to take care of it.

10.10. STABLE MATCHING (STABLE MATCHING) 269

10.10 Stable Matching (stable matching)

We are given a bipartite graph G = (A∪B,E) in which the edges incident to every vertex

are linearly ordered. The order expresses preferences. A matching M in G is stable if

there is no pair (a, b) ∈ E \M such that (1) a is unmatched or prefers b over its partner

in M and (2) b is unmatched or prefers a over its partner in M . In such a situation a

has the intention to switch to b and b has the intention to switch to a, i.e., the pairing is

unstable.

We provide a function to compute a correct input graph from the preference data, a

function that computes the stable matching when the graph is given and a function that

checks whether a given matching is stable.

void StableMatching(const graph& G, const list<node>& A,
const list<node>& B, list<edge>& M)

The function takes a bipartite graph G with sides A
and B and computes a maximal stable matching M
which is A-optimal. The graph is assumed to be bidi-
rected, i.e, for each (a, b) ∈ E we also have (b, a) ∈ E.
It is assumed that adjacency lists record the prefer-
ences of the vertices. The running time is O(n+m).
Precondition: The graph G is bidirected and a map.
Sets A and B only contain nodes of graph G. In ad-
dition they are disjoint from each other.

bool CheckStableMatching(const graph& G, const list<node>& A,
const list<node>& B, const list<edge>& M)

returns true if M is a stable matching in G. The
running time is O(n+m).
Precondition: A and B only contain nodes from G.
The graph G is bipartite with respect to lists A and
B.

270 CHAPTER 10. GRAPH ALGORITHMS

void CreateInputGraph(graph& G, list<node>& A, list<node>& B,
node map<int>& nodes a, node map<int>& nodes b,
const list<int>& InputA, const list<int>& InputB ,
const map<int , list<int> >& preferencesA,
const map<int , list<int> >& preferencesB)

The function takes a list of objects InputA and a
list of objects InputB. The objects are represented
bei integer numbers, multiple occurences of the same
number in the same list are ignored. The maps
preferencesA and preferencesB give for each ob-
ject i the list of partner candidates with respect to
a matching. The lists are decreasingly ordered ac-
cording to the preferences. The function computes
the input data G, A and B for calling the func-
tion StableMatching(constgraph&, ...). The maps
nodes a and nodes b provide the objects in A and B
corresponding to the nodes in the graph.
Precondition: The entries in the lists in the prefer-
ence maps only contain elements from InputB resp.
InputA.
There are no multiple occurences of an element in the
same such list.

10.11. MINIMUM SPANNING TREES (MIN SPAN) 271

10.11 Minimum Spanning Trees (min span)

list<edge> SPANNING TREE(const graph& G)

SPANNING TREE takes as argument a graph
G(V,E). It computes a spanning tree T of the under-
lying undirected graph, SPANNING TREE returns
the list of edges of T . The algorithm ([60]) has run-
ning time O(|V |+ |E|).

void SPANNING TREE1(graph& G)

SPANNING TREE takes as argument a graph
G(V,E). It computes a spanning tree T of the un-
derlying undirected graph by deleting the edges in G
that do not belong to T . The algorithm ([60]) has
running time O(|V |+ |E|).

list<edge> MIN SPANNING TREE(const graph& G, const edge array<int>& cost)

MIN SPANNING TREE takes as argument a graph
G(V,E) and an edge array cost giving for each edge
an integer cost. It computes a minimum spanning tree
T of the underlying undirected graph of graph G, i.e.,
a spanning tree such that the sum of all edge costs
is minimal. MIN SPANNING TREE returns the list
of edges of T . The algorithm ([54]) has running time
O(|E| log |V |).

list<edge> MIN SPANNING TREE(const graph& G,
const leda cmp base<edge>& cmp)

A variant using a compare object to compare edge
costs.

list<edge> MIN SPANNING TREE(const graph& G, int (∗cmp)(const edge& ,
const edge&))

A variant using a compare function to compare edge
costs.

272 CHAPTER 10. GRAPH ALGORITHMS

10.12 Euler Tours (euler tour)

An Euler tour in an undirected graph G is a cycle using every edge of G exactly once. A

graph has an Euler tour if it is connected and the degree of every vertex is even.

bool Euler Tour(const graph& G, list<two tuple<edge, int> >& T)

The function returns true if the underlying undirected
version of graph G has an Euler tour. The Euler tour
is returned in T . The items in T are of the form
(e,±+ 1), where the second component indicates the
traversal direction d of the edge. If d = +1, the edge
is traversed in forward direction, and if d = −1, the
edge is traversed in reverse direction. The running
time is O(n+m).

bool Check Euler Tour(const graph& G, const list<two tuple<edge, int> >& T)

returns true if T is an Euler tour in G. The running
time is O(n+m).

bool Euler Tour(graph& G, list<edge>& T)

The function returns true if the underlying undirected
version of G has an Euler tour. G is reoriented such
that every node has indegree equal to its outdegree
and an Euler tour (of the reoriented graph) is returned
in T . The running time is O(n+m).

bool Check Euler Tour(const graph& G, const list<edge>& T)

returns true if T is an Euler tour in the directed graph
G. The running time is O(n+m).

10.13. ALGORITHMS FOR PLANAR GRAPHS (PLANE GRAPH ALG) 273

10.13 Algorithms for Planar Graphs (

plane graph alg)

node ST NUMBERING(const graph& G, node array<int>& stnum,
list<node>& stlist , edge e st = nil)

ST NUMBERING computes an st-numbering of G. If
e st is nil then t is set to some arbitrary node of G.
The node s is set to a neighbor of t and is returned.
If e st is not nil then s is set to the source of e st and
t is set to its target. The nodes of G are numbered
such that s has number 1, t has number n, and every
node v different from s and t has a smaller and a
larger numbered neighbor. The ordered list of nodes
is returned in stlist . If G has no nodes then nil is
returned and if G has exactly one node then this node
is returned and given number one.
Precondition: G is biconnected.

bool PLANAR(graph& , bool embed = false)

PLANAR takes as input a directed graph G(V,E) and
performs a planarity test for it. G must not contain
self-loops. If the second argument embed has value
true and G is a planar graph it is transformed into
a planar map (a combinatorial embedding such that
the edges in all adjacency lists are in clockwise or-
dering). PLANAR returns true if G is planar and
false otherwise. The algorithm ([47]) has running time
O(|V |+ |E|).

bool PLANAR(graph& G, list<edge>& el , bool embed = false)

PLANAR takes as input a directed graph G(V,E) and
performs a planarity test for G. PLANAR returns
true if G is planar and false otherwise. If G is not pla-
nar a Kuratowski-Subgraph is computed and returned
in el.

bool CHECK KURATOWSKI(const graph& G, const list<edge>& el)

returns true if all edges in el are edges of G and if the
edges in el form a Kuratowski subgraph of G, returns
false otherwise. Writes diagnostic output to cerr .

274 CHAPTER 10. GRAPH ALGORITHMS

int KURATOWSKI(graph& G, list<node>& V, list<edge>& E,
node array<int>& deg)

KURATOWSKI computes a Kuratowski subdivision
K of G as follows. V is the list of all nodes and
subdivision points of K. For all v ∈ V the degree
deg[v] is equal to 2 for subdivision points, 4 for all
other nodes if K is a K5, and -3 (+3) for the nodes of
the left (right) side if K is a K3,3. E is the list of all
edges in the Kuratowski subdivision.

list<edge> TRIANGULATE PLANARMAP(graph& G)

TRIANGULATE PLANAR MAP takes a directed
graph G representing a planar map. It triangulates
the faces of G by inserting additional edges. The list
of inserted edges is returned.
Precondition: G must be connected.
The algorithm ([49]) has running time O(|V |+ |E|).

void FIVE COLOR(graph& G, node array<int>& C)

colors the nodes of G using 5 colors, more precisely,
computes for every node v a color C[v] ∈ {0, . . . , 4},
such that C[source(e)]! = C[target(e)] for every edge
e. Precondition: G is planar. Remark: works also
for many (sparse ?) non-planar graph.

void INDEPENDENT SET(const graph& G, list<node>& I)

determines an independent set of nodes I in G. Every
node in I has degree at most 9. If G is planar and has
no parallel edges then I contains at least n/6 nodes.

bool Is CCWOrdered(const graph& G, const node array<int>& x,
const node array<int>& y)

checks whether the cyclic adjacency list of any node
v agrees with the counter-clockwise ordering of the
neighbors of v around v defined by their geometric
positions.

bool SORT EDGES(graph& G, const node array<int>& x,
const node array<int>& y)

reorders all adjacency lists such the cyclic adjacency
list of any node v agrees with the counter-clockwise
order of v’s neighbors around v defined by their geo-
metric positions. The function returns true if G is a
plane map after the call.

10.13. ALGORITHMS FOR PLANAR GRAPHS (PLANE GRAPH ALG) 275

bool Is CCWOrdered(const graph& G, const edge array<int>& dx ,
const edge array<int>& dy)

checks whether the cyclic adjacency list of any node
v agrees with the counter-clockwise ordering of the
neighbors of v around v. The direction of edge e is
given by the vector (dx(e), dy(e)).

bool SORT EDGES(graph& G, const edge array<int>& dx ,
const edge array<int>& dy)

reorders all adjacency lists such the cyclic adjacency
list of any node v agrees with the counter-clockwise
order of v’s neighbors around v. The direction of edge
e is given by the vector (dx(e), dy(e)). The function
returns true if G is a plane map after the call.

276 CHAPTER 10. GRAPH ALGORITHMS

10.14 Graph Drawing Algorithms (graph draw)

This section gives a summary of the graph drawing algorithms contained in LEDA. Before

using them the header file <LEDA/graph/graph draw.h> has to be included.

int STRAIGHT LINE EMBEDMAP(graph& G, node array<int>& xcoord ,
node array<int>& ycoord)

STRAIGHT LINE EMBED MAP takes as argument
a graph G representing a planar map. It com-
putes a straight line embedding of G by assign-
ing non-negative integer coordinates (xcoord and
ycoord) in the range 0..2(n − 1) to the nodes.
STRAIGHT LINE EMBED MAP returns the max-
imal coordinate. The algorithm ([32]) has running
time O(|V |2).

int STRAIGHT LINE EMBEDDING(graph& G, node array<int>& xc,
node array<int>& yc)

STRAIGHT LINE EMBEDDING takes as argument
a planar graph G and computes a straight line em-
bedding of G by assigning non-negative integer coor-
dinates (xcoord and ycoord) in the range 0..2(n − 1)
to the nodes. The algorithm returns the maximal co-
ordinate and has running time O(|V |2).

bool VISIBILITY REPRESENTATION(graph& G, node array<double>& x pos ,
node array<double>& y pos ,
node array<double>& x rad ,
node array<double>& y rad ,
edge array<double>& x sanch,
edge array<double>& y sanch,
edge array<double>& x tanch,
edge array<double>& y tanch)

computes a visibility representation of the graph G,
i.e., each node is represented by a horizontal segment
(or box) and each edge is represented by a vertical
segment.
Precondition: G must be planar and has to contain at
least three nodes.

10.14. GRAPH DRAWING ALGORITHMS (GRAPH DRAW) 277

bool TUTTE EMBEDDING(const graph& G, const list<node>& fixed nodes ,
node array<double>& xpos ,
node array<double>& ypos)

computes a convex drawing of the graph G if possible.
The list fixed nodes contains nodes with prescribed co-
ordinates already given in xpos and ypos . The com-
puted node positions of the other nodes are stored in
xpos and ypos , too. If the operation is successful, true
is returned.

void SPRING EMBEDDING(const graph& G, node array<double>& xpos ,
node array<double>& ypos , double xleft ,
double xright , double ybottom, double ytop,
int iterations = 250)

computes a straight-line spring embedding of G in the
given rectangular region. The coordinates of the com-
puted node positions are returned in xpos and ypos .

void SPRING EMBEDDING(const graph& G, const list<node>& fixed ,
node array<double>& xpos ,
node array<double>& ypos , double xleft ,
double xright , double ybottom, double ytop,
int iterations = 250)

as above, however, the positions of all nodes in the
fixed list is not changed.

void D3 SPRING EMBEDDING(const graph& G, node array<double>& xpos ,
node array<double>& ypos ,
node array<double>& zpos , double xmin,
double xmax , double ymin, double ymax ,
double zmin, double zmax ,
int iterations = 250)

computes a straight-line spring embedding of G in
the 3-dimensional space. The coordinates of the com-
puted node positions are returned in xpos , ypos , and
zpos .

int ORTHO EMBEDDING(const graph& G,
const node array<bool>& crossing ,
const edge array<int>& maxbends,
node array<int>& xcoord ,
node array<int>& ycoord , edge array<list<int>
>& xbends , edge array<list<int> >& ybends)

Produces an orthogonal (Tamassia) embedding such
that each edge e has at most maxbends[e] bends. Re-
turns true if such an embedding exists and false oth-
erwise. Precondition: G must be a planar 4-graph.

278 CHAPTER 10. GRAPH ALGORITHMS

int ORTHO EMBEDDING(const graph& G, node array<int>& xpos ,
node array<int>& ypos , edge array<list<int>
>& xbends , edge array<list<int> >& ybends)

as above, but with unbounded number of edge bends.

bool ORTHO DRAW(const graph& G0 , node array<double>& xpos ,
node array<double>& ypos , node array<double>& xrad ,
node array<double>& yrad , edge array<list<double>
>& xbends , edge array<list<double> >& ybends ,
edge array<double>& xsanch,
edge array<double>& ysanch,
edge array<double>& xtanch,
edge array<double>& ytanch)

computes a orthogonal drawing of an arbitrary planar
graph (nodes of degree larger than 4 are allowd) in the
so-called Giotto-Model, i.e. high-degree vertices (of
degree greater than 4) will be represented by larger
rectangles.

bool SP EMBEDDING(graph& G, node array<double>& x coord ,
node array<double>& y coord ,
node array<double>& x radius ,
node array<double>& y radius , edge array<list<double>
>& x bends , edge array<list<double> >& y bends ,
edge array<double>& x sanch,
edge array<double>& y sanch,
edge array<double>& x tanch,
edge array<double>& y tanch)

computes a series-parallel drawing of G.
Precondition: G must be a series-parallel graph.

10.15. GRAPH MORPHISM ALGORITHMS (GRAPH MORPHISM) 279

10.15 Graph Morphism Algorithms (

graph morphism)

1. Definition

An instance alg of the parameterized data type graph morphism< graph t , impl > is

an algorithm object that supports finding graph isomorphisms, subgraph isomorphisms,

graph monomorphisms and graph automorphisms. The first parameter type parametrizes

the input graphs’ types. It defaults to graph. The second parameter type determines

the actual algorithm implementation to use. There are two implementations available

so far which work differently well for certain types of graphs. More details can be

found in the report Graph Isomorphism Implementation for LEDA by Johannes Sin-

gler. It is available from our homepage. You can also contact our support team to get it:

support@algorithmic-solutions.com resp. support@quappa.com.

#include < LEDA/graph/graph morphism.h >

2. Implementation

Allowed implementations parameters are vf2<graph t> and conauto<graph t, ord t>.

3. Example

#include <LEDA/graph/graph_morphism.h>

// declare the input graphs.

graph g1, g2;

// In order to use node compatibility, declare associated node maps for the

// attributes and a corresponding node compatibility function

// (exemplary, see above for the definition of identity_compatibility).

node_map<int> nm1(g1), nm2(g2);

identity_compatibility<int> ic(nm1, nm2);

// do something useful to build up the graphs and the attributes

// instantiate the algorithm object

graph_morphism<graph, conauto<graph> > alg;

// declare the node and edge mapping arrays

node_array<node> node_mapping(g2);

edge_array<edge> edge_mapping(g2);

// prepare a graph morphism data structure for the first graph.

280 CHAPTER 10. GRAPH ALGORITHMS

graph_morphism_algorithm<>::prep_graph pg1 = alg.prepare_graph(g1, ic);

// find the graph isomorphism.

bool isomorphic = alg.find_iso(pg1, g2, &node_mapping, &edge_mapping, ic);

// delete the prepared graph data structure again.

alg.delete_prepared_graph(pg1);

Please see demo/graph iso/gw isomorphism.cpp for an interactive demo program.

10.16 Graph Morphism Algorithm Functionality (

graph morphism algorithm)

1. Types

#include < LEDA/graph/graph morphism algorithm.h >

graph morphism algorithm< graph t > ::node

the type of an input graph node

graph morphism algorithm< graph t > ::edge

the type of an input graph edge

graph morphism algorithm< graph t > ::node morphism

the type for a found node mapping

graph morphism algorithm< graph t > ::edge morphism

the type for a found edge mapping

graph morphism algorithm< graph t > ::node compat

the type for a node compatibility functor

graph morphism algorithm< graph t > ::edge compat

the type for an edge compatibility functor

graph morphism algorithm< graph t > ::morphism

the type for a found node and edge mapping

graph morphism algorithm< graph t > ::morphism list

the type of a list of all found morphisms

graph morphism algorithm< graph t > ::callback

the type for the callback functor

graph morphism algorithm< graph t > ::cardinality t

the number type of the returned cardinality

10.16. GRAPHMORPHISM ALGORITHM FUNCTIONALITY (GRAPH MORPHISM ALGORITHM

graph morphism algorithm< graph t > ::prep graph

the type of a prepared graph data structure

2. Operations

prep graph alg.prepare graph(const graph t& g, const node compat& node comp =
DEFAULT NODE CMP ,
const edge compat& edge comp =
DEFAULT EDGE CMP)

prepares a data structures of a graph to be used as
input to subsequent morphism search calls. This may
speed up computation if the same graph is used sev-
eral times.

void alg.delete prepared graph(prep graph pg)

frees the memory allocated to a prepared graph data
structure constructed before.

cardinality t alg.get num calls() returns the number of recursive calls the algorithm
has made so far.

void alg.reset num calls() resets the number of recursive calls to 0.

bool alg.find iso(const graph t& g1 , const graph t& g2 ,
node morphism ∗ node morph = NULL,
edge morphism ∗ edge morph = NULL,
const node compat& node comp = DEFAULT NODE CMP ,
const edge compat& edge comp = DEFAULT EDGE CMP)

searches for a graph isomorphism between g1 and g2

and returns it through node morph and edge morph if
a non-NULL pointer to a node map and a non-NULL
pointer to an edge map are passed respectively. Those
must be initialized to g2 and will therefore carry refer-
ences to the mapped node or edge in g1. The possible
mappings can be restricted by the node and edge com-
patibility functors node comp and edge comp. This
method can be called with prepared graph data struc-
tures as input for either graph, too.

282 CHAPTER 10. GRAPH ALGORITHMS

cardinality t alg.cardinality iso(const graph t& g1 , const graph t& g2 ,
const node compat& node comp =
DEFAULT NODE CMP ,
const edge compat& edge comp =
DEFAULT EDGE CMP)

searches for a graph isomorphism between g1 and g2

and returns its cardinality. The possible mappings
can be restricted by the node and edge compatibility
functors node comp and edge comp. This method can
be called with prepared graph data structures as input
for either graph, too.

cardinality t alg.find all iso(const graph t& g1 , const graph t& g2 ,
list<morphism ∗ >& isomorphisms ,
const node compat& node comp = DEFAULT NODE CMP ,
const edge compat& edge comp = DEFAULT EDGE CMP)

searches for all graph isomorphisms between g1 and g2
and returns them through isomorphisms. The pos-
sible mappings can be restricted by the node and edge
compatibility functors node comp and edge comp.
This method can be called with prepared graph data
structures as input for either graph, too.

cardinality t alg.enumerate iso(const graph t& g1 , const graph t& g2 ,
leda callback base<morphism>& callback ,
const node compat& node comp =
DEFAULT NODE CMP ,
const edge compat& edge comp =
DEFAULT EDGE CMP)

searches for all graph isomorphisms between g1 and
g2 and calls the callback functor callb for each
one. The possible mappings can be restricted by the
node and edge compatibility functors node comp and
edge comp. This method can be called with prepared
graph data structures as input for either graph, too.

10.16. GRAPHMORPHISM ALGORITHM FUNCTIONALITY (GRAPH MORPHISM ALGORITHM

bool alg.find sub(const graph t& g1 , const graph t& g2 ,
node morphism ∗ node morph = NULL,
edge morphism ∗ edge morph = NULL,
const node compat& node comp = DEFAULT NODE CMP ,
const edge compat& edge comp = DEFAULT EDGE CMP)

searches for a subgraph isomorphism from g2 to g1

and returns it through node morph and edge morph if
a non-NULL pointer to a node map and a non-NULL
pointer to an edge map are passed respectively. Those
must be initialized to g2 and will therefore carry ref-
erences to the mapped node or edge in g1. g2 must
not have more nodes or more edges than g1 to make
a mapping possible. The possible mappings can be
restricted by the node and edge compatibility func-
tors node comp and edge comp. This method can be
called with prepared graph data structures as input
for either graph, too.

cardinality t alg.cardinality sub(const graph t& g1 , const graph t& g2 ,
const node compat& node comp =
DEFAULT NODE CMP ,
const edge compat& edge comp =
DEFAULT EDGE CMP)

searches for a subgraph isomorphism from g2 to g1

and returns its cardinality. g2 must not have more
nodes or more edges than g1 to make a mapping pos-
sible. The possible mappings can be restricted by the
node and edge compatibility functors node comp and
edge comp. This method can be called with prepared
graph data structures as input for either graph, too.

cardinality t alg.find all sub(const graph t& g1 , const graph t& g2 ,
list<morphism ∗ >& isomorphisms ,
const node compat& node comp =
DEFAULT NODE CMP , const edge compat& edge comp =
DEFAULT EDGE CMP)

searches for all subgraph isomorphisms from g2 to g1

and returns them through isomorphisms. g2 must
not have more nodes or more edges than g1 to make
a mapping possible. The possible mappings can be
restricted by the node and edge compatibility func-
tors node comp and edge comp. This method can be
called with prepared graph data structures as input
for either graph, too.

284 CHAPTER 10. GRAPH ALGORITHMS

cardinality t alg.enumerate sub(const graph t& g1 , const graph t& g2 ,
leda callback base<morphism>& callback ,
const node compat& node comp =
DEFAULT NODE CMP ,
const edge compat& edge comp =
DEFAULT EDGE CMP)

searches for all subgraph isomorphisms from g2 to g1

and calls the callback functor callb for each one. g2
must not have more nodes or more edges than g1 to
make a mapping possible. The possible mappings can
be restricted by the node and edge compatibility func-
tors node comp and edge comp. This method can be
called with prepared graph data structures as input
for either graph, too.

bool alg.find mono(const graph t& g1 , const graph t& g2 ,
node morphism ∗ node morph = NULL,
edge morphism ∗ edge morph = NULL,
const node compat& node comp = DEFAULT NODE CMP ,
const edge compat& edge comp = DEFAULT EDGE CMP)

searches for a graph monomorphism from g2 to g1

and returns it through node morph and edge morph if
a non-NULL pointer to a node map and a non-NULL
pointer to an edge map are passed respectively. Those
must be initialized to g2 and will therefore carry ref-
erences to the mapped node or edge in g1. g2 must
not have more nodes or more edges than g1 to make
a mapping possible. The possible mappings can be
restricted by the node and edge compatibility func-
tors node comp and edge comp. This method can be
called with prepared graph data structures as input
for either graph, too.

cardinality t alg.cardinality mono(const graph t& g1 , const graph t& g2 ,
const node compat& node comp =
DEFAULT NODE CMP ,
const edge compat& edge comp =
DEFAULT EDGE CMP)

searches for a graph monomorphism from g2 to g1

and returns its cardinality. g2 must not have more
nodes or more edges than g1 to make a mapping pos-
sible. The possible mappings can be restricted by the
node and edge compatibility functors node comp and
edge comp. This method can be called with prepared
graph data structures as input for either graph, too.

10.16. GRAPHMORPHISM ALGORITHM FUNCTIONALITY (GRAPH MORPHISM ALGORITHM

cardinality t alg.find all mono(const graph t& g1 , const graph t& g2 ,
list<morphism ∗ >& isomorphisms ,
const node compat& node comp =
DEFAULT NODE CMP ,
const edge compat& edge comp =
DEFAULT EDGE CMP)

searches for all graph monomorphisms from g2 to g1

and returns them through isomorphisms. g2 must
not have more nodes or more edges than g1 to make
a mapping possible. The possible mappings can be
restricted by the node and edge compatibility func-
tors node comp and edge comp. This method can be
called with prepared graph data structures as input
for either graph, too.

cardinality t alg.enumerate mono(const graph t& g1 , const graph t& g2 ,
leda callback base<morphism>& callback ,
const node compat& node comp =
DEFAULT NODE CMP ,
const edge compat& edge comp =
DEFAULT EDGE CMP)

searches for all graph monomorphisms from g2 to g1

and calls the callback functor callb for each one. g2
must not have more nodes or more edges than g1 to
make a mapping possible. The possible mappings can
be restricted by the node and edge compatibility func-
tors node comp and edge comp.
This method can be called with prepared graph data
structures as input for either graph, too.

bool alg.is graph isomorphism(const graph t& g1 , const graph t& g2 ,
node morphism const ∗ node morph,
edge morphism const ∗ edge morph = NULL,
const node compat& node comp =
DEFAULT NODE CMP ,
const edge compat& edge comp =
DEFAULT EDGE CMP)

checks whether the morphism given by node morph

and edge morph (optional) is a valid graph isomor-
phisms between g1 and g2. The allowed mappings
can be restricted by the node and edge compatibility
functors node comp and edge comp.

286 CHAPTER 10. GRAPH ALGORITHMS

bool alg.is subgraph isomorphism(const graph t& g1 , const graph t& g2 ,
node morphism const ∗ node morph,
edge morphism const ∗ edge morph = NULL,
const node compat& node comp =
DEFAULT NODE CMP ,
const edge compat& edge comp =
DEFAULT EDGE CMP)

checks whether the morphism given by node morph

and edge morph (optional) is a valid subgraph isomor-
phisms from g1 to g2. The allowed mappings can be
restricted by the node and edge compatibility functors
node comp and edge comp.

bool alg.is graph monomorphism(const graph t& g1 , const graph t& g2 ,
node morphism const ∗ node morph,
edge morphism const ∗ edge morph = NULL,
const node compat& node comp =
DEFAULT NODE CMP ,
const edge compat& edge comp =
DEFAULT EDGE CMP)

checks whether the morphism given by node morph

and edge morph (optional) is a valid graph monomor-
phisms from g2 to g1. The allowed mappings can be
restricted by the node and edge compatibility functors
node comp and edge comp.

Chapter 11

Graphs and Iterators

11.1 Introduction

11.1.1 Iterators

Iterators are a powerful technique in object-oriented programming and one of the funda-

mental design patterns [41]. Roughly speaking, an iterator is a small, light-weight object,

which is associated with a specific kind of linear sequence. An iterator can be used to

access all items in a linear sequence step-by-step. In this section, different iterator classes

are introduced for traversing the nodes and the edges of a graph, and for traversing all

ingoing and/or outgoing edges of a single node.

Iterators are an alternative to the iteration macros introduced in sect. 9.1.3.(i). For

example, consider the following iteration pattern:

node v;

forall_nodes (n, G) { ... }

Using the class NodeIt introduced in sect. 11.2, this iteration can be re-written as follows:

for (NodeIt it (G); it.valid(); ++it) { ... }

The crucial differences are:

• Iterators provide an intuitive means of movement through the topology of a graph.

287

288 CHAPTER 11. GRAPHS AND ITERATORS

• Iterators are not bound to a loop, which means that the user has finer control over

the iteration process. For example, the continuation condition it.valid() in the above

loop could be replaced by another condition to terminate the loop once a specific

node has been found (and the loop may be re-started at the same position later on).

• The meaning of iteration may be modified seamlessly. For example, the filter iter-

ators defined in sect. 11.9 restrict the iteration to a subset that is specified by an

arbitrary logical condition (predicate). In other words, the nodes or edges that do

not fulfill this predicate are filtered out automatically during iteration.

• The functionality of iteration may be extended seamlessly. For example, the observer

iterators defined in sect. 11.11 can be used to record details of the iteration. A

concrete example is given in sect. 11.11: an observer iterator can be initialized such

that it records the number of iterations performed by the iterator.

• Iterator-based implementations of algorithms can be easily integrated into environ-

ments that are implemented according to the STL style [71], (this style has been

adopted for the standard C++ library). For this purpose, sect. 11.12 define adapters,

which convert graph iterators into STL iterators.

11.1.2 Handles and Iterators

Iterators can be used whenever the corresponding handle can be used. For example, node

iterators can be used where a node is requested or edge iterators can be used where an

edge is requested. For adjacency iterators, it is possible to use them whenever an edge is

requested1.

An example shows how iterators can be used as handles:

NodeIt it(G);

leda::node_array<int> index(G);

leda::node v;

int i=0;

forall_nodes(v,G) index[v]=++i;

while (it.valid()) {

cout << "current node " << index(it) << endl; }

11.1.3 STL Iterators

Those who are more used to STL may take advantage from the following iterator classes:

NodeIt n, EdgeIt e, AdjIt n, AdjIt e, OutAdjIt n, OutAdjIt e, InAdjIt n, InAdjIt e.

1Since the edge of an adjacency iterator changes while the fixed node remains fixed, we decided to
focus on the edge.

11.1. INTRODUCTION 289

The purpose of each iterator is the same as in the corresponding standard iterator classes

NodeIt, EdgeIt . . . The difference is the interface, which is exactly that of the STL iterator

wrapper classe (see sect. 11.12 for more information).

An example shows why these classes are useful (remember the example from the begin-

ning):

NodeIt_n base(G);

for(NodeIt_n::iterator it=base.begin();it!=base.end(); ++it) {

cout << "current node " << index(*it) << endl; }

As in STL collections there are public type definitions in all STL style graph iterators. The

advantage is that algorithms can be written that operate independingly of the underlying

type (note: NodeIt n and NodeIt n::iterator are equal types).

11.1.4 Circulators

Circulators differ from Iterators in their semantics. Instead of becoming invalid at the

end of a sequence, they perform cyclic iteration. This type of ”none–ending–iterator“ is

heavily used in the CGAL .

11.1.5 Data Accessors

Data accessor is a design pattern[73] that decouples data access from underlying imple-

mentation. Here, the pattern is used to decouple data access in graph algorithms from

how data is actually stored outside the algorithm.

Generally, an attributed graph consists of a (directed or undirected) graph and an arbi-

trary number of node and edge attributes. For example, the nodes of a graph are often

assigned attributes such as names, flags, and coordinates, and likewise, the edges are

assigned attributes such as lengths, costs, and capacities.

More formally, an attribute a of a set S has a certain type T and assigns a value of

T to every element of S (in other words, a may be viewed as a function a : S → T).

An attributed set A = (S, a1, . . . , am) consists of a set S and attributes a1, . . . , am. An

attributed graph is a (directed or undirected) graph G = (V,E) such that the node set V

and the edge set E are attributed.

Basically, LEDA provides two features to define attributes for graph:

290 CHAPTER 11. GRAPHS AND ITERATORS

• Classes GRAPH and UGRAPH (sects. 9.2 and 9.5) are templates with two ar-

guments, vtype and etype, which are reserved for a node and an edge attribute,

respectively. To attach several attributes to nodes and edges, vtype and etype must

be instantiated by structs whose members are the attributes.

• A node array (sect. 9.8) or node map (sect. Node Maps) represents a node attribute,

and analogously, edge arrays (sect. Edge Arrays) and edge maps (sect. 9.12), rep-

resent edge attributes. Several attributes can be attached to nodes and edges by

instantiating several arrays or maps.

Data accessors provide a uniform interface to access attributes, and the concrete orga-

nization of the attributes is hidden behind this interface. Hence, if an implementation

of an algorithm does not access attributes directly, but solely in terms of data accessors,

it may be applied to any organization of the attributes (in contrast, the algorithms in

sect. Graph Algorithms require an organization of all attributes as node and edge arrays).

Every data accessor class DA comes with a function template get :

T get(DA da, Iter it);

This function returns the value of the attribute managed by the data accessor da for the

node or edge marked by the iterator it. Moreover, most data accessor classes also come

with a function template set :

void set(DA da, Iter it, T value);

This function overwrites the value of the attribute managed by the data accessor da for

the node or edge marked by the iterator it by value.

The data accessor classes that do not provide a function template set realize attributes in

such a way that a function set does not make sense or is even impossible. The constant

accessor in sect. 11.14 is a concrete example: it realizes an attribute that is constant over

the whole attributed set and over the whole time of the program. Hence, it does not make

sense to provide a function set. Moreover, since the constant accessor class organizes its

attribute in a non-materialized fashion, an overwriting function set is even impossible.

Example: The following trivial algorithm may serve as an example to demonstrate the

usage of data accessors and their interplay with various iterator types. The first, nested

loop accesses all edges once. More specifically, the outer loop iterates over all nodes of

the graph, and the inner loop iterates over all edges leaving the current node of the outer

loop. Hence, for each edge, the value of the attribute managed by the data accessor da is

overwritten by t. In the second loop, a linear edge iterator is used to check whether the

first loop has set all values correctly.

11.1. INTRODUCTION 291

template <class T, class DA>

void set_and_check (graph& G, DA da, T t) {

for (NodeIt nit(G); nit.valid(); ++nit)

for (OutAdjIt oait(nit); oait.valid(); ++oait)

set (da, eit, t);

for (EdgeIt eit(G); eit.valid(); ++eit)

if (get(da,it) != t) cout << "Error!" << endl;

}

To demonstrate the application of function set and check, we first consider the case that

G is an object of the class GRAPH derived from graph (sect. 9.1), that the template

argument vtype is instantiated by a struct type attributes, and that the int-member

my attr of attributes shall be processed by set and check with value 1. Then DA can be

instantiated as a node member da:

node_member_da<attributes,int> da (&attributes::my_attr);

set_and_check (G, da, 1);

Now we consider the case that the attribute to be processed is stored in an

edge array<int> named my attr array :

node_array_da<int> da (my_attr_array);

set_and_check (G, da, 1);

Hence, all differences between these two cases are factored out into a single declaration

statement.

11.1.6 Graphiterator Algorithms

Several basic graph algorithms were re–implemented to use only graph iterators and data

accessors. Moreover they share three design decisions:

1. algorithms are instances of classes

2. algorithm instances have the ability to “advance”

3. algorithm instances provide access to their internal states

292 CHAPTER 11. GRAPHS AND ITERATORS

An example for an algorithm that supports the first two decisions is:

class Algorithm {

int state, endstate;

public:

Algorithm(int max) : endstate(max), state(0) { }

void next() { state++; }

bool finished() { return state>=endstate; }

};

With this class Algorithm we can easily instantiate an algorithm object:

Algorithm alg(5);

while (!alg.finished()) alg.next();

This small piece of code creates an algorithm object and invokes “next()” until it has

reached an end state.

An advantage of this design is that we can write basic algorithms, which can be used in

a standardized way and if needed, inspection of internal states and variables can be pro-

vided without writing complex code. Additionally, it makes it possible to write persistent

algorithms, if the member variables are persistent.

Actually, those algorithms are quite more flexible than ordinary written algorithm func-

tions:

template<class Alg>

class OutputAlg {

Alg alg;

public:

OutputAlg(int m) : alg(m) {

cout << "max state: " << m << endl; }

void next() {

cout << "old state: " << alg.state;

alg.next();

cout << " new state: " << alg.state << endl; }

bool finished() { return alg.finished(); }

};

This wrapper algorithm can be used like this:

OutputAlg<Algorithm> alg(5);

while (!alg.finished()) alg.next();

11.2. NODE ITERATORS (NODEIT) 293

In addition to the algorithm mentioned earlier this wrapper writes the internal states to

the standard output.

This is as efficient as rewriting the “Algorithm”-class with an output mechanism, but

provides more flexibility.

11.2 Node Iterators (NodeIt)

1. Definition

a variable it of class NodeIt is a linear node iterator that iterates over the node set of a

graph; the current node of an iterator object is said to be “marked” by this object.

#include < LEDA/graph/graph iterator.h >

2. Creation

NodeIt it ; introduces a variable it of this class associated with no graph.

NodeIt it(const leda ::graph& G);

introduces a variable it of this class associated with G.
The graph is initialized by G. The node is initialized by
G.first node().

NodeIt it(const leda ::graph& G, leda ::node n);

introduces a variable it of this class marked with n and associated
with G.
Precondition: n is a node of G.

3. Operations

void it.init(const leda ::graph& G)

associates it with G and marks it with G.first node().

void it.init(const leda ::graph& G, const leda ::node& v)

associates it with G and marks it with v.

void it.reset() resets it to G.first node(), where G is the associated
graph.

void it.make invalid() makes it invalid, i.e. it.valid() will be false afterwards
and it marks no node.

void it.reset end() resets it to G.last node(), where G is the associated
graph.

294 CHAPTER 11. GRAPHS AND ITERATORS

void it.update(leda ::node n)

it marks n afterwards.

void it.insert() creates a new node and it marks it afterwards.

void it.del() deletes the marked node, i.e. it.valid() returns false
afterwards.
Precondition: it.valid() returns true.

NodeIt& it = const NodeIt& it2

it is afterwards associated with the same graph and
node as it2 . This method returns a reference to it .

bool it == const NodeIt& it2

returns true if and only if it and it2 are equal, i.e. if
the marked nodes are equal.

leda ::node it.get node() returns the marked node or nil if it.valid() returns
false.

const leda ::graph& it.get graph() returns the associated graph.

bool it.valid() returns true if and only if end of sequence not yet
passed, i.e. if there is a node in the node set that was
not yet passed.

bool it.eol() returns !it.valid() which is true if and only if there is
no successor node left, i.e. if all nodes of the node set
are passed (eol: end of list).

NodeIt& ++it performs one step forward in the list of nodes of the as-
sociated graph. If there is no successor node, it.eol()
will be true afterwards. This method returns a refer-
ence to it .
Precondition: it.valid() returns true.

NodeIt& −−it performs one step backward in the list of nodes of
the associated graph. If there is no predecessor node,
it.eol() will be true afterwards. This method returns
a reference to it .
Precondition: it.valid() returns true.

4. Implementation

Creation of an iterator and all methods take constant time.

11.3. EDGE ITERATORS (EDGEIT) 295

11.3 Edge Iterators (EdgeIt)

1. Definition

a variable it of class EdgeIt is a linear edge iterator that iterates over the edge set of a

graph; the current edge of an iterator object is said to be “marked” by this object.

#include < LEDA/graph/graph iterator.h >

2. Creation

EdgeIt it ; introduces a variable it of this class associated with no graph.

EdgeIt it(const leda ::graph& G);

introduces a variable it of this class associated with G and marked
with G.first edge().

EdgeIt it(const leda ::graph& G, leda ::edge e);

introduces a variable it of this class marked with e and associated
with G.
Precondition: e is an edge of G.

3. Operations

void it.init(const leda ::graph& G)

associates it with G and marks it with G.first edge().

void it.init(const leda ::graph& G, const leda ::edge& e)

associates it with G and marks it with e.

void it.update(leda ::edge e)

it marks e afterwards.

void it.reset() resets it to G.first edge() where G is the associated
graph.

void it.reset end() resets it to G.last edge() where G is the associated
graph.

void it.make invalid() makes it invalid, i.e. it.valid() will be false afterwards
and it marks no node.

void it.insert(leda ::node v1 , leda ::node v2)

creates a new edge from v1 to v2 and it marks it
afterwards.

void it.del() deletes the marked edge, i.e. it.valid() returns false
afterwards.
Precondition: it.valid() returns true.

296 CHAPTER 11. GRAPHS AND ITERATORS

EdgeIt& it = const EdgeIt& it2

assigns it2 to it . This method returns a reference to
it .

bool it == const EdgeIt& it2

returns true if and only if it and it2 are equal, i.e. if
the marked edges are equal.

bool it.eol() returns !it.valid() which is true if and only if there
is no successor edge left, i.e. if all edges leaving the
marked node are passed (eol: end of list).

bool it.valid() returns true if and only if end of sequence not yet
passed, i.e. if there is an edge leaving the marked
node that was not yet passed.

leda ::edge it.get edge() returns the marked edge or nil if it.valid() returns
false.

const leda ::graph& it.get graph() returns the associated graph.

EdgeIt& ++it performs one step forward in the list of edges of the as-
sociated graph. If there is no successor edge, it.eol()
will be true afterwards. This method returns a refer-
ence to it .
Precondition: it.valid() returns true.

EdgeIt& −−it performs one step backward in the list of edges of
the associated graph. If there is no predecessor edge,
it.eol() will be true afterwards. This method returns
a reference to it .
Precondition: it.valid() returns true.

4. Implementation

Creation of an iterator and all methods take constant time.

11.4 Face Iterators (FaceIt)

1. Definition

a variable it of class FaceIt is a linear face iterator that iterates over the face set of a

graph; the current face of an iterator object is said to be “marked” by this object.

Precondition: Before using any face iterator the list of faces has to be computed by

calling G.compute faces(). Note, that any update operation invalidates this list.

11.4. FACE ITERATORS (FACEIT) 297

#include < LEDA/graph/graph iterator.h >

2. Creation

FaceIt it ; introduces a variable it of this class associated with no graph.

FaceIt it(const leda ::graph& G);

introduces a variable it of this class associated with G.
The graph is initialized by G. The face is initialized by
G.first face().

FaceIt it(const leda ::graph& G, leda :: face n);

introduces a variable it of this class marked with n and associated
with G.
Precondition: n is a face of G.

3. Operations

void it.init(const leda ::graph& G)

associates it with G and marks it with G.first face().

void it.init(const leda ::graph& G, const leda :: face& v)

associates it with G and marks it with v.

void it.reset() resets it to G.first face(), where G is the associated
graph.

void it.make invalid() makes it invalid, i.e. it.valid() will be false afterwards
and it marks no face.

void it.reset end() resets it to G.last face(), where G is the associated
graph.

void it.update(leda :: face n)

it marks n afterwards.

FaceIt& it = const FaceIt& it2

it is afterwards associated with the same graph and
face as it2 . This method returns a reference to it .

bool it == const FaceIt& it2

returns true if and only if it and it2 are equal, i.e. if
the marked faces are equal.

leda :: face it.get face() returns the marked face or nil if it.valid() returns
false.

const leda ::graph& it.get graph() returns the associated graph.

298 CHAPTER 11. GRAPHS AND ITERATORS

bool it.valid() returns true if and only if end of sequence not yet
passed, i.e. if there is a face in the face set that was
not yet passed.

bool it.eol() returns !it.valid() which is true if and only if there is
no successor face left, i.e. if all faces of the face set
are passed (eol: end of list).

FaceIt& ++it performs one step forward in the list of faces of the
associated graph. If there is no successor face, it.eol()
will be true afterwards. This method returns a refer-
ence to it .
Precondition: it.valid() returns true.

FaceIt& −−it performs one step backward in the list of faces of
the associated graph. If there is no predecessor face,
it.eol() will be true afterwards. This method returns
a reference to it .
Precondition: it.valid() returns true.

4. Implementation

Creation of an iterator and all methods take constant time.

11.5 Adjacency Iterators for leaving edges (OutAd-

jIt)

1. Definition

a variable it of class OutAdjIt is an adjacency iterator that marks a node (which is fixed

in contrast to linear node iterators) and iterates over the edges that leave this node.

There is a variant of the adjacency iterators, so–called circulators which are heavily used

in the CGAL2. The names of the classes are OutAdjCirc and InAdjCirc and their

interfaces are completely equal to the iterator versions while they internally use e.g.

cyclic adj succ() instead of adj succ().

#include < LEDA/graph/graph iterator.h >

2. Creation

OutAdjIt it ; introduces a variable it of this class associated with no graph.

2See the CGAL homepage at http://www.cs.uu.nl/CGAL/.

11.5. ADJACENCY ITERATORS FOR LEAVING EDGES (OUTADJIT) 299

OutAdjIt it(const leda ::graph& G);

introduces a variable it of this class associated with G.
The node is initialized by G.first node() and the edge by
G.first adj edge(n) where n is the marked node.

OutAdjIt it(const leda ::graph& G, leda ::node n);

introduces a variable it of this class marked with n and associated
with G. The marked edge is initialized by G.first adj edge(n).
Precondition: n is a node of G.

OutAdjIt it(const leda ::graph& G, leda ::node n, leda ::edge e);

introduces a variable it of this class marked with n and e and as-
sociated with G.
Precondition: n is a node and e an edge of G and source(e) = n.

3. Operations

void it.init(const leda ::graph& G)

associates it with G and marks it with n’ =
G.first node() and G.first adj edge(n’).

void it.init(const leda ::graph& G, const leda ::node& n)

associates it with G and marks it with n and
G.first adj edge(n).
Precondition: n is a node of G.

void it.init(const leda ::graph& G, const leda ::node& n, const leda ::edge& e)

associates it with G and marks it with n and e.
Precondition: n is a node and e an edge of G and
source(e) = n.

void it.update(leda ::edge e)

it marks e afterwards.

void it.reset() resets it to G.first adj edge(n) where G and n are the
marked node and associated graph.

void it.insert(const OutAdjIt& other)

creates a new leaving edge from the marked node of
it to the marked node of other . it is marked with the
new edge afterwards. The marked node of it does not
change.

void it.del() deletes the marked leaving edge, i.e. it.valid() returns
false afterwards.
Precondition: it.valid() returns true.

300 CHAPTER 11. GRAPHS AND ITERATORS

void it.reset end() resets it to G.last adj edge(n) where G and n are the
marked node and associated graph.

void it.make invalid() makes it invalid, i.e. it.valid() will be false afterwards
and it marks no node.

void it.update(leda ::node n)

it marks n and the first leaving edge of n afterwards.

void it.update(leda ::node n, leda ::edge e)

it marks n and e afterwards.

OutAdjIt& it = const OutAdjIt& it2

assigns it2 to it . This method returns a reference to
it .

bool it == const OutAdjIt& it2

returns true if and only if it and it2 are equal, i.e. if
the marked nodes and edges are equal.

bool it.has node() returns true if and only if it marks a node.

bool it.eol() returns !it.valid() which is true if and only if there is
no successor edge left, i.e. if all edges of the edge set
are passed (eol: end of list).

bool it.valid() returns true if and only if end of sequence not yet
passed, i.e. if there is an edge in the edge set that was
not yet passed.

leda ::edge it.get edge() returns the marked edge or nil if it.valid() returns
false.

leda ::node it.get node() returns the marked node or nil if it.has node() returns
false.

const leda ::graph& it.get graph() returns the associated graph.

OutAdjIt it.curr adj() returns a new adjacency iterator that is associated
with n’ = target(e) and G.first adj edge(n’) where G
is the associated graph.
Precondition: it.valid() returns true.

OutAdjIt& ++it performs one step forward in the list of outgoing edges
of the marked node. If there is no successor edge,
it.eol() will be true afterwards. This method returns
a reference to it .
Precondition: it.valid() returns true.

11.6. ADJACENCY ITERATORS FOR INCOMING EDGES (INADJIT) 301

OutAdjIt& −−it performs one step backward in the list of outgoing
edges of the marked node. If there is no predecesssor
edge, it.eol() will be true afterwards. This method
returns a reference to it .
Precondition: it.valid() returns true.

4. Implementation

Creation of an iterator and all methods take constant time.

11.6 Adjacency Iterators for incoming edges (InAd-

jIt)

1. Definition

a variable it of class InAdjIt is an adjacency iterator that marks a node (which is fixed

in contrast to linear node iterators) and iterates over the incoming edges of this node.

#include < LEDA/graph/graph iterator.h >

2. Creation

InAdjIt it ; introduces a variable it of this class associated with no graph.

InAdjIt it(const leda ::graph& G);

introduces a variable it of this class associated with G.
The node is initialized by G.first node() and the edge by
G.first in edge(n) where n is the marked node.

InAdjIt it(const leda ::graph& G, leda ::node n);

introduces a variable it of this class marked with n and associated
with G. The marked edge is initialized by G.first in edge(n).
Precondition: n is a node of G.

InAdjIt it(const leda ::graph& G, leda ::node n, leda ::edge e);

introduces a variable it of this class marked with n and e and as-
sociated with G.
Precondition: n is a node and e an edge of G and target(e) = n.

3. Operations

void it.init(const leda ::graph& G)

associates it with G and marks it with n’ =
G.first node() and G.first adj edge(n’).

302 CHAPTER 11. GRAPHS AND ITERATORS

void it.init(const leda ::graph& G, const leda ::node& n)

associates it with G and marks it with n and
G.first adj edge(n).
Precondition: n is a node of G.

void it.init(const leda ::graph& G, const leda ::node& n, const leda ::edge& e)

associates it with G and marks it with n and e.
Precondition: n is a node and e an edge of G and
target(e) = n.

void it.update(leda ::edge e)

it marks e afterwards.

void it.reset() resets it to G.first in edge(n) where G and n are the
marked node and associated graph.

void it.insert(const InAdjIt& other)

creates a new incoming edge from the marked node of
it to the marked node of other . it is marked with the
new edge afterwards. The marked node of it does not
change.

void it.del() deletes the marked incoming edge, i.e. it.valid() re-
turns false afterwards.
Precondition: it.valid() returns true.

void it.reset end() resets it to G.last in edge(n) where G and n are the
marked node and associated graph.

void it.make invalid() makes it invalid, i.e. it.valid() will be false afterwards
and it marks no node.

void it.update(leda ::node n)

it marks n and the first incoming edge of n afterwards.

void it.update(leda ::node n, leda ::edge e)

it marks n and e afterwards.

InAdjIt& it = const InAdjIt& it2

assigns it2 to it . This method returns a reference this
method returns a reference to it .

bool it == const InAdjIt& it2

returns true if and only if it and it2 are equal, i.e. if
the marked nodes and edges are equal.

bool it.has node() returns true if and only if it marks a node.

11.7. ADJACENCY ITERATORS (ADJIT) 303

bool it.eol() returns !it.valid() which is true if and only if there is
no successor edge left, i.e. if all edges of the edge set
are passed (eol: end of list).

bool it.valid() returns true if and only if end of sequence not yet
passed, i.e. if there is an edge in the edge set that was
not yet passed.

leda ::edge it.get edge() returns the marked edge or nil if it.valid() returns
false.

leda ::node it.get node() returns the marked node or nil if it.has node() returns
false.

const leda ::graph& it.get graph() returns the associated graph.

InAdjIt it.curr adj() returns a new adjacency iterator that is associated
with n’ = source(e) and G.first in edge(n’) where G is
the associated graph.
Precondition: it.valid() returns true.

InAdjIt& ++it performs one step forward in the list of incoming edges
of the marked node. If there is no successor edge,
it.eol() will be true afterwards. This method returns
a reference to it .
Precondition: it.valid() returns true.

InAdjIt& −−it performs one step backward in the list of incoming
edges of the marked node. If there is no predecesssor
edge, it.eol() will be true afterwards. This method
returns a reference to it .
Precondition: it.valid() returns true.

4. Implementation

Creation of an iterator and all methods take constant time.

11.7 Adjacency Iterators (AdjIt)

1. Definition

a variable it of class AdjIt is an adjacency iterator that marks a node (which is fixed in

contrast to linear node iterators) and iterates over the edges that leave or enter this node.

At first, all outgoing edges will be traversed.

Internally, this iterator creates two instances of OutAdjIt and InAdjIt. The iteration is

a sequenced iteration over both iterators. Note that this only fits for directed graph, for

undirected graph you should use OutAdjIt instead.

304 CHAPTER 11. GRAPHS AND ITERATORS

#include < LEDA/graph/graph iterator.h >

2. Creation

AdjIt it ; introduces a variable it of this class associated with no graph.

AdjIt it(const leda ::graph& G);

introduces a variable it of this class associated with G. The
marked node is initialized by n = G.first node() and the edge
by G.first adj edge(n).

AdjIt it(const leda ::graph& G, leda ::node n);

introduces a variable it of this class marked with n and associated
with G. The marked edge is initialized by by G.first adj edge(n).
Precondition: n is a node of G.

AdjIt it(const leda ::graph& G, leda ::node n, leda ::edge e);

introduces a variable it of this class marked with n and e and as-
sociated with G.
Precondition: n is a node and e an edge of G and source(e) = n.

3. Operations

void it.init(const graphtype& G)

associates it with G and marks it with n’ =
G.first node() and G.first adj edge(n’).

void it.init(const graphtype& G, const nodetype& n)

associates it with G and marks it with n and
G.first adj edge(v).
Precondition: n is a node of G.

void it.init(const graphtype& G, const nodetype& n, const edgetype& e)

associates it with G and marks it with n and e.
Precondition: n is a node and e an edge of G and
source(e) = n.

void it.update(leda ::edge e)

it marks e afterwards.

void it.reset() resets it to G.first adj edge(n) where G and n are the
marked node and associated graph.

void it.insert(const AdjIt& other)

creates a new edge from the marked node of it to the
marked node of other . it is marked with the new edge
afterwards. The marked node of it does not change.

11.7. ADJACENCY ITERATORS (ADJIT) 305

void it.del() deletes the marked leaving edge, i.e. it.valid() returns
false afterwards.
Precondition: it.valid() returns true.

void it.reset end() resets it to G.last adj edge(n) where G and n are the
marked node and associated graph.

void it.make invalid() makes it invalid, i.e. it.valid() will be false afterwards
and it marks no node.

void it.update(leda ::node n)

it marks n and the first leaving edge of n afterwards.

void it.update(leda ::node n, leda ::edge e)

it marks n and e afterwards.

AdjIt& it = const AdjIt& it2

assigns it2 to it . This method returns a reference to
it .

bool it == const AdjIt& it2

returns true if and only if it and it2 are equal, i.e. if
the marked nodes and edges are equal.

bool it.has node() returns true if and only if it marks a node.

bool it.eol() returns !it.valid() which is true if and only if there is
no successor edge left, i.e. if all edges of the edge set
are passed (eol: end of list).

bool it.valid() returns true if and only if end of sequence not yet
passed, i.e. if there is an edge in the edge set that was
not yet passed.

leda ::edge it.get edge() returns the marked edge or nil if it.valid() returns
false.

leda ::node it.get node() returns the marked node or nil if it.has node() returns
false.

const leda ::graph& it.get graph() returns the associated graph.

AdjIt it.curr adj() If the currently associated edge leaves the marked
node, this method returns a new adjacency iter-
ator that is associated with n’ = target(e) and
G.first adj edge(n’) where G is the associated graph.
Otherwise it returns a new adjacency iterator that is
associated with n’ = source(e) and G.first in edge(n’)
where G is the associated graph.
Precondition: it.valid() returns true.

306 CHAPTER 11. GRAPHS AND ITERATORS

AdjIt& ++it performs one step forward in the list of incident edges
of the marked node. If the formerly marked edge was
a leaving edge and there is no successor edge, it is
associated to G.first in edge(n) where G and n are the
associated graph and node. If the formerly marked
edge was an incoming edge and there is no successor
edge, it.eol() will be true afterwards. This method
returns a reference to it .
Precondition: it.valid() returns true.

AdjIt& −−it performs one step backward in the list of incident
edges of the marked node. If the formerly marked
edge was an incoming edge and there is no predeces-
sor edge, it is associated to G.last adj edge(n) where
G and n are the associated graph and node. If the
formerly marked edge was a leaving edge and there
is no successor edge, it.eol() will be true afterwards.
This method returns a reference to it .
Precondition: it.valid() returns true.

4. Implementation

Creation of an iterator and all methods take constant time.

11.8 Face Circulators (FaceCirc)

1. Definition

a variable fc of class FaceCirc is a face circulator that circulates through the set of edges

of a face as long as the graph is embedded combinatorically correct, i.e. the graph has to

be bidirected and a map (see 9.1).

#include < LEDA/graph/graph iterator.h >

2. Creation

FaceCirc fc; introduces a variable fc of this class associated with no graph.

FaceCirc fc(const leda ::graph& G);

introduces a variable fc of this class associated with G. The edge
is initialized to nil.

FaceCirc fc(const leda ::graph& G, leda ::edge e);

introduces a variable fc of this class marked with e and associated
with G.
Precondition: e is an edge of G.

11.8. FACE CIRCULATORS (FACECIRC) 307

3. Operations

void fc.init(const leda ::graph& G)

associates fc with G.

void fc.init(const leda ::graph& G, const leda ::edge& e)

associates fc with G and marks it with e.
Precondition: e is an edge of G.

void fc.update(leda ::edge e)

fc marks e afterwards.

void fc.make invalid() makes fc invalid, i.e. fc.valid() will be false afterwards
and fc marks no edge.

FaceCirc& fc = const FaceCirc& fc2

assigns fc2 to fc. This method returns a reference to
fc.

bool fc == const FaceCirc& fc2

returns true if and only if fc and fc2 are equal, i.e. if
the marked edges are equal.

bool fc.has edge() returns true if and only if fc marks an edge.

bool fc.eol() returns !fc.valid().

bool fc.valid() returns true if and only if the circulator is marked
with an edge.

leda ::edge fc.get edge() returns the marked edge or nil if fc.valid() returns
false.

const leda ::graph& fc.get graph() returns the associated graph.

FaceCirc& ++fc redirects the circulator to the cyclic adjacency prede-
cessor of reversal(e), where e is the marked edge. This
method returns a reference to fc.
Precondition: fc.valid() returns true.

FaceCirc& −−fc redirects the circulator to the cyclic adjacency succes-
sor of e, where e is the marked edge. This method
returns a reference to fc.
Precondition: fc.valid() returns true.

4. Implementation

Creation of a circulator and all methods take constant time.

308 CHAPTER 11. GRAPHS AND ITERATORS

11.9 Filter Node Iterator (FilterNodeIt)

1. Definition

An instance it of class FilterNodeIt< Predicate, Iter > encapsulates an object of type Iter

and creates a restricted view on the set of nodes over which this internal iterator iterates.

More specifically, all nodes that do not fulfill the predicate defined by Predicate are

filtered out during this traversal.

Class FilterEdgeIt and FilterAdjIt are defined analogously, i.e. can be used for edge

iterators or adjacency iterators, respectively.

Precondition: The template parameter Iter must be a node iterator, e.g. NodeIt or

FilterNodeIt<pred,NodeIt>. Predicate must be a class which provides a method

operator() according to the following signature: bool operator() (Iter).

#include < LEDA/graph/graph iterator.h >

2. Creation

FilterNodeIt< Predicate, Iter > it ;

introduces a variable it of this class, not bound to a predicate or
iterator.

FilterNodeIt< Predicate, Iter > it(const Predicate& pred , const Iter& base it);

introduces a variable it of this class bound to pred and base it .

3. Operations

void it.init(const Predicate& pred , const Iter& base it)

initializes it , which is bound to pred and base it after-
wards.
Precondition: it is not yet bound to a predicate or
iterator.

4. Implementation

Constant overhead.

5. Example

Suppose each node has an own colour and we only want to see those with a specific colour,

for example red (we use the LEDA colours). At first the data structures:

GRAPH<color,double> G;

NodeIt it(G);

11.10. COMPARISON PREDICATE (COMPPRED) 309

We would have to write something like this:

while(it.valid()) {

if (G[it.get_node()]==red) do_something(it);

++it;

}

With the filter wrapper class we can add the test if the node is red to the behaviour of

the iterator.

struct RedPred {

bool operator() (const NodeIt& it) const {

return G[it.get_node()]==red; }

} redpred;

FilterNodeIt<RedPred,NodeIt> red_it(redpred,it);

This simplifies the loop to the following:

while(red_it.valid()) {

do_something(red_it);

++red_it; }

All ingredients of the comparison are hard-wired in struct RedPred: the type of the com-

pared values (color), the comparison value (red) and the binary comparison (equality).

The following class CompPred renders these three choices flexible.

11.10 Comparison Predicate (CompPred)

1. Definition

An instance cp of class CompPred<Iter ,DA,Comp> is a predicate comparator that pro-

duces boolean values with the given compare function and the attribute associated with

an iterator.

#include < LEDA/graph/graph iterator.h >

310 CHAPTER 11. GRAPHS AND ITERATORS

2. Creation

CompPred<Iter ,DA,Comp> cp(const DA& da, const Comp& comp,
typename DA ::value type val);

introduces a variable cp of this class and associates it to the given
data accessor da, compare function comp and value val .

Precondition: Comp is a pointer-to-function type which takes two val-

ues of type typename DA :: value type and produces a boolean re-

turn value. Comp might also be a class with member function

bool operator()(typename DA ::value type, typename DA ::value type).

3. Example

In the following example, a node iterator for red nodes will be created. At first the basic

part (see sect. 11.13 for explanation of the data accessor node array da):

graph G;

NodeIt it(G);

node_array<color> na_colour(G,black);

node_array_da<color> da_colour(na_colour);

assign_some_color_to_each_node();

Now follows the definition of a “red iterator” (Equal<T> yields true, if the given two values

are equal):

template<class T>

class Equal {

public:

bool operator() (T t1, T t2) const {

return t1==t2; }

};

typedef CompPred<NodeIt,node_array_da<color>,Equal<color> > Predicate;

Predicate PredColour(da_colour,Equal<color>(),red);

FilterNodeIt<Predicate,NodeIt> red_it(PredColour,it);

This simplifies the loop to the following:

while(red_it.valid()) {

do_something(red_it);

++red_it; }

11.11. OBSERVER NODE ITERATOR (OBSERVERNODEIT) 311

Equal<T> is a class that compares two items of the template parameter T by means

of a method bool operator()(T,T);. There are some classes available for this

purpose: Equal<T>, Unequal<T>, LessThan<T>, LessEqual<T>, GreaterThan<T> and

GreaterEqual<T> with obvious semantics, where T is the type of the values. Predicates

of the STL can be used as well since they have the same interface.

11.11 Observer Node Iterator (ObserverNodeIt)

1. Definition

An instance it of class ObserverNodeIt<Obs , Iter> is an observer iterator. Any method

call of iterators will be “observed” by an internal object of class Obs .

Class ObserverEdgeIt and ObserverAdjIt are defined analogously, i.e. can be used for

edge iterators or adjacency iterators, respectively.

Precondition: The template parameter Iter must be a node iterator.

#include < LEDA/graph/graph iterator.h >

2. Creation

ObserverNodeIt<Obs , Iter> it ;

introduces a variable it of this class, not bound to an observer or
iterator.

ObserverNodeIt<Obs , Iter> it(Obs& obs , const Iter& base it);

introduces a variable it of this class bound to the observer obs and
base it .
Precondition: Obs must have methods observe constructor(),
observe forward(), observe update(). These three methods
may have arbitrary return types (incl. void).

3. Operations

void it.init(const Obs& obs , const Iter& base it)

initializes it , which is bound to obs and base it after-
wards.
Precondition: it is not bound to an observer or itera-
tor.

Obs& it.get observer() returns a reference to the observer to which it is
bound.

312 CHAPTER 11. GRAPHS AND ITERATORS

4. Example

First two simple observer classes. The first one is a dummy class, which ignores all

notifications. The second one merely counts the number of calls to operator++ for all

iterators that share the same observer object through copy construction or assignment

(of course, a real implementation should apply some kind of reference counting or other

garbage collection).

In this example, the counter variable count of class SimpleCountObserver will be initial-

ized with the counter variable count of class DummyObserver, i.e. the variable is created

only once.

template <class Iter>

class DummyObserver {

int* _count;

public:

DummyObserver() : _count(new int(0)) { }

void notify_constructor(const Iter&) { }

void notify_forward(const Iter&) { }

void notify_update(const Iter&) { }

int counter() const { return *_count; }

int* counter_ptr() const { return _count; }

bool operator==(const DummyObserver& D) const {

return _count==D._count; }

};

template <class Iter, class Observer>

class SimpleCountObserver {

int* _count;

public:

SimpleCountObserver() : _count(new int(0)) { }

SimpleCountObserver(Observer& obs) :

_count(obs.counter_ptr()) { }

void notify_constructor(const Iter&) { }

void notify_forward(const Iter&) { ++(*_count); }

void notify_update(const Iter&) { }

int counter() const { return *_count; }

int* counter_ptr() const { return _count; }

bool operator==(const SimpleCountObserver& S) const {

return _count==S._count; }

};

Next an exemplary application, which counts the number of calls to operator++ of all

adjacency iterator objects inside dummy algorithm. Here the dummy observer class is

11.12. STL ITERATOR WRAPPER (STLNODEIT) 313

used only as a “Trojan horse,” which carries the pointer to the counter without affecting

the code of the algorithm.

template<class Iter>

bool break_condition (const Iter&) { ... }

template<class ONodeIt, class OAdjIt>

void dummy_algorithm(ONodeIt& it, OAdjIt& it2) {

while (it.valid()) {

for (it2.update(it); it2.valid() && !break_condition(it2); ++it2)

++it;

}

}

int write_count(graph& G) {

typedef DummyObserver<NodeIt> DummyObs;

typedef SimpleCountObserver<AdjIt,DummyObs> CountObs;

typedef ObserverNodeIt<DummyObs,NodeIt> ONodeIt;

typedef ObserverAdjIt<CountObs,AdjIt> OAdjIt;

DummyObs observer;

ONodeIt it(observer,NodeIt(G));

CountObs observer2(observer);

OAdjIt it2(observer2,AdjIt(G));

dummy_algorithm(it,it2);

return it2.get_observer().counter();

}

11.12 STL Iterator Wrapper (STLNodeIt)

1. Definition

An instance it of class STLNodeIt< DataAccessor , Iter > is a STL iterator wrapper for

node iterators (e.g. NodeIt, FilterNodeIt<pred,NodeIt>). It adds all type tags and

methods that are necessary for STL conformance; see the standard draft working paper

for details. The type tag value type is equal to typename DataAccessor::value type

and the return value of operator*.

Class STLEdgeIt and STLAdjIt are defined analogously, i.e. can be used for edge iterators

or adjacency iterators, respectively.

Precondition: The template parameter Iter must be a node iterator. DataAccessor

must be a data accessor.

314 CHAPTER 11. GRAPHS AND ITERATORS

Note: There are specialized versions of STL wrapper iterator classes for each kind of

iterator that return different LEDA graph objects.

class name operator*() returns

NodeIt n node

EdgeIt e edge

AdjIt n node

AdjIt e edge

OutAdjIt n node

OutAdjIt e edge

InAdjIt n node

InAdjIt e edge

#include < LEDA/graph/graph iterator.h >

2. Creation

STLNodeIt< DataAccessor , Iter > it(DataAccessor da, const Iter& base it);

introduces a variable it of this class bound to da and base it .

3. Operations

STLNodeIt<DataAccessor , Iter>& it = typename DataAccessor ::value type i

assigns the value i, i.e. set(DA, it , i) will be invoked
where DA is the associated data accessor and it the
associated iterator.

bool it == const STLNodeIt<DataAccessor , Iter>& it2

returns true if the associated values of it and it2 are
equal, i.e. get(DA, cit)==get(DA, cit2) is true where
cit is the associated iterator of it and cit2 is the as-
sociated iterator of it2 and DA is the associated data
accessor.

bool it != const STLNodeIt<DataAccessor , Iter>& it2

returns false if the associated value equals the one
of the given iterator.

STLNodeIt<DataAccessor , Iter>& it.begin()

resets the iterator to the beginning of the sequence.

STLNodeIt<DataAccessor , Iter>& it.last()

resets the iterator to the ending of the sequence.

STLNodeIt<DataAccessor , Iter>& it.end()

makes the iterators invalid, i.e. past-the-end-value.

11.13. NODE ARRAY DATA ACCESSOR (NODE ARRAY DA) 315

typename DataAccessor ::value type& ∗it
returns a reference to the associated value, which orig-
inally comes from data accessor da. If the associated
iterator it is not valid, a dummy value reference is
returned and should not be used.
Precondition: access(DA, it) returns a non constant
reference to the data associated to it in DA. This
functions is defined for all implemented data accessors
(e.g. node array da, edge array da).

11.13 Node Array Data Accessor (node array da)

1. Definition

An instance da of class node array da<T> is instantiated with a LEDA node array<T>.

The data in the node array can be accessed by the functions get(da, it) and

set(da, it , value) that take as parameters an instance of node array da<T> and an iterator,

see below.

node array da<T>::value type is a type and equals T.

For node map<T> there is the variant node map da<T> which is defined completely anal-

ogous to node array da<T>. Classes edge array da<T> and edge map da<T> are defined

analogously, as well.

#include < LEDA/graph/graph iterator.h >

2. Creation

node array da<T> da;

introduces a variable da of this class that is not bound.

node array da<T> da(leda ::node array<T>& na);

introduces a variable da of this class bound to na.

3. Operations

T get(const node array da<T>& da, const Iter& it)

returns the associated value of it for this accessor.

void set(node array da<T>& da, const Iter& it , T val)

sets the associated value of it for this accessor to the
given value.

316 CHAPTER 11. GRAPHS AND ITERATORS

4. Implementation

Constant Overhead.

5. Example

We count the number of ’red nodes’ in a parameterized graph G.

int count_red(graph G, node_array<color> COL) {

node_array_da<color> Color(COL);

int counter=0;

NodeIt it(G);

while (it.valid()) {

if (get(Color,it)==red) counter++;

it++; }

return counter;

}

Suppose we want to make this ’algorithm’ flexible in the representation of colors. Then

we could write this version:

template<class DA>

int count_red_t(graph G, DA Color) {

int counter=0;

NodeIt it(G);

while (it.valid()) {

if (get(Color,it)==red) counter++;

it++; }

return counter;

}

With the templatized version it is easily to customize it to match the interface of the

version:

int count_red(graph G, node_array<color> COL) {

node_array_da<color> Color(COL);

return count_red_t(G,Color); }

11.14. CONSTANT ACCESSORS (CONSTANT DA) 317

11.14 Constant Accessors (constant da)

1. Definition

An instance ca of class constant da<T> is bound to a specific value of type T, and the

function get(ca, it) simply returns this value for each iterator.

#include < LEDA/graph/graph iterator.h >

2. Creation

constant da<T> ca(T t);

introduces a variable ca of this class bound to the given value t.

3. Operations

T get(const constant da<T>& ca, const Iter& it)

returns the value to which ca is bound.

4. Example

With the template function of sect. 11.13 we can write a function that counts the number

of nodes in a graph:

int count_all(graph G) {

constant_da<color> Color(red);

return count_red_t(G,Color); }

11.15 Node Member Accessors (node member da)

1. Definition

An instance da of class node member da<Str , T> manages the access to a node parameter

that is organized as a member of a struct type, which is the first template argument of a

parameterized graph GRAPH<Str,?>. The parameter is of type T and the struct of type

Str.

Classes edge member da<Str , T> is defined completely analogously.

#include < LEDA/graph/graph iterator.h >

318 CHAPTER 11. GRAPHS AND ITERATORS

2. Creation

node member da<Str , T> da;

introduces a variable da of this class that is not bound.

node member da<Str , T> da(Ptr ptr);

introduces a variable da of this class, which is bound to ptr .

3. Operations

T get(const node member da<Str , T>& ma, const Iter& it)

returns the associated value of it for this accessor.

void set(node member da<Str , T>& ma, const Iter& it , T val)

sets the associated value of it for this accessor to the
given value.

4. Implementation

Constant Overhead.

The instance da accesses its parameter through a pointer to member of type Ptr, which

is defined for example by typedef T Str::*Ptr.

5. Example

We have a parameterized graph G where the node information type is the following struct

type Str:

struct Str {

int x;

color col; };

We want to count the number of red nodes. Since we have the template function of

sect. 11.13 we can easily use it to do the computation:

int count_red(GRAPH<Str,double> G) {

node_member_da<Str,color> Color(&Str::col);

return count_red_t(G,Color); }

11.16. NODE ATTRIBUTE ACCESSORS (NODE ATTRIBUTE DA) 319

11.16 Node Attribute Accessors (node attribute da

)

1. Definition

An instance da of class node attribute da<T> manages the access to a node parameter

with type T of a parameterized graph GRAPH<T,?>.

Classes edge attribute da<T> is defined completely analogously.

#include < LEDA/graph/graph iterator.h >

2. Creation

node attribute da<T> da;

introduces a variable da of this class.

3. Operations

T get(const node attribute da<T>& ma, const Iter& it)

returns the associated value of it for this accessor.

void set(node attribute da<T>& ma, const Iter& it , T val)

sets the associated value of it for this accessor to the
given value.

4. Implementation

Constant Overhead.

5. Example

Given a parameterized graph G with nodes associated with colours, we want to count the

number of red nodes. Since we have the template function of sect. 11.13 we can easily use

it to do the computation:

int count_red(GRAPH<color,double> G) {

node_attribute_da<color> Color;

return count_red_t(G,Color); }

320 CHAPTER 11. GRAPHS AND ITERATORS

11.17 Breadth First Search (flexible) (GIT BFS)

1. Definition

An instance algorithm of class GIT BFS< OutAdjIt , Queuetype, Mark > is an implemen-

tation of an algorithm that traverses a graph in a breadth first order. The queue used for

the search must be provided by the caller and contains the source(s) of the search.

• If the queue is only modified by appending the iterator representing the source node

onto the queue, a normal breadth first search beginning at the node of the graph is

performed.

• It is possible to initialize the queue with several iterators that represent different

roots of breadth first trees.

• By modifying the queue while running the algorithm the behaviour of the algorithm

can be changed.

• After the algorithm performed a breadth first search, one may append another

iterator onto the queue to restart the algorithm.

Iterator version: There is an iterator version of this algorithm: BFS It. Usage is similar

to that of node iterators without the ability to go backward in the sequence.

#include < LEDA/graph/graph iterator.h >

2. Creation

GIT BFS< OutAdjIt , Queuetype, Mark >

algorithm(const Queuetype& q, Mark& ma);

creates an instance algorithm of this class bound to the Queue q
and data accessor ma.

Preconditions:

• Queuetype is a queue parameterized with items of type OutAdjIt.

• q contains the sources of the traversal (for each source node an adjacency iterator

referring to it) and

• ma is a data accessor that provides read and write access to a boolean value for

each node (accessed through iterators). This value is assumed to be freely usable

by algorithm.

11.17. BREADTH FIRST SEARCH (FLEXIBLE) (GIT BFS) 321

GIT BFS< OutAdjIt , Queuetype, Mark >

algorithm(const Queuetype& q, Mark& ma, const OutAdjIt& ai);

creates an instance algorithm of this class bound to the queue q,
data accessor ma and the adjacency iterator ai representing the
source node of the breadth first traversal.

3. Operations

void algorithm.next() Performs one iteration of the core loop of the algo-
rithm.

OutAdjIt algorithm.current() returns the “current” iterator.

void algorithm.finish algo()

executes the algorithm until finished() is true, i.e.
exactly if the Queue is empty.

bool algorithm.finished() returns true if the internal Queue is empty.

Queuetype& algorithm.get queue()

gives direct access to internal Queue.

4. Example

This example shows how to implement an algorithmic iterator for breadth first search:

class BFS_It {

AdjIt _source;

node_array<da> _handler;

node_array_da<bool> _mark;

queue<AdjIt> _q;

GIT_BFS<AdjIt,queue<AdjIt>,node_array_da<bool> > _search;

public:

BFS_It(graph& G) :

_source(AdjIt(G)), _handler(G,false),

_mark(_handler), _search(_q,_mark)

{

_search.get_queue().clear();

_search.get_queue().append(_source);

}

bool valid() const { return !_search.finished(); }

node get_node() const { return _search.current().get_node(); }

BFS_It& operator++() {

_search.next(); return *this; }

};

322 CHAPTER 11. GRAPHS AND ITERATORS

With this iterator you can easily iterate through a graph in breadth first fashion :

graph G;

BFS_It it(G);

while (it.valid()) {

// do something reasonable with ’it.get_node()’

++it;

}

5. Implementation

Each operation requires constant time. Therefore, a normal breadth-first search needs

O(m+ n) time.

11.18 Depth First Search (flexible) (GIT DFS)

1. Definition

An instance algorithm of class GIT DFS< OutAdjIt , Stacktype, Mark > is an implemen-

tation of an algorithm that traverses a graph in a depth first order. The stack used for

the search must be provided by the caller and contains the source(s) of the search.

• If the stack is only modified by pushing the iterator representing the source node

onto the stack, a normal depth first search beginning at the node of the graph is

performed.

• It is possible to initialize the stack with several iterators that represent different

roots of depth first trees.

• By modifying the stack while running the algorithm the behaviour of the algorithm

can be changed.

• After the algorithm performed a depth first search, one may push another iterator

onto the stack to restart the algorithm.

A next step may return a state which describes the last action. There are the following

three possibilities:

1. dfs shrink: an adjacency iterator was popped from the stack, i.e. the treewalk

returns in root-direction

2. dfs leaf: same as dfs shrink, but a leaf occured

11.18. DEPTH FIRST SEARCH (FLEXIBLE) (GIT DFS) 323

3. dfs grow depth: a new adjacency iterator was appended to the stack because it

was detected as not seen before, i.e. the treewalk goes in depth-direction

4. dfs grow breadth: the former current adjacency iterator was replaced by the suc-

cessor iterator, i.e. the treewalk goes in breadth-direction

Iterator version: There is an iterator version of this algorithm: DFS It. Usage is similar

to that of node iterators without the ability to go backward in the sequence.

#include < LEDA/graph/graph iterator.h >

2. Creation

GIT DFS< OutAdjIt , Stacktype, Mark >

algorithm(const Stacktype& st , Mark& ma);

creates an instance algorithm of this class bound to the stack st
and data accessor ma.

Preconditions:

• Stacktype is a stack parameterized with items of type OutAdjIt.

• st contains the sources of the traversal (for each source node an adjacency iterator

referring to it) and

• ma is a data accessor that provides read and write access to a boolean value for

each node (accessed through iterators). This value is assumed to be freely usable

by algorithm.

GIT DFS< OutAdjIt , Stacktype, Mark >

algorithm(const Stacktype& st , Mark& ma, const OutAdjIt& ai);

creates an instance algorithm of this class bound to the stack st ,
data accessor ma and the adjacency iterator ai representing the
source node of the depth first traversal.

3. Operations

void algorithm.next unseen()

Performs one iteration of the core loop of the algo-
rithm for one unseen node of the graph.

dfs return algorithm.next() Performs one iteration of the core loop of the algo-
rithm.

OutAdjIt algorithm.current() returns the “current” iterator.

324 CHAPTER 11. GRAPHS AND ITERATORS

void algorithm.finish algo()

executes the algorithm until finished() is true, i.e.
exactly if the stack is empty.

bool algorithm.finished() returns true if the internal stack is empty.

void algorithm.init(OutAdjIt s)

initializes the internal stack with s.

Stacktype& algorithm.get stack() gives direct access to internal stack.

4. Implementation

Each operation requires constant time. Therefore, a normal depth-first search needs

O(m+ n) time.

11.19 Topological Sort (flexible) (GIT TOPOSORT

)

1. Definition

An instance algorithm of class GIT TOPOSORT< OutAdjIt , Indeg , Queuetype > is an

implementation of an algorithm that iterates over all nodes in some topological order, if

the underlying graph is acyclic. An object of this class maintains an internal queue, which

contains all nodes (in form of adjacency iterators where the current node is equal to the

fixed node) that are not yet passed, but all its predecessors have been passed.

Iterator version: There is an iterator version of this algorithm: TOPO It. Usage is

similar to that of node iterators without the ability to go backward in the sequence and

only a graph is allowed at creation time. Additionally there is TOPO rev It which traverses

the graph in reversed topological order.

#include < LEDA/graph/graph iterator.h >

2. Creation

GIT TOPOSORT< OutAdjIt , Indeg , Queuetype >

algorithm(Indeg& indegree);

creates an instance algorithm of this class bound to indeg . The
internal queue of adjacency iterators is empty.

Preconditions:

• Indeg is a data accessor that must provide both read and write access

11.19. TOPOLOGICAL SORT (FLEXIBLE) (GIT TOPOSORT) 325

• indegree stores for every node that corresponds to any iterator the number of in-

coming edges (has to be to computed before)

• Queuetype is a queue parameterized with elements of type OutAdjIt

The underlying graph need not be acyclic. Whether or not it is acyclic can be tested after

execution of the algorithm (function cycle found()).

3. Operations

void algorithm.next() Performs one iteration of the core loop of the al-
gorithm. More specifically, the first element of
get queue() is removed from the queue, and every
immediate successor n of this node for which currently
holds get(indeg,n)==0 is inserted in get queue().

void algorithm.finish algo()

executes the algorithm until finished() is true, i.e.
exactly if the queue is empty.

bool algorithm.finished() returns true if the internal queue is empty.

OutAdjIt algorithm.current() returns the current adjacency iterator.

Queuetype& algorithm.get queue()

gives direct access to internal queue.

bool algorithm.cycle found()

returns true if a cycle was found.

void algorithm.reset acyclic()

resets the internal flag that a cycle was found.

4. Implementation

The asymptotic complexity is O(m + n), where m is the number of edges and n the

number of nodes.

5. Example

This algorithm performs a normal topological sort if the queue is initialized by the set of

all nodes with indegree zero:

Definition of algorithm, where indeg is a data accessor that provides full data access to

the number of incoming edges for each node:

GIT_TOPOSORT<OutAdjIt,Indeg,Queuetype<Nodehandle> > algorithm(indeg);

326 CHAPTER 11. GRAPHS AND ITERATORS

Initialization of get queue() with all nodes of type OutAdjIt::nodetype that have zero

indegree, i.e. get(indeg,it)==indeg.value null.

while (!algorithm.finished()) {

// do something reasonable with algo.current()

algo.next();

}

The source code of function toposort count() is implemented according to this pattern

and may serve as a concrete example.

11.20 Strongly Connected Components (flexible) (

GIT SCC)

1. Definition

An instance algorithm of class GIT SCC< Out , In, It , OutSt , InSt , NSt , Mark > is an

implementation of an algorithm that computes the strongly connected components.

Iterator version: There is an iterator version of this algorithm: SCC It. Usage is similar

to that of node iterators without the ability to go backward in the sequence and only a

graph is allowed at creation time. Method compnumb() returns the component number of

the current node.

#include < LEDA/graph/graph iterator.h >

2. Creation

GIT SCC< Out , In, It , OutSt , InSt , NSt , Mark >

algorithm(OutSt ost , InSt ist , Mark ma, Out oai , const It& it , In iai);

creates an instance algorithm of this class bound to the stack st
and data accessor ma.

Preconditions:

• Out is an adjacency iterator that iterates over the outgoing edges of a fixed vertex

• In is an adjacency iterator that iterates over the incoming edges of a fixed vertex

• OutSt is stack parameterized with items of type Out

• InSt is stack parameterized with items of type In

11.20. STRONGLY CONNECTED COMPONENTS (FLEXIBLE) (GIT SCC) 327

• Mark is a data accessor that has access to a boolean value that is associated with

each node of the graph

3. Operations

int algorithm.state() returns the internal state.

• NEXT OUT =first phase,

• NEXT ORDER =order phase,

• NEXT IN=second phase,

• NEXT DONE =algorithm finished

void algorithm.finish algo()

executes the algorithm until finished() is true.

bool algorithm.finished() returns true if the algorithm is finished.

InSt& algorithm.get in stack()

gives direct access to the internal stack of incoming
adjacency iterators.

In algorithm.in current()

returns the current iterator of the internal stack of
incoming adjacency iterators.

OutSt& algorithm.get out stack()

gives direct access to the internal stack of outgoing
adjacency iterators.

Out algorithm.out current()

returns the current iterator of the internal stack of
outgoing adjacency iterators.

itnodetype algorithm.current node()

returns the current node.

int algorithm.compnumb()

returns the component number of the fixed node of
the current iterator if current state is NEXT IN.

int algorithm.next() Performs one iteration of the core loop of the algo-
rithm.

4. Implementation

Each operation requires constant time. The algorithm has running time O(|V |+ |E|).

328 CHAPTER 11. GRAPHS AND ITERATORS

11.21 Dijkstra(flexible) (GIT DIJKSTRA)

1. Definition

An instance algorithm of this class is an implementation of Dijkstra that can be flexibly

initialized, stopped after each iteration of the core loop, and continued, time and again.

Iterator version: There is an iterator version of this algorithm: DIJKSTRA It. Usage is

more complex and is documented in the graphiterator leda extension package.

#include < LEDA/graph/graph iterator.h >

2. Creation

GIT DIJKSTRA< OutAdjIt , Length, Distance, PriorityQueue, QueueItem >

algorithm(const Length& l, Distance& d, const QueueItem& qi);

creates an instance algorithm of this class.

The length and distance data accessors are initialized by the parameter list. The set of

sources is empty. Length is a read only data accessor that gives access to the length of

edges and Distance is a read/write data accessor that stores the distance of the nodes.

PriorityQueue is a Queue parameterized with element of type OutAdjIt and QueueItem

is a data accessor gives access to elements of type PriorityQueue::pq item.

Precondition: All edge lengths are initialized by values that are large enough to be

taken as infinity.

Remark: This precondition is not necessary for the algorithm to have a defined behavior.

In fact, it may even make sense to break this precondition deliberately. For example, if

the distances have been computed before and shall only be updated after inserting new

edges, it makes perfect sense to start the algorithm with these distances.

For a completely new computation, the node distances of all nodes are initialized to

infinity(i.e. distance.value max).

3. Operations

PriorityQueue& algorithm.get queue()

gives direct access to internal priority queue.

void algorithm.init(OutAdjIt s)

s is added to the set of sources.

bool algorithm.finished() is true iff the algorithm is finished, i.e. the priority
queue is empty.

OutAdjIt algorithm.current() returns the current adjacency iterator.

11.21. DIJKSTRA(FLEXIBLE) (GIT DIJKSTRA) 329

OutAdjIt algorithm.curr adj() returns the an adjacency iterator that is currently ad-
jacent to current().

bool algorithm.is pred() returns true if the current iterator satisfies the dijkstra
condition. Can be used to compute the predecessors.

void algorithm.next() performs one iteration of the core loop of the algo-
rithm.

void algorithm.finish algo()

executes the algorithm until finished() is true, i.e.
exactly if the priority queue is empty.

4. Example

Class GIT DIJKSTRA may be used in a deeper layer in a hierarchy of classes and functions.

For example, you may write a function which computes shortes path distances with given

iterators and data accessors:

template<class OutAdjIt, class Length, class Distance,

class PriorityQueue, class QueueItem>

void GIT_dijkstra_core(OutAdjIt s, Length& length, Distance& distance,

PriorityQueue& pq, QueueItem& qi) {

GIT_DIJKSTRA<OutAdjIt,Length,Distance,PriorityQueue,QueueItem>

internal_dijk(length,distance,qi);

internal_dijk.get_queue()=pq;

set(distance,s,distance.value_null);

if (s.valid()) {

internal_dijk.init(s);

internal_dijk.finish_algo();

}

}

In another layer, you would instantiate these iterators and data acessors for a graph and

invoke this function.

5. Implementation

The asymptotic complexity is O(m + n · T (n)), where T (n) is the(possibly amortized)

complexity of a single queue update.

For the priority queues described in Chapter 8.1, it is T (n) = O(log n).

330 CHAPTER 11. GRAPHS AND ITERATORS

Chapter 12

Basic Data Types for
Two-Dimensional Geometry

LEDA provides a collection of simple data types for computational geometry, such as
points, vectors, directions, hyperplanes, segments, rays, lines, affine transformations, cir-
cles, polygons, and operations connecting these types.

The computational geometry kernel has evolved over time. The first kernel (types point,
line, . . .) was restricted to two-dimensional geometry and used floating point arithmetic
as the underlying arithmetic. We found it very difficult to implement reliable geometric al-
gorithms based on this kernel. See the chapter on computational geometry of [66] for some
examples of the danger of floating point arithmetic in geometric computations. Starting
with version 3.2 we therefore also provided a kernel based on exact rational arithmetic
(types rat point, rat segment . . .). (This kernel is still restricted to two dimensions.)
From version 4.5 on we offer a two-dimensional kernel based on the type real, which
also guarantees exact results. The corresponding data types are named real point,
real segment, . . .

All two-dimensional object types defined in this section support the following operations:

Equality and Identity Tests

bool identical(object p, object q) Test for identity.
bool p == q Test for equality.
bool p! = q Test for inequality.

I/O Operators

ostream& ostream& O << object x writes the object x to output stream O.
istream& istream& I >> object& x reads an object from input stream I into variable x.

331

332 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

12.1 Points (point)

1. Definition

An instance of the data type point is a point in the two-dimensional plane R2. We use

(x, y) to denote a point with first (or x-) coordinate x and second (or y-) coordinate y.

#include < LEDA/geo/point.h >

2. Types

point ::coord type the coordinate type (double).

point ::point type the point type (point).

3. Creation

point p; introduces a variable p of type point initialized to the point
(0, 0).

point p(double x, double y);

introduces a variable p of type point initialized to the point
(x, y).

point p(vector v); introduces a variable p of type point initialized to the point
(v[0], v[1]).
Precondition: : v.dim() = 2.

point p(const point& p, int prec);

introduces a variable p of type point initialized to the point
with coordinates (⌊P ∗ x⌋/P, ⌊P ∗ x⌋/P), where p = (x, y)
and P = 2prec. If prec is non-positive, the new point has
coordinates x and y.

4. Operations

double p.xcoord() returns the first coordinate of p.

double p.ycoord() returns the second coordinate of p.

vector p.to vector() returns the vector ~xy.

int p.orientation(const point& q, const point& r)

returns orientation(p, q, r) (see below).

double p.area(const point& q, const point& r)

returns area(p, q, r) (see below).

12.1. POINTS (POINT) 333

double p.sqr dist(const point& q)

returns the square of the Euclidean distance between p
and q.

int p.cmp dist(const point& q, const point& r)

returns compare(p.sqr dist(q), p.sqr dist(r)).

double p.xdist(const point& q)

returns the horizontal distance between p and q.

double p.ydist(const point& q)

returns the vertical distance between p and q.

double p.distance(const point& q)

returns the Euclidean distance between p and q.

double p.distance() returns the Euclidean distance between p and (0, 0).

double p.angle(const point& q, const point& r)

returns the angle between ~pq and ~pr.

point p.translate by angle(double alpha, double d)

returns p translated in direction alpha by distance d.
The direction is given by its angle with a right oriented
horizontal ray.

point p.translate(double dx , double dy)

returns p translated by vector (dx, dy).

point p.translate(const vector& v)

returns p+v, i.e., p translated by vector v.
Precondition: v.dim() = 2.

point p+ const vector& v returns p translated by vector v.

point p− const vector& v returns p translated by vector −v.

point p.rotate(const point& q, double a)

returns p rotated about q by angle a.

point p.rotate(double a) returns p.rotate(point(0, 0), a).

point p.rotate90(const point& q, int i = 1)

returns p rotated about q by an angle of i× 90 degrees.
If i > 0 the rotation is counter-clockwise otherwise it is
clockwise.

point p.rotate90(int i = 1) returns p.rotate90(point(0, 0), i).

334 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

point p.reflect(const point& q, const point& r)

returns p reflected across the straight line passing
through q and r.

point p.reflect(const point& q)

returns p reflected across point q.

vector p− const point& q returns the difference vector of the coordinates.

Non-Member Functions

int cmp distances(const point& p1 , const point& p2 , const point& p3 ,
const point& p4)

compares the distances (p1 , p2) and (p3 , p4). Returns
+1 (−1) if distance (p1 , p2) is larger (smaller) than dis-
tance (p3 , p4), otherwise 0.

point center(const point& a, const point& b)

returns the center of a and b, i.e. a+ ~ab/2.

point midpoint(const point& a, const point& b)

returns the center of a and b.

int orientation(const point& a, const point& b, const point& c)

computes the orientation of points a, b, and c as the
sign of the determinant

∣

∣

∣

∣

∣

∣

∣

ax ay 1
bx by 1
cx cy 1

∣

∣

∣

∣

∣

∣

∣

i.e., it returns +1 if point c lies left of the directed line
through a and b, 0 if a,b, and c are collinear, and −1
otherwise.

int cmp signed dist(const point& a, const point& b, const point& c,
const point& d)

compares (signed) distances of c and d to the straight
line passing through a and b (directed from a to b). Re-
turns +1 (−1) if c has larger (smaller) distance than d
and 0 if distances are equal.

double area(const point& a, const point& b, const point& c)

computes the signed area of the triangle determined by
a,b,c, positive if orientation(a, b, c) > 0 and negative
otherwise.

12.1. POINTS (POINT) 335

bool collinear(const point& a, const point& b, const point& c)

returns true if points a, b, c are collinear, i.e.,
orientation(a, b, c) = 0, and false otherwise.

bool right turn(const point& a, const point& b, const point& c)

returns true if points a, b, c form a righ turn, i.e.,
orientation(a, b, c) < 0, and false otherwise.

bool left turn(const point& a, const point& b, const point& c)

returns true if points a, b, c form a left turn, i.e.,
orientation(a, b, c) > 0, and false otherwise.

int side of halfspace(const point& a, const point& b, const point& c)

returns the sign of the scalar product (b − a) · (c − a).
If b 6= a this amounts to: Let h be the open halfspace
orthogonal to the vector b− a, containing b, and having
a in its boundary. Returns +1 if c is contained in h,
returns 0 is c lies on the the boundary of h, and returns
−1 is c is contained in the interior of the complement of
h.

int side of circle(const point& a, const point& b, const point& c, const point& d)

returns +1 if point d lies left of the directed circle
through points a, b, and c, 0 if a,b,c,and d are cocir-
cular, and −1 otherwise.

bool inside circle(const point& a, const point& b, const point& c, const point& d)

returns true if point d lies in the interior of the circle
through points a, b, and c, and false otherwise.

bool outside circle(const point& a, const point& b, const point& c, const point& d)

returns true if point d lies outside of the circle through
points a, b, and c, and false otherwise.

bool on circle(const point& a, const point& b, const point& c, const point& d)

returns true if points a, b, c, and d are cocircular.

bool cocircular(const point& a, const point& b, const point& c, const point& d)

returns true if points a, b, c, and d are cocircular.

int compare by angle(const point& a, const point& b, const point& c,
const point& d)

compares vectors b−a and d−c by angle (more efficient
than calling compare by angle(b− a, d− x) on vectors).

bool affinely independent(const array<point>& A)

decides whether the points in A are affinely independent.

336 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

bool contained in simplex(const array<point>& A, const point& p)

determines whether p is contained in the simplex
spanned by the points in A. A may consist of up to
3 points.
Precondition: The points in A are affinely independent.

bool contained in affine hull(const array<point>& A, const point& p)

determines whether p is contained in the affine hull of
the points in A.

12.2. SEGMENTS (SEGMENT) 337

12.2 Segments (segment)

1. Definition

An instance s of the data type segment is a directed straight line segment in the two-

dimensional plane, i.e., a straight line segment [p, q] connecting two points p, q ∈ R2. p is

called the source or start point and q is called the target or end point of s. The length of

s is the Euclidean distance between p and q. If p = q s is called empty. We use line(s)

to denote a straight line containing s. The angle between a right oriented horizontal ray

and s is called the direction of s.

#include < LEDA/geo/segment.h >

2. Types

segment ::coord type the coordinate type (double).

segment ::point type the point type (point).

3. Creation

segment s(const point& p, const point& q);

introduces a variable s of type segment . s is initialized to the
segment [p, q].

segment s(const point& p, const vector& v);

introduces a variable s of type segment . s is initialized to the
segment [p, p+ v].
Precondition: v.dim() = 2.

segment s(double x1 , double y1 , double x2 , double y2);

introduces a variable s of type segment . s is initialized to the
segment [(x1, y1), (x2, y2)].

segment s(const point& p, double alpha, double length);

introduces a variable s of type segment . s is initialized to
the segment with start point p, direction alpha, and length
length.

segment s; introduces a variable s of type segment . s is initialized to the
empty segment.

segment s(const segment& s1 , int);

introduces a variable s of type segment . s is initialized to a
copy of s1.

338 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

4. Operations

point s.start() returns the source point of segment s.

point s.end() returns the target point of segment s.

double s.xcoord1() returns the x-coordinate of s.source().

double s.xcoord2() returns the x-coordinate of s.target().

double s.ycoord1() returns the y-coordinate of s.source().

double s.ycoord2() returns the y-coordinate of s.target().

double s.dx() returns the xcoord2− xcoord1.

double s.dy() returns the ycoord2− ycoord1.

double s.slope() returns the slope of s.
Precondition: s is not vertical.

double s.sqr length() returns the square of the length of s.

double s.length() returns the length of s.

vector s.to vector() returns the vector s.target()− s.source().

double s.direction() returns the direction of s as an angle in the intervall [0, 2π).

double s.angle() returns s.direction().

double s.angle(const segment& t)

returns the angle between s and t, i.e., t.direction() -
s.direction().

bool s.is trivial() returns true if s is trivial.

bool s.is vertical() returns true iff s is vertical.

bool s.is horizontal() returns true iff s is horizontal.

int s.orientation(const point& p)

computes orientation(s.source(), s.target(), p) (see below).

double s.x proj(double y) returns p.xcoord(), where p ∈ line(s) with p.ycoord() = y.
Precondition: s is not horizontal.

double s.y proj(double x) returns p.ycoord(), where p ∈ line(s) with p.xcoord() = x.
Precondition: s is not vertical.

double s.y abs() returns the y-abscissa of line(s), i.e., s.y proj(0).
Precondition: s is not vertical.

12.2. SEGMENTS (SEGMENT) 339

bool s.contains(const point& p)

decides whether s contains p.

bool s.intersection(const segment& t)

decides whether s and t intersect in one point.

bool s.intersection(const segment& t, point& p)

if s and t intersect in a single point this point is assigned
to p and the result is true, otherwise the result is false.

bool s.intersection of lines(const segment& t, point& p)

if line(s) and line(t) intersect in a single point this point
is assigned to p and the result is true, otherwise the result
is false.

segment s.translate by angle(double alpha, double d)

returns s translated in direction alpha by distance d.

segment s.translate(double dx , double dy)

returns s translated by vector (dx, dy).

segment s.translate(const vector& v)

returns s+ v, i.e., s translated by vector v.
Precondition: v.dim() = 2.

segment s+ const vector& v

returns s translated by vector v.

segment s− const vector& v

returns s translated by vector −v.

segment s.perpendicular(const point& p)

returns the segment perpendicular to s with source p and
target on line(s).

double s.distance(const point& p)

returns the Euclidean distance between p and s.

double s.sqr dist(const point& p)

returns the squared Euclidean distance between p and s.

double s.distance() returns the Euclidean distance between (0, 0) and s.

segment s.rotate(const point& q, double a)

returns s rotated about point q by angle a.

segment s.rotate(double alpha)

returns s.rotate(s.source(), alpha).

340 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

segment s.rotate90(const point& q, int i = 1)

returns s rotated about q by an angle of i × 90 degrees.
If i > 0 the rotation is counter-clockwise otherwise it is
clockwise.

segment s.rotate90(int i = 1)

returns s.rotate90(s.source(),i).

segment s.reflect(const point& p, const point& q)

returns s reflected across the straight line passing through
p and q.

segment s.reflect(const point& p)

returns s reflected across point p.

segment s.reverse() returns s reversed.

Non-Member Functions

int orientation(const segment& s, const point& p)

computes orientation(s.source(), s.target(), p).

int cmp slopes(const segment& s1 , const segment& s2)

returns compare(slope(s1), slope(s2)).

int cmp segments at xcoord(const segment& s1 , const segment& s2 ,
const point& p)

compares points l1 ∩ v and l2 ∩ v where li is the line under-
lying segment si and v is the vertical straight line passing
through point p.

bool parallel(const segment& s1 , const segment& s2)

returns true if s1 and s2 are parallel and false otherwise.

12.3. STRAIGHT RAYS (RAY) 341

12.3 Straight Rays (ray)

1. Definition

An instance r of the data type ray is a directed straight ray in the two-dimensional plane.

The angle between a right oriented horizontal ray and r is called the direction of r.

#include < LEDA/geo/ray.h >

2. Types

ray ::coord type the coordinate type (double).

ray ::point type the point type (point).

3. Creation

ray r(const point& p, const point& q);

introduces a variable r of type ray . r is initialized to the ray
starting at point p and passing through point q.

ray r(const segment& s); introduces a variable r of type ray . r is initialized to
ray(s.source(), s.target()).

ray r(const point& p, const vector& v);

introduces a variable r of type ray . r is initialized to ray(p, p+
v).

ray r(const point& p, double alpha);

introduces a variable r of type ray . r is initialized to the ray
starting at point p with direction alpha.

ray r; introduces a variable r of type ray . r is initialized to the ray
starting at the origin with direction 0.

ray r(const ray& r1 , int);

introduces a variable r of type ray . r is initialized to a copy
of r1. The second argument is for compatibility with rat ray .

4. Operations

point r.source() returns the source of r.

point r.point1() returns the source of r.

point r.point2() returns a point on r different from r.source().

342 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

double r.direction() returns the direction of r.

double r.angle(const ray& s) returns the angle between r and s, i.e.,
s.direction() − r.direction().

bool r.is vertical() returns true iff r is vertical.

bool r.is horizontal() returns true iff r is horizontal.

double r.slope() returns the slope of the straight line underlying r.
Precondition: r is not vertical.

bool r.intersection(const ray& s, point& inter)

if r and s intersect in a single point this point is
assigned to inter and the result is true, otherwise
the result is false.

bool r.intersection(const segment& s, point& inter)

if r and s intersect in a single point this point is
assigned to inter and the result is true, otherwise
the result is false.

bool r.intersection(const segment& s)

test if r and s intersect.

ray r.translate by angle(double a, double d)

returns r translated in direction a by distance d.

ray r.translate(double dx , double dy)

returns r translated by vector (dx, dy).

ray r.translate(const vector& v)

returns r translated by vector v
Precondition: v.dim() = 2.

ray r + const vector& v returns r translated by vector v.

ray r − const vector& v returns r translated by vector −v.

ray r.rotate(const point& q, double a)

returns r rotated about point q by angle a.

ray r.rotate(double a) returns r.rotate(point(0, 0), a).

ray r.rotate90(const point& q, int i = 1)

returns r rotated about q by an angle of i × 90
degrees. If i > 0 the rotation is counter-clockwise
otherwise it is clockwise.

12.3. STRAIGHT RAYS (RAY) 343

ray r.reflect(const point& p, const point& q)

returns r reflected across the straight line passing
through p and q.

ray r.reflect(const point& p) returns r reflected across point p.

ray r.reverse() returns r reversed.

bool r.contains(const point&) decides whether r contains p.

bool r.contains(const segment&)

decides whether r contains s.

Non-Member Functions

int orientation(const ray& r, const point& p)

computes orientation(a, b, p), where a 6= b and a
and b appear in this order on ray r.

int cmp slopes(const ray& r1 , const ray& r2)

returns compare(slope(r1), slope(r2)) where
slope(ri) denotes the slope of the straight line
underlying ri.

344 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

12.4 Straight Lines (line)

1. Definition

An instance l of the data type line is a directed straight line in the two-dimensional plane.

The angle between a right oriented horizontal line and l is called the direction of l.

#include < LEDA/geo/line.h >

2. Types

line ::coord type the coordinate type (double).

line ::point type the point type (point).

3. Creation

line l(const point& p, const point& q);

introduces a variable l of type line. l is initialized to the line
passing through points p and q directed form p to q.

line l(const segment& s); introduces a variable l of type line. l is initialized to the line
supporting segment s.

line l(const ray& r); introduces a variable l of type line. l is initialized to the line
supporting ray r.

line l(const point& p, const vector& v);

introduces a variable l of type line. l is initialized to the line
passing through points p and p+ v.

line l(const point& p, double alpha);

introduces a variable l of type line. l is initialized to the line
passing through point p with direction alpha.

line l; introduces a variable l of type line. l is initialized to the line
passing through the origin with direction 0.

4. Operations

point l.point1() returns a point on l.

point l.point2() returns a second point on l.

segment l.seg() returns a segment on l.

double l.angle(const line& g) returns the angle between l and g, i.e.,
g.direction() − l.direction().

12.4. STRAIGHT LINES (LINE) 345

double l.direction() returns the direction of l.

double l.angle() returns l.direction().

bool l.is vertical() returns true iff l is vertical.

bool l.is horizontal() returns true iff l is horizontal.

double l.sqr dist(const point& q) returns the square of the distance between l and
q.

double l.distance(const point& q) returns the distance between l and q.

int l.orientation(const point& p)

returns orientation(l.point1(), l.point2(), p).

double l.slope() returns the slope of l.
Precondition: l is not vertical.

double l.y proj(double x) returns p.ycoord(), where p ∈ l with p.xcoord() =
x.
Precondition: l is not vertical.

double l.x proj(double y) returns p.xcoord(), where p ∈ l with p.ycoord() =
y.
Precondition: l is not horizontal.

double l.y abs() returns the y-abscissa of l (l.y proj(0)).
Precondition: l is not vertical.

bool l.intersection(const line& g, point& p)

if l and g intersect in a single point this point is
assigned to p and the result is true, otherwise the
result is false.

bool l.intersection(const segment& s, point& inter)

if l and s intersect in a single point this point is
assigned to p and the result is true, otherwise the
result is false.

bool l.intersection(const segment& s)

returns true, if l and s intersect, false otherwise.

line l.translate by angle(double a, double d)

returns l translated in direction a by distance d.

line l.translate(double dx , double dy)

returns l translated by vector (dx, dy).

346 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

line l.translate(const vector& v)

returns l translated by vector v.
Precondition: v.dim() = 2.

line l + const vector& v returns l translated by vector v.

line l − const vector& v returns l translated by vector −v.

line l.rotate(const point& q, double a)

returns l rotated about point q by angle a.

line l.rotate(double a) returns l.rotate(point(0, 0), a).

line l.rotate90(const point& q, int i = 1)

returns l rotated about q by an angle of i × 90
degrees. If i > 0 the rotation is counter-clockwise
otherwise it is clockwise.

line l.reflect(const point& p, const point& q)

returns l reflected across the straight line passing
through p and q.

line l.reverse() returns l reversed.

segment l.perpendicular(const point& p)

returns the segment perpendicular to l with source
p. and target on l.

point l.dual() returns the point dual to l.
Precondition: l is not vertical.

int l.side of(const point& p) computes orientation(a, b, p), where a 6= b and a
and b appear in this order on line l.

bool l.contains(const point& p) returns true if p lies on l.

bool l.clip(point p, point q, segment& s)

clips l at the rectangle R defined by p and q. Re-
turns true if the intersection of R and l is non-
empty and returns false otherwise. If the intersec-
tion is non-empty the intersection is assigned to
s; It is guaranteed that the source node of s is no
larger than its target node.

Non-Member Functions

int orientation(const line& l, const point& p)

computes orientation(a, b, p), where a 6= b and a
and b appear in this order on line l.

12.4. STRAIGHT LINES (LINE) 347

int cmp slopes(const line& l1 , const line& l2)

returns compare(slope(l1), slope(l2)).

348 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

12.5 Circles (circle)

1. Definition

An instance C of the data type circle is an oriented circle in the plane passing through

three points p1, p2, p3. The orientation of C is equal to the orientation of the three

defining points, i.e. orientation(p1, p2, p3). If |{p1, p2, p3}|= 1 C is the empty circle with

center p1. If p1, p2, p3 are collinear C is a straight line passing through p1, p2 and p3 in

this order and the center of C is undefined.

#include < LEDA/geo/circle.h >

2. Types

circle ::coord type the coordinate type (double).

circle ::point type the point type (point).

3. Creation

circle C(const point& a, const point& b, const point& c);

introduces a variable C of type circle. C is initialized to the
oriented circle through points a, b, and c.

circle C(const point& a, const point& b);

introduces a variable C of type circle. C is initialized to
the counter-clockwise oriented circle with center a passing
through b.

circle C(const point& a); introduces a variable C of type circle. C is initialized to the
trivial circle with center a.

circle C; introduces a variable C of type circle. C is initialized to the
trivial circle with center (0, 0).

circle C(const point& c, double r);

introduces a variable C of type circle. C is initialized to the
circle with center c and radius r with positive (i.e. counter-
clockwise) orientation.

circle C(double x, double y, double r);

introduces a variable C of type circle. C is initialized to
the circle with center (x, y) and radius r with positive (i.e.
counter-clockwise) orientation.

12.5. CIRCLES (CIRCLE) 349

circle C(const circle& c, int);

introduces a variable C of type circle. C is initialized to a
copy of c. The second argument is for compatability with
rat circle.

4. Operations

point C.center() returns the center of C.
Precondition: The orientation of C is not 0.

double C.radius() returns the radius of C.
Precondition: The orientation of C is not 0.

double C.sqr radius() returns the squared radius of C.
Precondition: The orientation of C is not 0.

point C.point1() returns p1.

point C.point2() returns p2.

point C.point3() returns p3.

point C.point on circle(double alpha, double = 0)

returns a point p on C with angle of alpha.
The second argument is for compatability with
rat circle.

bool C.is degenerate() returns true if the defining points are collinear.

bool C.is trivial() returns true if C has radius zero.

bool C.is line() returns true if C is a line.

line C.to line() returns line(point1 (), point3 ()).

int C.orientation() returns the orientation of C.

int C.side of(const point& p) returns −1, +1, or 0 if p lies right of, left of, or on
C respectively.

bool C.inside(const point& p) returns true iff p lies inside of C.

bool C.outside(const point& p) returns true iff p lies outside of C.

bool C.contains(const point& p)

returns true iff p lies on C.

circle C.translate by angle(double a, double d)

returns C translated in direction a by distance d.

350 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

circle C.translate(double dx , double dy)

returns C translated by vector (dx, dy).

circle C.translate(const vector& v)

returns C translated by vector v.

circle C + const vector& v returns C translated by vector v.

circle C − const vector& v returns C translated by vector −v.

circle C.rotate(const point& q, double a)

returns C rotated about point q by angle a.

circle C.rotate(double a) returns C rotated about the origin by angle a.

circle C.rotate90(const point& q, int i = 1)

returns C rotated about q by an angle of i × 90
degrees. If i > 0 the rotation is counter-clockwise
otherwise it is clockwise.

circle C.reflect(const point& p, const point& q)

returns C reflected across the straight line passing
through p and q.

circle C.reflect(const point& p) returns C reflected across point p.

circle C.reverse() returns C reversed.

list<point> C.intersection(const circle& D)

returns C ∩D as a list of points.

list<point> C.intersection(const line& l)

returns C ∩ l as a list of (zero, one, or two) points
sorted along l.

list<point> C.intersection(const segment& s)

returns C ∩ s as a list of (zero, one, or two) points
sorted along s.

segment C.left tangent(const point& p)

returns the line segment starting in p tangent to
C and left of segment [p, C.center()].

segment C.right tangent(const point& p)

returns the line segment starting in p tangent to
C and right of segment [p, C.center()].

double C.distance(const point& p)

returns the distance between C and p.

12.5. CIRCLES (CIRCLE) 351

double C.sqr dist(const point& p) returns the squared distance between C and p.

double C.distance(const line& l) returns the distance between C and l.

double C.distance(const circle& D)

returns the distance between C and D.

bool radical axis(const circle& C1 , const circle& C2 , line& rad axis)

if the radical axis for C1 and C2 exists, it is as-
signed to rad axis and true is returned; otherwise
the result is false.

352 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

12.6 Polygons (POLYGON)

1. Definition

There are three instantiations of POLYGON : polygon (floating point kernel), rat polygon

(rational kernel) and real polygon (real kernel). The respective header file name corre-

sponds to the type name (with “.h” appended).

An instance P of the data type POLYGON is a cyclic list of points (equivalently segments)

in the plane. A polygon is called simple if all nodes of the graph induced by its segments

have degree two and it is called weakly simple, if its segments are disjoint except for

common endpoints and if the chain does not cross itself. See the LEDA book for more

details.

A weakly simple polygon splits the plane into an unbounded region and one or more

bounded regions. For a simple polygon there is just one bounded region. When a weakly

simple polygon P is traversed either the bounded region is consistently to the left of P or

the unbounded region is consistently to the left of P . We say that P is positively oriented

in the former case and negatively oriented in the latter case. We use P to also denote the

region to the left of P and call this region the positive side of P .

The number of vertices is called the size of P . A polygon with empty vertex sequence is

called empty.

Only the types rat polygon and real polygon guarantee correct results. Almost all oper-

ations listed below are available for all the three instantiations of POLYGON . There is

a small number of operations that are only available for polygon, they are indicated as

such.

#include < LEDA/geo/generic/POLYGON.h >

2. Types

POLYGON ::coord type the coordinate type (e.g. rational).

POLYGON ::point type the point type (e.g. rat point).

POLYGON :: segment type the segment type (e.g. rat segment).

POLYGON ::float type the corresponding floating-point type (polygon).

3. Creation

POLYGON P ; introduces a variable P of type POLYGON . P is initialized
to the empty polygon.

12.6. POLYGONS (POLYGON) 353

POLYGON P (const list<POINT>& pl ,
CHECK TYPE check = POLYGON ::WEAKLY SIMPLE ,
RESPECT TYPE respect orientation =
POLYGON ::RESPECT ORIENTATION);

introduces a variable P of type POLYGON . P is initialized
to the polygon with vertex sequence pl . If respect orientation
is DISREGARD ORIENTATION, the positive orientation is
chosen.
Precondition: If check is SIMPLE, pl must define a simple
polygon, and if check is WEAKLY SIMPLE, pl must define
a weakly simple polygon. If no test is to performed, the sec-
ond argument has to be set to NO CHECK. The constants
NO CHECK, SIMPLE, and WEAKLY SIMPLE are part of
a local enumeration type CHECK TYPE.

POLYGON P (const polygon& Q, int prec = rat point ::default precision);

introduces a variable P of type POLYGON . P is initialized
to a rational approximation of the (floating point) polygon Q
of coordinates with denominator at most prec. If prec is zero,
the implementation chooses prec large enough such that there
is no loss of precision in the conversion.

4. Operations

polygon P.to float() returns a floating point approximation of P .

void P.normalize() simplifies the homogenous representation by
calling p.normalize() for every vertex p of
P .

bool P.is simple() tests whether P is simple or not.

bool P.is weakly simple() tests whether P is weakly simple or not.

bool P.is weakly simple(list<POINT>& L)

as above, returns all proper points of inter-
section in L.

POLYGON ::CHECK TYPE P.check simplicity()

returns the CHECK TYPE of P . The re-
sult can be SIMPLE, WEAKLY SIMPLE or
NOT WEAKLY SIMPLE.

bool P.is convex() returns true if P is convex, false otherwise.

const list<POINT>& P.vertices() returns the sequence of vertices of P in
counter-clockwise ordering.

354 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

const list<SEGMENT>& P.segments() returns the sequence of bounding segments
of P in counter-clockwise ordering.

list<POINT> P.intersection(const SEGMENT& s)

returns the proper crossings between P and
s as a list of points.

list<POINT> P.intersection(const LINE& l)

returns the proper crossings between P and
l as a list of points.

POLYGON P.intersect halfplane(const LINE& l)

returns the intersection of P with the halfs-
pace on the positive side of l.

int P.size() returns the size of P .

bool P.empty() returns true if P is empty, false otherwise.

POLYGON P.translate(RAT TYPE dx , RAT TYPE dy)

returns P translated by vector (dx, dy).

POLYGON P.translate(INT TYPE dx , INT TYPE dy , INT TYPE dw)

returns P translated by vector
(dx/dw, dy/dw).

POLYGON P.translate(const VECTOR& v)

returns P translated by vector v.

POLYGON P + const VECTOR& v returns P translated by vector v.

POLYGON P − const VECTOR& v returns P translated by vector −v.

POLYGON P.rotate90(const POINT& q, int i = 1)

returns P rotated about q by an angle of i×
90 degrees. If i > 0 the rotation is counter-
clockwise otherwise it is clockwise.

POLYGON P.reflect(const POINT& p, const POINT& q)

returns P reflected across the straight line
passing through p and q.

POLYGON P.reflect(const POINT& p)

returns P reflected across point p.

RAT TYPE P.sqr dist(const POINT& p)

returns the square of the minimal Euclidean
distance between a segment in P and p. Re-
turns zero if P is empty.

12.6. POLYGONS (POLYGON) 355

POLYGON P.complement() returns the complement of P .

POLYGON P.eliminate colinear vertices()

returns a copy of P without colinear vertices.

list<POLYGON > P.simple parts() returns the simple parts of P as a list of
simple polygons.

list<POLYGON > P.split into weakly simple parts(bool strict = false)

splits P into a set of weakly simple polygons
whose union coincides with the inner points
of P . If strict is true a point is considered
an inner point if it is left of all surrounding
segments, otherwise it is considered as an in-
ner point if it is locally to the left of some
surrounding edge. (This function is experi-
mental.)

GEN POLYGON P.make weakly simple(bool with neg parts = true,
bool strict = false)

creates a weakly simple generalized poly-
gon Q from a possibly non-simple polygon
P such that Q and P have the same inner
points. The flag with neg parts determines
whether inner points in negatively oriented
parts are taken into account, too. The mean-
ing of the flag strict is the same as in the
method above. (This function is experimen-
tal.)

GEN POLYGON P.buffer(RAT TYPE d, int p)

adds an exterior buffer zone to P (d > 0),
or removes an interior buffer zone from P
(d < 0). More precisely, for d ≥ 0 define
the buffer tube T as the set of all points in
the complement of P whose distance to P is
at most d. Then the function returns P ∪T .
For d < 0 let T denote the set of all points in
P whose distance to the complement is less
than |d|. Then the result is P \ T . p spec-
ifies the number of points used to represent
convex corners. At the moment, only p = 1
and p = 3 are supported. (This function is
experimental.)

The functions in the following group are only available for polygons . They have no coun-

terpart for rat polygons .

356 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

polygon P.translate by angle(double alpha, double d)

returns P translated in direction alpha by
distance d.

polygon P.rotate(const point& p, double alpha)

returns P rotated by α degrees about p.

polygon P.rotate(double alpha) returns P rotated by α degrees about the
origin.

double P.distance(const point& p)

returns the Euclidean distance between P
and p.

rat polygon P.to rational(int prec = −1)

returns a representation of P with rational
coordinates with precision prec (cf. Section
12.10).

All functions below assume that P is weakly simple.

int P.side of(const POINT& p)

returns +1 if p lies to the left of P , 0 if p lies
on P , and −1 if p lies to the right of P .

region kind P.region of(const POINT& p)

returns BOUNDED REGION if p lies
in the bounded region of P , returns
ON REGION if p lies on P , and returns
UNBOUNDED REGION if p lies in the un-
bounded region.

bool P.inside(const POINT& p)

returns true if p lies to the left of P , i.e.,
side of (p) == +1.

bool P.on boundary(const POINT& p)

returns true if p lies on P , i.e., side of (p)==
0.

bool P.outside(const POINT& p)

returns true if p lies to the right of P , i.e.,
side of (p) ==−1.

bool P.contains(const POINT& p)

returns true if p lies to the left of or on P .

12.6. POLYGONS (POLYGON) 357

RAT TYPE P.area() returns the signed area of the bounded re-
gion of P . The sign of the area is positive if
the bounded region is the positive side of P .

int P.orientation() returns the orientation of P .

void P.bounding box(POINT& xmin, POINT& ymin, POINT& xmax ,
POINT& ymax)

returns the coordinates of a rectangular
bounding box of P .

Iterations Macros

forall vertices(v, P) { “the vertices of P are successively assigned to rat point v” }

forall segments(s, P) { “the edges of P are successively assigned to rat segment s” }

Non-Member Functions

POLYGON reg n gon(int n, CIRCLE C, double epsilon)

generates a (nearly) regular n-gon
whose vertices lie on the circle
C. The i-th point is generated by
C.point of circle(2πi/n, epsilon). With
the rational kernel the vertices of the n-gon
are guaranteed to lie on the circle, with
the floating point kernel they are only
guaranteed to lie near C.

POLYGON n gon(int n, CIRCLE C, double epsilon)

generates a (nearly) regular n-gon whose
vertices lie near the circle C. For the flaoting
point kernel the function is equivalent to the
function above. For the rational kernel the
function first generates a n-gon with float-
ing point arithmetic and then converts the
resulting polygon to a rat polygon.

POLYGON hilbert(int n, RAT TYPE x1 , RAT TYPE y1 , RAT TYPE x2 ,
RAT TYPE y2)

generates the Hilbert polygon of order n
within the rectangle with boundary (x1 , y1)
and (x2 , y2).
Precondition: x1 < x2 and y1 < y2 .

358 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

12.7 Generalized Polygons (GEN POLYGON)

1. Definition

There are three instantiations of POLYGON : gen polygon (floating point kernel),

rat gen polygon (rational kernel) and real gen polygon (real kernel). The respective header

file name corresponds to the type name (with “.h” appended).

An instance P of the data type GEN POLYGON is a regular polygonal region in the

plane. A regular region is an open set that is equal to the interior of its closure. A region

is polygonal if its boundary consists of a finite number of line segments.

The boundary of a GEN POLYGON consists of zero or more weakly simple closed polygo-

nal chains. There are two regions whose boundary is empty, namely the empty region and

the full region. The full region encompasses the entire plane. We call a region non-trivial

if its boundary is non-empty. The boundary cycles P1, P2, . . . , Pk of a GEN POLYGON

are ordered such that no Pi is nested in a Pj with i < j.

Only the types rat polygon and real polygon guarantee correct results. Almost all oper-

ations listed below are available for all the three instantiations of POLYGON . There is

a small number of operations that are only available for polygon, they are indicated as

such.

A detailed discussion of polygons and generalized polygons can be found in the LEDA

book.

The local enumeration type KIND consists of elements EMPTY, FULL, and

NON TRIVIAL.

#include < LEDA/geo/generic/GEN POLYGON.h >

2. Types

GEN POLYGON ::coord type

the coordinate type (e.g. rational).

GEN POLYGON ::point type

the point type (e.g. rat point).

GEN POLYGON :: segment type

the segment type (e.g. rat segment).

GEN POLYGON ::polygon type

the polygon type (e.g. rat polygon).

GEN POLYGON ::float type

the corresponding floating-point type (gen polygon).

12.7. GENERALIZED POLYGONS (GEN POLYGON) 359

3. Creation

GEN POLYGON P (KIND k = GEN POLYGON REP ::EMPTY);

introduces a variable P of type GEN POLYGON . P is ini-
tialized to the empty polygon if k is EMPTY and to the full
polygon if k is FULL.

GEN POLYGON P (const POLYGON& p,
CHECK TYPE check = WEAKLY SIMPLE ,
RESPECT TYPE respect orientation =
RESPECT ORIENTATION);

introduces a variable P of type GEN POLYGON . P is
initialized to the polygonal region with boundary p. If
respect orientation is DISREGARD ORIENTATION, the ori-
entation is chosen such P is bounded.
Precondition: p must be a weakly simple polygon. If check is
set appropriately this is checked.

GEN POLYGON P (const list<POINT>& pl ,
CHECK TYPE check = GEN POLYGON ::WEAKLY SIMPLE ,
RESPECT TYPE respect orientation =
RESPECT ORIENTATION);

introduces a variable P of type GEN POLYGON . P is
initialized to the polygon with vertex sequence pl . If
respect orientation is DISREGARD ORIENTATION, the ori-
entation is chosen such that P is bounded.
Precondition: If check is SIMPLE, pl must define a simple
polygon, and if check is WEAKLY SIMPLE, pl must define a
weakly simple polygon. If no test is to performed, the second
argument has to be set to NO CHECK. The three constants
NO CHECK, SIMPLE, and WEAKLY SIMPLE are part of
a local enumeration type CHECK TYPE.

GEN POLYGON P (const list<POLYGON >& PL,
CHECK TYPE check = CHECK REP);

introduces a variable P of type GEN POLYGON . P is ini-
tialized to the polygon with boundary representation PL.
Precondition: PL must be a boundary representation. This
conditions is checked if check is set to CHECK REP.

GEN POLYGON P (const list<GEN POLYGON >& PL);

introduces a variable P of type GEN POLYGON . P is ini-
tialized to the union of all generalized polygons in PL.

360 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

GEN POLYGON P (const gen polygon& Q, int prec = rat point ::default precision);

introduces a variable P of type GEN POLYGON . P is ini-
tialized to a rational approximation of the (floating point)
polygon Q of coordinates with denominator at most prec. If
prec is zero, the implementation chooses prec large enough
such that there is no loss of precision in the conversion

4. Operations

bool P.empty() returns true if P is empty, false otherwise.

bool P.full() returns true if P is the entire plane, false
otherwise.

bool P.trivial() returns true if P is either empty or full, false
otherwise.

bool P.is convex() returns true if P is convex, false otherwise.

KIND P.kind() returns the kind of P .

gen polygon P.to float() returns a floating point approximation of P .

void P.normalize() simplifies the homogenous representation by
calling p.normalize() for every vertex p of
P .

bool P.is simple() returns true if the polygonal region is simple,
i.e., if the graph defined by the segments in
the boundary of P has only vertices of degree
two.

bool GEN POLYGON :: check representation(const list<POLYGON >& PL)

checks whether PL is a boundary represen-
tation.

bool P.check representation() tests whether the representation of P is OK.
This test is partial.

void P.canonical rep() NOT IMPLEMENTED YET.

list<POINT> P.vertices() returns the concatenated vertex lists of all
polygons in the boundary representation of
P .

12.7. GENERALIZED POLYGONS (GEN POLYGON) 361

list<SEGMENT> P.edges() returns the concatenated edge lists of all
polygons in the boundary representation of
P .
Please note that it is not save to use
this function in a forall-loop. Instead
of writing forall(SEGMENT s, edges())..
please write list¡SEGMENT¿ L = edges();
forall(SEGMENT s, L)....

const list<POLYGON >& P.polygons() returns the lists of all polygons in the bound-
ary representation of P .

list<POINT> P.intersection(const SEGMENT& s)

returns the list of all proper intersections be-
tween s and the boundary of P .

list<POINT> P.intersection(const LINE& l)

returns the list of all proper intersections be-
tween l and the boundary of P .

int P.size() returns the number of segments in the
boundary of P .

GEN POLYGON P.translate(RAT TYPE dx , RAT TYPE dy)

returns P translated by vector (dx, dy).

GEN POLYGON P.translate(INT TYPE dx , INT TYPE dy , INT TYPE dw)

returns P translated by vector
(dx/dw, dy/dw).

GEN POLYGON P.translate(const VECTOR& v)

returns P translated by vector v.

GEN POLYGON P + const VECTOR& v returns P translated by vector v.

GEN POLYGON P − const VECTOR& v returns P translated by vector −v.

GEN POLYGON P.rotate90(const POINT& q, int i = 1)

returns P rotated about q by an angle of i×
90 degrees. If i > 0 the rotation is counter-
clockwise otherwise it is clockwise.

GEN POLYGON P.reflect(const POINT& p, const POINT& q)

returns P reflected across the straight line
passing through p and q.

GEN POLYGON P.reflect(const POINT& p)

returns P reflected across point p.

362 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

RAT TYPE P.sqr dist(const POINT& p)

returns the square of the minimal Euclidean
distance between a segment in the boundary
of P and p. Returns zero is P is trivial.

GEN POLYGON P.make weakly simple(bool with neg parts = true,
bool strict = false)

creates a weakly simple generalized poly-
gon Q from a possibly non-simple polygon
P such that Q and P have the same inner
points. The flag with neg parts determines
whether inner points in negatively oriented
parts are taken into account, too. If strict is
true a point is considered an inner point if
it is left of all surrounding segments, other-
wise it is considered as an inner point if it is
locally to the left of some surrounding edge.
(This function is experimental.)

GEN POLYGON GEN POLYGON ::make weakly simple(const POLYGON& Q,
bool with neg parts = true,
bool strict = false)

same as above but the input is a polygon Q.
(This function is experimental.)

GEN POLYGON P.complement() returns the complement of P .

GEN POLYGON P.eliminate colinear vertices()

returns a copy of P without colinear vertices.

int P.side of(const POINT& p)

returns +1 if p lies to the left of P , 0 if p lies
on P , and −1 if p lies to the right of P .

region kind P.region of(const POINT& p)

returns BOUNDED REGION if p lies
in the bounded region of P , returns
ON REGION if p lies on P , and returns
UNBOUNDED REGION if p lies in the un-
bounded region. The bounded region of the
full polygon is the entire plane.

bool P.inside(const POINT& p)

returns true if p lies to the left of P , i.e.,
side of (p) == +1.

12.7. GENERALIZED POLYGONS (GEN POLYGON) 363

bool P.on boundary(const POINT& p)

returns true if p lies on P , i.e., side of (p)==
0.

bool P.outside(const POINT& p)

returns true if p lies to the right of P , i.e.,
side of (p) ==−1.

bool P.contains(const POINT& p)

returns true if p lies to the left of or on P .

RAT TYPE P.area() returns the signed area of the bounded re-
gion of P . The sign of the area is positive if
the bounded region is the positive side of P .
Precondition: P is not the full polygon.

int P.orientation() returns the orientation of P .

list<GEN POLYGON > P.regional decomposition()

computes a decomposition of the bounded
region of P into simple connected compo-
nents P1, . . . , Pn. If P is trivial the decom-
position is P itself. Otherwise, the boundary
of every Pi consists of an exterior polygon
and zero or more holes nested inside. But
the holes do not contain any nested poly-
gons. (Note that P may have holes contain-
ing nested polygons; they appear as seper-
ate components in the decomposition.) Ev-
ery Pi has the same orientation as P . If it
is positive then P is the union of P1, . . . , Pn,
otherwise P is the intersection of P1, . . . , Pn.

GEN POLYGON P.buffer(RAT TYPE d, int p = 3)

adds an exterior buffer zone to P (d > 0),
or removes an interior buffer zone from P
(d < 0). More precisely, for d ≥ 0 define
the buffer tube T as the set of all points in
the complement of P whose distance to P is
at most d. Then the function returns P ∪T .
For d < 0 let T denote the set of all points in
P whose distance to the complement is less
than |d|. Then the result is P \ T . p spec-
ifies the number of points used to represent
convex corners. At the moment, only p = 1
and p = 3 are supported. (This function is
experimental.)

364 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

All binary boolean operations are regularized, i.e., the result R of the standard boolean

operation is replaced by the interior of the closure of R. We use regX to denote the

regularization of a set X.

GEN POLYGON P.unite(const GEN POLYGON& Q)

returns reg(P ∪Q).

GEN POLYGON P.intersection(const GEN POLYGON& Q)

returns reg(P ∩Q).

GEN POLYGON P.diff(const GEN POLYGON& Q)

returns reg(P \Q).

GEN POLYGON P.sym diff(const GEN POLYGON& Q)

returns reg((P ∪Q)− (P ∩Q)).

The following functions are only available for gen polygons . They have no counterpart for

rat gen polygons or real gen polygons .

gen polygon P.translate by angle(double alpha, double d)

returns P translated in direction alpha by
distance d.

gen polygon P.rotate(const point& p, double alpha)

returns P rotated by α degrees about p.

gen polygon P.rotate(double alpha) returns P rotated by α degrees about the
origin.

double P.distance(const point& p)

returns the Euclidean distance between P
and p.

rat gen polygon P.to rational(int prec = −1)

returns a representation of P with rational
coordinates with precision prec (cf. Section
12.10).

Iterations Macros

forall polygons(p, P) { “the boundary polygons of P are successively assigned to POLY-

GON p” }

12.8. TRIANGLES (TRIANGLE) 365

12.8 Triangles (triangle)

1. Definition

An instance t of the data type triangle is an oriented triangle in the two-dimensional

plane. A triangle splits the plane into one bounded and one unbounded region. If the

triangle is positively oriented, the bounded region is to the left of it, if it is negatively

oriented, the unbounded region is to the left of it. A triangle t is called degenerate, if the

3 vertices of t are collinear.

#include < LEDA/geo/triangle.h >

2. Types

triangle ::coord type the coordinate type (double).

triangle ::point type the point type (point).

3. Creation

triangle t; introduces a variable t of type triangle. t is initialized to the
empty triangle.

triangle t(const point& p, const point& q, const point& r);

introduces a variable t of type triangle. t is initialized to the
triangle [p, q, r].

triangle t(double x1 , double y1 , double x2 , double y2 , double x3 , double y3);

introduces a variable t of type triangle. t is initialized to the
triangle [(x1, y1), (x2, y2), (x3, y3)].

4. Operations

point t.point1() returns the first vertex of triangle t.

point t.point2() returns the second vertex of triangle t.

point t.point3() returns the third vertex of triangle t.

point t[int i] returns the i-th vertex of t. Precondition: 1 ≤ i ≤ 3.

int t.orientation() returns the orientation of t.

double t.area() returns the signed area of t (positive, if
orientation(a, b, c) > 0, negative otherwise).

bool t.is degenerate() returns true if the vertices of t are collinear.

366 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

int t.side of(const point& p)

returns +1 if p lies to the left of t, 0 if p lies on t and −1
if p lies to the right of t.

region kind t.region of(const point& p)

returns BOUNDED REGION if p lies in the bounded
region of t, ON REGION if p lies on t and
UNBOUNDED REGION if p lies in the unbounded re-
gion.

bool t.inside(const point& p)

returns true, if p lies to the left of t.

bool t.outside(const point& p)

returns true, if p lies to the right of t.

bool t.on boundary(const point& p)

decides whether p lies on the boundary of t.

bool t.contains(const point& p)

decides whether t contains p.

bool t.intersection(const line& l)

decides whether the bounded region or the boundary of t
and l intersect.

bool t.intersection(const segment& s)

decides whether the bounded region or the boundary of t
and s intersect.

triangle t.translate(double dx , double dy)

returns t translated by vector (dx, dy).

triangle t.translate(const vector& v)

returns t+ v, i.e., t translated by vector v.
Precondition: v.dim() = 2.

triangle t+ const vector& v

returns t translated by vector v.

triangle t− const vector& v

returns t translated by vector −v.

triangle t.rotate(const point& q, double a)

returns t rotated about point q by angle a.

triangle t.rotate(double alpha)

returns t.rotate(t.point1(), alpha).

12.8. TRIANGLES (TRIANGLE) 367

triangle t.rotate90(const point& q, int i = 1)

returns t rotated about q by an angle of i × 90 degrees.
If i > 0 the rotation is counter-clockwise otherwise it is
clockwise.

triangle t.rotate90(int i = 1)

returns t.rotate90(t.source(),i).

triangle t.reflect(const point& p, const point& q)

returns t reflected across the straight line passing through
p and q.

triangle t.reflect(const point& p)

returns t reflected across point p.

triangle t.reverse() returns t reversed.

368 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

12.9 Iso-oriented Rectangles (rectangle)

1. Definition

An instance r of the data type rectangle is an iso-oriented rectangle in the two-dimensional

plane.

#include < LEDA/geo/rectangle.h >

2. Creation

rectangle r(const point& p, const point& q);

introduces a variable r of type rectangle. r is initialized to the
rectangle with diagonal corners p and q

rectangle r(const point& p, double w, double h);

introduces a variable r of type rectangle. r is initialized to the
rectangle with lower left corner p, width w and height h.

rectangle r(double x1 , double y1 , double x2 , double y2);

introduces a variable r of type rectangle. r is initialized to the
rectangle with diagonal corners (x1 , y1) and (x2 , y2).

3. Operations

point r.upper left() returns the upper left corner.

point r.upper right() returns the upper right corner.

point r.lower left() returns the lower left corner.

point r.lower right() returns the lower right corner.

point r.center() returns the center of r.

list<point> r.vertices() returns the vertices of r in counter-clockwise order
starting from the lower left point.

double r.xmin() returns the minimal x-coordinate of r.

double r.xmax() returns the maximal x-coordinate of r.

double r.ymin() returns the minimal y-coordinate of r.

double r.ymax() returns the maximal y-coordinate of r.

double r.width() returns the width of r.

12.9. ISO-ORIENTED RECTANGLES (RECTANGLE) 369

double r.height() returns the height of r.

bool r.is degenerate() returns true, if r degenerates to a segment or point
(the 4 corners are collinear), false otherwise.

bool r.is point() returns true, if r degenerates to a point.

bool r.is segment() returns true, if r degenerates to a segment.

int r.cs code(const point& p) returns the code for Cohen-Sutherland algorithm.

bool r.inside(const point& p) returns true, if p is inside of r, false otherwise.

bool r.outside(const point& p) returns true, if p is outside of r, false otherwise.

bool r.inside or contains(const point& p)

returns true, if p is inside of r or on the border,
false otherwise.

bool r.contains(const point& p) returns true, if p is on the border of r, false other-
wise.

region kind r.region of(const point& p)

returns BOUNDED REGION if p lies in the
bounded region of r, returns ON REGION if p lies
on r, and returns UNBOUNDED REGION if p lies
in the unbounded region.

rectangle r.include(const point& p) returns a new rectangle that includes the points of
r and p.

rectangle r.include(const rectangle& r2)

returns a new rectangle that includes the points of
r and r2.

rectangle r.translate(double dx , double dy)

returns a new rectangle that is the translation of
r by (dx , dy).

rectangle r.translate(const vector& v)

returns a new rectangle that is the translation of
r by v.

rectangle r + const vector& v returns r translated by v.

rectangle r − const vector& v returns r translated by −v.

point r[int i] returns the i− th vertex of r. Precondition: (0 <
i < 5).

370 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

rectangle r.rotate90(const point& p, int i = 1)

returns r rotated about p by an angle of i × 90
degrees. If i > 0 the rotation is counter-clockwise
otherwise it is clockwise.

rectangle r.rotate90(int i = 1) returns r rotated by an angle of i × 90 degrees
about the origin.

rectangle r.reflect(const point& p) returns r reflected across p .

list<point> r.intersection(const segment& s)

returns r ∩ s .

bool r.clip(const segment& t, segment& inter)

clips t on r and returns the result in inter .

bool r.clip(const line& l, segment& inter)

clips l on r and returns the result in inter .

bool r.clip(const ray& ry , segment& inter)

clips ry on r and returns the result in inter .

bool r.difference(const rectangle& q, list<rectangle>& L)

returns true iff the difference of r and q is not
empty, and false otherwise. The difference L is
returned as a partition into rectangles.

list<point> r.intersection(const line& l)

returns r ∩ l.

list<rectangle> r.intersection(const rectangle& s)

returns r ∩ s.

bool r.do intersect(const rectangle& b)

returns true iff r and b intersect, false otherwise.

double r.area() returns the area of r.

12.10. RATIONAL POINTS (RAT POINT) 371

12.10 Rational Points (rat point)

1. Definition

An instance of data type rat point is a point with rational coordinates in the two-

dimensional plane. A point with cartesian coordinates (a, b) is represented by homo-

geneous coordinates (x, y, w) of arbitrary length integers (see 5.1) such that a = x/w and

b = y/w and w > 0.

#include < LEDA/geo/rat point.h >

2. Types

rat point ::coord type the coordinate type (rational).

rat point ::point type the point type (rat point).

rat point ::float type the corresponding floating-point type (point).

3. Creation

rat point p; introduces a variable p of type rat point initialized to the point
(0, 0).

rat point p(const rational& a, const rational& b);

introduces a variable p of type rat point initialized to the point
(a, b).

rat point p(integer a, integer b);

introduces a variable p of type rat point initialized to the point
(a, b).

rat point p(integer x, integer y, integer w);

introduces a variable p of type rat point initialized to the point
with homogeneous coordinates (x, y, w) if w > 0 and to point
(−x,−y,−w) if w < 0.
Precondition: w 6= 0.

rat point p(const rat vector& v);

introduces a variable p of type rat point initialized to the point
(v[0], v[1]).
Precondition: : v.dim() = 2.

372 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

rat point p(const point& p1 , int prec = rat point ::default precision);

introduces a variable p of type rat point initialized to the point
with homogeneous coordinates (⌊P∗x⌋, ⌊P∗y⌋, P), where p1 =
(x, y) and P = 2prec. If prec is non-positive, the conversion
is without loss of precision, i.e., P is chosen as a sufficiently
large power of two such that P ∗ x and P ∗ y are integers.

rat point p(double x, double y, int prec = rat point ::default precision);

see constructor above with p = (x, y).

4. Operations

point p.to float() returns a floating point approximation of p.

rat vector p.to vector() returns the vector extending from the origin to p.

void p.normalize() simplifies the homogenous representation by dividing all
coordinates by gcd(X, Y,W).

integer p.X() returns the first homogeneous coordinate of p.

integer p.Y() returns the second homogeneous coordinate of p.

integer p.W() returns the third homogeneous coordinate of p.

double p.XD() returns a floating point approximation of p.X().

double p.YD() returns a floating point approximation of p.Y ().

double p.WD() returns a floating point approximation of p.W ().

rational p.xcoord() returns the x-coordinate of p.

rational p.ycoord() returns the y-coordinate of p.

double p.xcoordD() returns a floating point approximation of p.xcoord().

double p.ycoordD() returns a floating point approximation of p.ycoord().

rat point p.rotate90(const rat point& q, int i = 1)

returns p rotated by i × 90 degrees about q. If i > 0 the
rotation is counter-clockwise otherwise it is clockwise.

rat point p.rotate90(int i = 1)

returns p rotated by i×90 degrees about the origin. If i > 0
the rotation is counter-clockwise otherwise it is clockwise.

12.10. RATIONAL POINTS (RAT POINT) 373

rat point p.reflect(const rat point& p, const rat point& q)

returns p reflected across the straight line passing through
p and q.
Precondition: p 6= q.

rat point p.reflect(const rat point& q)

returns p reflected across point q.

rat point p.translate(const rational& dx , const rational& dy)

returns p translated by vector (dx, dy).

rat point p.translate(integer dx , integer dy , integer dw)

returns p translated by vector (dx/dw, dy/dw).

rat point p.translate(const rat vector& v)

returns p+ v, i.e., p translated by vector v.
Precondition: v.dim() = 2.

rat point p+ const rat vector& v

returns p translated by vector v.

rat point p− const rat vector& v

returns p translated by vector −v.

rational p.sqr dist(const rat point& q)

returns the squared distance between p and q.

int p.cmp dist(const rat point& q, const rat point& r)

returns compare(p.sqr dist(q), p.sqr dist(r)).

rational p.xdist(const rat point& q)

returns the horizontal distance between p and q.

rational p.ydist(const rat point& q)

returns the vertical distance between p and q.

int p.orientation(const rat point& q, const rat point& r)

returns orientation(p, q, r) (see below).

rational p.area(const rat point& q, const rat point& r)

returns area(p, q, r) (see below).

rat vector p− const rat point& q

returns the difference vector of the coordinates.

Non-Member Functions

374 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

int cmp signed dist(const rat point& a, const rat point& b, const rat point& c,
const rat point& d)

compares (signed) distances of c and d to the straight line
passing through a and b (directed from a to b). Returns
+1 (−1) if c has larger (smaller) distance than d and 0 if
distances are equal.

int orientation(const rat point& a, const rat point& b, const rat point& c)

computes the orientation of points a, b, c as the sign of
the determinant

∣

∣

∣

∣

∣

∣

∣

ax ay aw
bx by bw
cx cy cw

∣

∣

∣

∣

∣

∣

∣

i.e., it returns +1 if point c lies left of the directed line
through a and b, 0 if a,b, and c are collinear, and −1 oth-
erwise.

int cmp distances(const rat point& p1 , const rat point& p2 ,
const rat point& p3 , const rat point& p4)

compares the distances (p1 , p2) and (p3 , p4). Returns +1
(−1) if distance (p1 , p2) is larger (smaller) than distance
(p3 , p4), otherwise 0.

rat point midpoint(const rat point& a, const rat point& b)

returns the midpoint of a and b.

rational area(const rat point& a, const rat point& b, const rat point& c)

computes the signed area of the triangle determined by
a,b,c, positive if orientation(a, b, c) > 0 and negative oth-
erwise.

bool collinear(const rat point& a, const rat point& b, const rat point& c)

returns true if points a, b, c are collinear, i.e.,
orientation(a, b, c) = 0, and false otherwise.

bool right turn(const rat point& a, const rat point& b, const rat point& c)

returns true if points a, b, c form a righ turn, i.e.,
orientation(a, b, c) < 0, and false otherwise.

bool left turn(const rat point& a, const rat point& b, const rat point& c)

returns true if points a, b, c form a left turn, i.e.,
orientation(a, b, c) > 0, and false otherwise.

12.10. RATIONAL POINTS (RAT POINT) 375

int side of halfspace(const rat point& a, const rat point& b, const rat point& c)

returns the sign of the scalar product (b−a)·(c−a). If b 6= a
this amounts to: Let h be the open halfspace orthogonal to
the vector b−a, containing b, and having a in its boundary.
Returns +1 if c is contained in h, returns 0 is c lies on the
the boundary of h, and returns −1 is c is contained in the
interior of the complement of h.

int side of circle(const rat point& a, const rat point& b, const rat point& c,
const rat point& d)

returns +1 if point d lies left of the directed circle through
points a, b, and c, 0 if a,b,c,and d are cocircular, and −1
otherwise.

bool incircle(const rat point& a, const rat point& b, const rat point& c,
const rat point& d)

returns true if point d lies in the interior of the circle
through points a, b, and c, and false otherwise.

bool outcircle(const rat point& a, const rat point& b, const rat point& c,
const rat point& d)

returns true if point d lies outside of the circle through
points a, b, and c, and false otherwise.

bool on circle(const rat point& a, const rat point& b, const rat point& c,
const rat point& d)

returns true if points a, b, c, and d are cocircular.

bool cocircular(const rat point& a, const rat point& b, const rat point& c,
const rat point& d)

returns true if points a, b, c, and d are cocircular.

int compare by angle(const rat point& a, const rat point& b, const rat point& c,
const rat point& d)

compares vectors b − a and d − c by angle (more effi-
cient than calling vector :: compare by angle(b − a, d − x)
on rat vectors).

bool affinely independent(const array<rat point>& A)

decides whether the points in A are affinely independent.

bool contained in simplex(const array<rat point>& A, const rat point& p)

determines whether p is contained in the simplex spanned
by the points in A. A may consist of up to 3 points.
Precondition: The points in A are affinely independent.

bool contained in affine hull(const array<rat point>& A, const rat point& p)

determines whether p is contained in the affine hull of the
points in A.

376 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

12.11 Rational Segments (rat segment)

1. Definition

An instance s of the data type rat segment is a directed straight line segment in the two-

dimensional plane, i.e., a line segment [p, q] connecting two rational points p and q (cf.

12.10). p is called the source or start point and q is called the target or end point of s. A

segment is called trivial if its source is equal to its target.

#include < LEDA/geo/rat segment.h >

2. Types

rat segment ::coord type the coordinate type (rational).

rat segment ::point type the point type (rat point).

rat segment ::float type the corresponding floatin-point type (segment).

3. Creation

rat segment s; introduces a variable s of type rat segment . s is initialized to
the empty segment.

rat segment s(const rat point& p, const rat point& q);

introduces a variable s of type rat segment . s is initialized to
the segment [p, q].

rat segment s(const rat point& p, const rat vector& v);

introduces a variable s of type rat segment . s is initialized to
the segment [p, p+ v].
Precondition: v.dim() = 2.

rat segment s(const rational& x1 , const rational& y1 , const rational& x2 ,
const rational& y2);

introduces a variable s of type rat segment . s is initialized to
the segment [(x1, y1), (x2, y2)].

rat segment s(const integer& x1 , const integer& y1 , const integer& w1 ,
const integer& x2 , const integer& y2 , const integer& w2);

introduces a variable s of type rat segment . s is initialized to
the segment [(x1, y1, w1), (x2, y2, w2)].

rat segment s(const integer& x1 , const integer& y1 , const integer& x2 ,
const integer& y2);

introduces a variable s of type rat segment . s is initialized to
the segment [(x1, y1), (x2, y2)].

12.11. RATIONAL SEGMENTS (RAT SEGMENT) 377

rat segment s(const segment& s1 , int prec = rat point ::default precision);

introduces a variable s of type rat segment . s is initialized
to the segment obtained by approximating the two defining
points of s1.

4. Operations

segment s.to float() returns a floating point approximation of s.

void s.normalize() simplifies the homogenous representation by calling
source().normalize() and target().normlize().

rat point s.start() returns the source point of s.

rat point s.end() returns the target point of s.

rat segment s.reversal() returns the segment (target(), source()).

rational s.xcoord1() returns the x-coordinate of the source point of s.

rational s.xcoord2() returns the x-coordinate of the target point of s.

rational s.ycoord1() returns the y-coordinate of the source point of s.

rational s.ycoord2() returns the y-coordinate of the target point of s.

double s.xcoord1D() returns a double precision approximation of s.xcoord1 ().

double s.xcoord2D() returns a double precision approximation of s.xcoord2 ().

double s.ycoord1D() returns a double precision approximation of s.ycoord1 ().

double s.ycoord2D() returns a double precision approximation of s.ycoord2 ().

integer s.X1() returns the first homogeneous coordinate of the source
point of s.

integer s.X2() returns the first homogeneous coordinate of the target
point of s.

integer s.Y1() returns the second homogeneous coordinate of the source
point of s.

integer s.Y2() returns the second homogeneous coordinate of the target
point of s.

integer s.W1() returns the third homogeneous coordinate of the source
point of s.

378 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

integer s.W2() returns the third homogeneous coordinate of the target
point of s.

double s.XD1() returns a floating point approximation of s.X1 ().

double s.XD2() returns a floating point approximation of s.X2 ().

double s.YD1() returns a floating point approximation of s.Y1 ().

double s.YD2() returns a floating point approximation of s.Y2 ().

double s.WD1() returns a floating point approximation of s.W1 ().

double s.WD2() returns a floating point approximation of s.W2 ().

integer s.dx() returns the normalized x-difference X2 ·W1−X1 ·W2 of
s.

integer s.dy() returns the normalized y-difference Y 2 ·W1 − Y 1 ·W2 of
s.

double s.dxD() returns a floating point approximation of s.dx ().

double s.dyD() returns a floating point approximation of s.dy().

bool s.is trivial() returns true if s is trivial.

bool s.is vertical() returns true if s is vertical.
Precondition: s is non-trivial.

bool s.is horizontal() returns true if s is horizontal.
Precondition: s is non-trivial.

rational s.slope() returns the slope of s.
Precondition: s is not vertical.

int s.cmp slope(const rat segment& s1)

compares the slopes of s and s1.
Precondition: s and s1 are non-trivial.

int s.orientation(const rat point& p)

computes orientation(a, b, p) (see below), where a 6= b and
a and b appear in this order on segment s.

rational s.x proj(rational y)

returns p.xcoord(), where p ∈ line(s) with p.ycoord() = y.
Precondition: s is not horizontal.

rational s.y proj(rational x)

returns p.ycoord(), where p ∈ line(s) with p.xcoord() = x.
Precondition: s is not vertical.

12.11. RATIONAL SEGMENTS (RAT SEGMENT) 379

rational s.y abs() returns the y-abscissa of line(s), i.e., s.y proj(0).
Precondition: s is not vertical.

bool s.contains(const rat point& p)

decides whether s contains p.

bool s.intersection(const rat segment& t)

decides whether s and t intersect.

bool s.intersection(const rat segment& t, rat point& p)

decides whether s and t intersect. If so, some point of
intersection is assigned to p.

bool s.intersection(const rat segment& t, rat segment& inter)

decides whether s and t intersect. If so, the segment formed
by the points of intersection is assigned to inter .

bool s.intersection of lines(const rat segment& t, rat point& p)

decides if the lines supporting s and t intersect in a single
point. If so, the point of intersection is assigned to p.
Precondition: s and t are nontrivial.

bool s.overlaps(const rat segment& t)

decides whether s and t overlap, i.e. they have a non-trivial
intersection.

rat segment s.translate(const rational& dx , const rational& dy)

returns s translated by vector (dx, dy).

rat segment s.translate(const integer& dx , const integer& dy , const integer& dw)

returns s translated by vector (dx/dw, dy/dw).

rat segment s.translate(const rat vector& v)

returns s+ v, i.e., s translated by vector v.
Precondition: v.dim() = 2.

rat segment s+ const rat vector& v

returns s translated by vector v.

rat segment s− const rat vector& v

returns s translated by vector −v.

rat segment s.rotate90(const rat point& q, int i = 1)

returns s rotated about q by an angle of i × 90 degrees.
If i > 0 the rotation is counter-clockwise otherwise it is
clockwise.

380 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

rat segment s.rotate90(int i = 1)

returns s rotated about the origin by an angle of i × 90
degrees.

rat segment s.reflect(const rat point& p, const rat point& q)

returns s reflected across the straight line passing through
p and q.

rat segment s.reflect(const rat point& p)

returns s reflected across point p.

rat segment s.reverse() returns s reversed.

rat segment s.perpendicular(const rat point& p)

returns the segment perpendicular to s with source p and
target on line(s).
Precondition: s is nontrivial.

rational s.sqr length() returns the square of the length of s.

rational s.sqr dist(const rat point& p)

returns the squared Euclidean distance between p and s.

rational s.sqr dist() returns the squared distance between s and the origin.

rat vector s.to vector() returns the vector s.target()− s.source().

bool s== const rat segment& t

returns true if s and t are equal as oriented segments

int equal as sets(const rat segment& s, const rat segment& t)

returns true if s and t are equal as unoriented segments

Non-Member Functions

int cmp slopes(const rat segment& s1 , const rat segment& s2)

returns compare(slope(s1), slope(s2)).

int cmp segments at xcoord(const rat segment& s1 , const rat segment& s2 ,
const rat point& p)

compares points l1 ∩ v and l2 ∩ v where li is the line under-
lying segment si and v is the vertical straight line passing
through point p.

int orientation(const rat segment& s, const rat point& p)

computes orientation(a, b, p), where a 6= b and a and b
appear in this order on segment s.

12.12. RATIONAL RAYS (RAT RAY) 381

12.12 Rational Rays (rat ray)

1. Definition

An instance r of the data type rat ray is a directed straight ray defined by two points

with rational coordinates in the two-dimensional plane.

#include < LEDA/geo/rat ray.h >

2. Types

rat ray ::coord type the coordinate type (rational).

rat ray ::point type the point type (rat point).

rat ray ::float type the corresponding floatin-point type (ray).

3. Creation

rat ray r(const rat point& p, const rat point& q);

introduces a variable r of type rat ray . r is initialized to the
ray starting at point p and passing through point q.
Precondition: p 6= q.

rat ray r(const rat segment& s);

introduces a variable r of type rat ray . r is initialized to the
(rat ray(s.source(), s.target()).
Precondition: s is nontrivial.

rat ray r(const rat point& p, const rat vector& v);

introduces a variable r of type rat ray . r is initialized to
ratray(p, p+ v).

rat ray r; introduces a variable r of type rat ray .

rat ray r(const ray& r1 , int prec = rat point ::default precision);

introduces a variable r of type rat ray . r is initialized to the
ray obtained by approximating the two defining points of r1.

4. Operations

ray r.to float() returns a floating point approximation of r.

void r.normalize() simplifies the homogenous representation
by calling point1 ().normalize() and
point2 ().normlize().

382 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

rat point r.source() returns the source of r.

rat point r.point1() returns the source of r.

rat point r.point2() returns a point on r different from r.source().

bool r.is vertical() returns true iff r is vertical.

bool r.is horizontal() returns true iff r is horizontal.

bool r.intersection(const rat ray& s, rat point& inter)

returns true if r and s intersect. If so, a point of
intersection is returned in inter .

bool r.intersection(const rat segment& s, rat point& inter)

returns true if r and s intersect. If so, a point of
intersection is returned in inter .

bool r.intersection(const rat segment& s)

test if r and s intersect.

rat ray r.translate(const rational& dx , const rational& dy)

returns r translated by vector (dx, dy).

rat ray r.translate(integer dx , integer dy , integer dw)

returns r translated by vector (dx/dw, dy/dw).

rat ray r.translate(const rat vector& v)

returns r + v, i.e., r translated by vector v.
Precondition: v.dim() = 2.

rat ray r + const rat vector& v returns r translated by vector v.

rat ray r − const rat vector& v returns r translated by vector −v.

rat ray r.rotate90(const rat point& q, int i = 1)

returns r rotated about q by an angle of i × 90
degrees. If i > 0 the rotation is counter-clockwise
otherwise it is clockwise.

rat ray r.reflect(const rat point& p, const rat point& q)

returns r reflected across the straight line passing
through p and q.
Precondition: p 6= q.

rat ray r.reflect(const rat point& p)

returns r reflected across point p.

rat ray r.reverse() returns r reversed.

12.12. RATIONAL RAYS (RAT RAY) 383

bool r.contains(const rat point& p)

decides whether r contains p.

bool r.contains(const rat segment& s)

decides whether r contains s.

Non-Member Functions

int orientation(const rat ray& r, const rat point& p)

computes orientation(a, b, p), where a 6= b and a
and b appear in this order on ray r.

int cmp slopes(const rat ray& r1 , const rat ray& r2)

returns compare(slope(r1), slope(r2)).

384 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

12.13 Straight Rational Lines (rat line)

1. Definition

An instance l of the data type rat line is a directed straight line in the two-dimensional

plane.

#include < LEDA/geo/rat line.h >

2. Types

rat line ::coord type the coordinate type (rational).

rat line ::point type the point type (rat point).

rat line ::float type the corresponding floatin-point type (line).

3. Creation

rat line l(const rat point& p, const rat point& q);

introduces a variable l of type rat line. l is initialized to the
line passing through points p and q directed form p to q.
Precondition: p 6= q.

rat line l(const rat segment& s);

introduces a variable l of type rat line. l is initialized to the
line supporting segment s.
Precondition: s is nontrivial.

rat line l(const rat point& p, const rat vector& v);

introduces a variable l of type rat line. l is initialized to the
line passing through points p and p+ v.
Precondition: v is a nonzero vector.

rat line l(const rat ray& r);

introduces a variable l of type rat line. l is initialized to the
line supporting ray r.

rat line l; introduces a variable l of type rat line.

rat line l(const line& l1 , int prec = rat point ::default precision);

introduces a variable l of type rat line. l is initialized to the
line obtained by approximating the two defining points of l1.

4. Operations

line l.to float() returns a floating point approximation of l.

12.13. STRAIGHT RATIONAL LINES (RAT LINE) 385

void l.normalize() simplifies the homogenous representation
by calling point1 ().normalize() and
point2 ().normlize().

rat point l.point1() returns a point on l.

rat point l.point2() returns a second point on l.

rat segment l.seg() returns a segment on l.

bool l.is vertical() decides whether l is vertical.

bool l.is horizontal() decides whether l is horizontal.

rational l.slope() returns the slope of s.
Precondition: l is not vertical.

rational l.x proj(rational y) returns p.xcoord(), where p ∈ line(l) with
p.ycoord() = y.
Precondition: l is not horizontal.

rational l.y proj(rational x) returns p.ycoord(), where p ∈ line(l) with
p.xcoord() = x.
Precondition: l is not vertical.

rational l.y abs() returns the y-abscissa of line(l), i.e., l.y proj(0).
Precondition: l is not vertical.

bool l.intersection(const rat line& g, rat point& inter)

returns true if l and g intersect. In case of inter-
section a common point is returned in inter .

bool l.intersection(const rat segment& s, rat point& inter)

returns true if l and s intersect. In case of inter-
section a common point is returned in inter .

bool l.intersection(const rat segment& s)

returns true, if l and s intersect, false otherwise.

rat line l.translate(const rational& dx , const rational& dy)

returns l translated by vector (dx, dy).

rat line l.translate(integer dx , integer dy , integer dw)

returns l translated by vector (dx/dw, dy/dw).

rat line l.translate(const rat vector& v)

returns l translated by vector v.
Precondition: v.dim() = 2.

rat line l + const rat vector& v returns l translated by vector v.

386 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

rat line l − const rat vector& v returns l translated by vector −v.

rat line l.rotate90(const rat point& q, int i = 1)

returns l rotated about q by an angle of i × 90
degrees. If i > 0 the rotation is counter-clockwise
otherwise it is clockwise.

rat line l.reflect(const rat point& p, const rat point& q)

returns l reflected across the straight line passing
through p and q.

rat line l.reflect(const rat point& p)

returns l reflected across point p.

rat line l.reverse() returns l reversed.

rational l.sqr dist(const rat point& q)

returns the square of the distance between l and
q.

rat segment l.perpendicular(const rat point& p)

returns the segment perpendicular to l with source
p and target on l.

rat point l.dual() returns the point dual to l.
Precondition: l is not vertical.

int l.orientation(const rat point& p)

computes orientation(a, b, p), where a 6= b and a
and b appear in this order on line l.

int l.side of(const rat point& p)

computes orientation(a, b, p), where a 6= b and a
and b appear in this order on line l.

bool l.contains(const rat point& p)

returns true if p lies on l.

bool l.clip(rat point p, rat point q, rat segment& s)

clips l at the rectangle R defined by p and q. Re-
turns true if the intersection of R and l is non-
empty and returns false otherwise. If the intersec-
tion is non-empty the intersection is assigned to
s; It is guaranteed that the source node of s is no
larger than its target node.

bool l == const rat line& g returns true if the l and g are equal as oriented
lines.

12.13. STRAIGHT RATIONAL LINES (RAT LINE) 387

bool equal as sets(const rat line& l, const rat line& g)

returns true if the l and g are equal as unoriented
lines.

Non-Member Functions

int orientation(const rat line& l, const rat point& p)

computes orientation(a, b, p), where a 6= b and a
and b appear in this order on line l.

int cmp slopes(const rat line& l1 , const rat line& l2)

returns compare(slope(l1), slope(l2)).

rat line p bisector(const rat point& p, const rat point& q)

returns the perpendicular bisector of p and q. The
bisector has p on its left.
Precondition: p 6= q.

388 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

12.14 Rational Circles (rat circle)

1. Definition

An instance C of data type rat circle is an oriented circle in the plane. A circle is

defined by three points p1, p2, p3 with rational coordinates (rat points). The orientation

of C is equal to the orientation of the three defining points, i.e., orientation(p1, p2, p3).

Positive orientation corresponds to counter-clockwise orientation and negative orientation

corresponds to clockwise orientation.

Some triples of points are unsuitable for defining a circle. A triple is admissable if

|{p1, p2, p3}| 6= 2. Assume now that p1, p2, p3 are admissable. If |{p1, p2, p3}| = 1 they

define the circle with center p1 and radius zero. If p1, p2, and p3 are collinear C is a

straight line passing through p1, p2 and p3 in this order and the center of C is undefined.

If p1, p2, and p3 are not collinear, C is the circle passing through them.

#include < LEDA/geo/rat circle.h >

2. Types

rat circle ::coord type the coordinate type (rational).

rat circle ::point type the point type (rat point).

rat circle ::float type the corresponding floatin-point type (circle).

3. Creation

rat circle C(const rat point& a, const rat point& b, const rat point& c);

introduces a variable C of type rat circle. C is initialized to
the circle through points a, b, and c.
Precondition: a, b, and c are admissable.

rat circle C(const rat point& a, const rat point& b);

introduces a variable C of type circle. C is initialized to
the counter-clockwise oriented circle with center a passing
through b.

rat circle C(const rat point& a);

introduces a variable C of type circle. C is initialized to the
trivial circle with center a.

rat circle C; introduces a variable C of type rat circle. C is initialized to
the trivial circle centered at (0, 0).

12.14. RATIONAL CIRCLES (RAT CIRCLE) 389

rat circle C(const circle& c, int prec = rat point ::default precision);

introduces a variable C of type rat circle. C is initialized to
the circle obtained by approximating three defining points of
c.

4. Operations

circle C.to float() returns a floating point approximation of C.

void C.normalize() simplifies the homogenous representation by nor-
malizing p1, p2, and p3.

int C.orientation() returns the orientation of C.

rat point C.center() returns the center of C.
Precondition: C has a center, i.e., is not a line.

rat point C.point1() returns p1.

rat point C.point2() returns p2.

rat point C.point3() returns p3.

rational C.sqr radius() returns the square of the radius of C.

rat point C.point on circle(double alpha, double epsilon)

returns a point p on C such that the angle of p
differs from alpha by at most epsilon.

bool C.is degenerate() returns true if the defining points are collinear.

bool C.is trivial() returns true if C has radius zero.

bool C.is line() returns true if C is a line.

rat line C.to line() returns line(point1 (), point3 ()).

int C.side of(const rat point& p)

returns −1, +1, or 0 if p lies right of, left of, or on
C respectively.

bool C.inside(const rat point& p)

returns true iff p lies inside of C.

bool C.outside(const rat point& p)

returns true iff p lies outside of C.

bool C.contains(const rat point& p)

returns true iff p lies on C.

390 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

rat circle C.translate(const rational& dx , const rational& dy)

returns C translated by vector (dx, dy).

rat circle C.translate(integer dx , integer dy , integer dw)

returns C translated by vector (dx/dw, dy/dw).

rat circle C.translate(const rat vector& v)

returns C translated by vector v.

rat circle C + const rat vector& v returns C translated by vector v.

rat circle C − const rat vector& v returns C translated by vector −v.

rat circle C.rotate90(const rat point& q, int i = 1)

returns C rotated by i × 90 degrees about q. If
i > 0 the rotation is counter-clockwise otherwise
it is clockwise.

rat circle C.reflect(const rat point& p, const rat point& q)

returns C reflected across the straight line passing
through p and q.

rat circle C.reflect(const rat point& p)

returns C reflected across point p.

rat circle C.reverse() returns C reversed.

bool C == const rat circle& D returns true if C and D are equal as oriented cir-
cles.

bool equal as sets(const rat circle& C1 , const rat circle& C2)

returns true if C1 and C2 are equal as unoriented
circles.

bool radical axis(const rat circle& C1 , const rat circle& C2 , rat line& rad axis)

if the radical axis for C1 and C2 exists, it is as-
signed to rad axis and true is returned; otherwise
the result is false.

ostream& ostream& out ≪ const rat circle& c

writes the three defining points.

istream& istream& in ≫ rat circle& c

reads three points and assigns the circle defined
by them to c.

12.15. RATIONAL TRIANGLES (RAT TRIANGLE) 391

12.15 Rational Triangles (rat triangle)

1. Definition

An instance t of the data type rat triangle is an oriented triangle in the two-dimensional

plane with rational coordinates. A rat triangle t splits the plane into one bounded and

one unbounded region. If t is positively oriented, the bounded region is to the left of it, if

it is negatively oriented, the unbounded region is to the left of it. t is called degenerate,

if the 3 vertices of t are collinear.

#include < LEDA/geo/rat triangle.h >

2. Types

rat triangle ::coord type the coordinate type (rational).

rat triangle ::point type the point type (rat point).

3. Creation

rat triangle t; introduces a variable t of type rat triangle. t is initialized to
the empty triangle.

rat triangle t(const rat point& p, const rat point& q, const rat point& r);

introduces a variable t of type rat triangle. t is initialized to
the triangle [p, q, r].

rat triangle t(const rational& x1 , const rational& y1 , const rational& x2 ,
const rational& y2 , const rational& x3 , const rational& y3);

introduces a variable t of type rat triangle. t is initialized to
the triangle [(x1, y1), (x2, y2), (x3, y3)].

rat triangle t(const triangle& t, int prec = rat point ::default precision);

introduces a variable t of type rat triangle. t is initialized
to the triangle obtained by approximating the three defining
points of t.

4. Operations

void t.normalize() simplifies the homogenous representation by calling
p.normalize() for every vertex of t.

rat point t.point1() returns the first vertex of triangle t.

rat point t.point2() returns the second vertex of triangle t.

rat point t.point3() returns the third vertex of triangle t.

392 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

rat point t[int i] returns the i-th vertex of t. Precondition: 1 ≤ i ≤ 3.

int t.orientation() returns the orientation of t.

rational t.area() returns the signed area of t (positive, if
orientation(a, b, c) > 0, negative otherwise).

bool t.is degenerate() returns true if the vertices of t are collinear.

int t.side of(const rat point& p)

returns +1 if p lies to the left of t, 0 if p lies on t and −1
if p lies to the right of t.

region kind t.region of(const rat point& p)

returns BOUNDED REGION if p lies in the bounded
region of t, ON REGION if p lies on t and
UNBOUNDED REGION if p lies in the unbounded re-
gion.

bool t.inside(const rat point& p)

returns true, if p lies to the left of t.

bool t.outside(const rat point& p)

returns true, if p lies to the right of t.

bool t.on boundary(const rat point& p)

decides whether p lies on the boundary of t.

bool t.contains(const rat point& p)

decides whether t contains p.

bool t.intersection(const rat line& l)

decides whether the bounded region or the boundary of t
and l intersect.

bool t.intersection(const rat segment& s)

decides whether the bounded region or the boundary of t
and s intersect.

rat triangle t.translate(rational dx , rational dy)

returns t translated by vector (dx, dy).

rat triangle t.translate(const rat vector& v)

returns t+ v, i.e., t translated by vector v.
Precondition: v.dim() = 2.

rat triangle t+ const rat vector& v

returns t translated by vector v.

12.15. RATIONAL TRIANGLES (RAT TRIANGLE) 393

rat triangle t− const rat vector& v

returns t translated by vector −v.

rat triangle t.rotate90(const rat point& q, int i = 1)

returns t rotated about q by an angle of i × 90 degrees.
If i > 0 the rotation is counter-clockwise otherwise it is
clockwise.

rat triangle t.rotate90(int i = 1)

returns t.rotate90(t.source(),i).

rat triangle t.reflect(const rat point& p, const rat point& q)

returns t reflected across the straight line passing through
p and q.

rat triangle t.reflect(const rat point& p)

returns t reflected across point p.

rat triangle t.reverse() returns t reversed.

394 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

12.16 Iso-oriented Rational Rectangles (

rat rectangle)

1. Definition

An instance r of the data type rectangle is an iso-oriented rectangle in the two-dimensional

plane with rational coordinates.

#include < LEDA/geo/rat rectangle.h >

2. Creation

rat rectangle r(const rat point& p, const rat point& q);

introduces a variable r of type rat rectangle. r is initialized to the
rat rectangle with diagonal corners p and q

rat rectangle r(const rat point& p, rational w, rational h);

introduces a variable r of type rat rectangle. r is initialized to the
rat rectangle with lower left corner p, width w and height h.

rat rectangle r(rational x1 , rational y1 , rational x2 , rational y2);

introduces a variable r of type rat rectangle. r is initialized to the
rat rectangle with diagonal corners (x1 , y1) and (x2 , y2).

rat rectangle r(const rectangle& r, int prec = rat point ::default precision);

introduces a variable r of type rat rectangle. r is initialized to the
rectangle obtained by approximating the defining points of r.

3. Operations

rectangle r.to float() returns a floating point approximation of R.

void r.normalize() simplifies the homogenous representation by call-
ing p.normalize() for every vertex of r.

rat point r.upper left() returns the upper left corner.

rat point r.upper right() returns the upper right corner.

rat point r.lower left() returns the lower left corner.

rat point r.lower right() returns the lower right corner.

rat point r.center() returns the center of r.

12.16. ISO-ORIENTED RATIONAL RECTANGLES (RAT RECTANGLE) 395

list<rat point> r.vertices() returns the vertices of r in counter-clockwise order
starting from the lower left point.

rational r.xmin() returns the minimal x-coordinate of r.

rational r.xmax() returns the maximal x-coordinate of r.

rational r.ymin() returns the minimal y-coordinate of r.

rational r.ymax() returns the maximal y-coordinate of r.

rational r.width() returns the width of r.

rational r.height() returns the height of r.

bool r.is degenerate() returns true, if r degenerates to a segment or point
(the 4 corners are collinear), false otherwise.

bool r.is point() returns true, if r degenerates to a point.

bool r.is segment() returns true, if r degenerates to a segment.

int r.cs code(const rat point& p)

returns the code for Cohen-Sutherland algorithm.

bool r.inside(const rat point& p)

returns true, if p is inside of r, false otherwise.

bool r.inside or contains(const rat point& p)

returns true, if p is inside of r or on the border,
false otherwise.

bool r.outside(const rat point& p)

returns true, if p is outside of r, false otherwise.

bool r.contains(const rat point& p)

returns true, if p is on the border of r, false other-
wise.

region kind r.region of(const rat point& p)

returns BOUNDED REGION if p lies in the
bounded region of r, returns ON REGION if p lies
on r, and returns UNBOUNDED REGION if p lies
in the unbounded region.

rat rectangle r.include(const rat point& p)

returns a new rat rectangle that includes the points
of r and p.

396 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

rat rectangle r.include(const rat rectangle& r2)

returns a new rat rectangle that includes the points
of r and r2.

rat rectangle r.translate(rational dx , rational dy)

returns r translated by (dx , dy).

rat rectangle r.translate(const rat vector& v)

returns r translated by v.

rat rectangle r + const rat vector& v returns r translated by v.

rat rectangle r − const rat vector& v returns r translated by vector −v.

rat point r[int i] returns the i− th vertex of r. Precondition: (0 <
i < 5).

rat rectangle r.rotate90(const rat point& p, int i = 1)

returns r rotated about q by an angle of i × 90
degrees. If i > 0 the rotation is counter-clockwise
otherwise it is clockwise.

rat rectangle r.rotate90(int i = 1) returns r rotated by an angle of i × 90 degrees
about the origin.

rat rectangle r.reflect(const rat point& p)

returns r reflected across p.

bool r.clip(const rat segment& t, rat segment& inter)

clips t on r and returns the result in inter .

bool r.clip(const rat line& l, rat segment& inter)

clips l on r and returns the result in inter .

bool r.clip(const rat ray& ry , rat segment& inter)

clips ry on r and returns the result in inter .

bool r.difference(const rat rectangle& q, list<rat rectangle>& L)

returns true iff the difference of r and q is not
empty, and false otherwise. The difference L is
returned as a partition into rectangles.

list<rat point> r.intersection(const rat segment& s)

returns r ∩ s.

list<rat point> r.intersection(const rat line& l)

returns r ∩ l.

12.16. ISO-ORIENTED RATIONAL RECTANGLES (RAT RECTANGLE) 397

list<rat rectangle> r.intersection(const rat rectangle& s)

returns r ∩ s.

bool r.do intersect(const rat rectangle& b)

returns true iff r and b intersect, false otherwise.

rational r.area() returns the area of r.

398 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

12.17 Real Points (real point)

1. Definition

An instance of the data type real point is a point in the two-dimensional plane R2. We use

(x, y) to denote a real point with first (or x-) coordinate x and second (or y-) coordinate

y.

#include < LEDA/geo/real point.h >

2. Types

real point ::coord type the coordinate type (real).

real point ::point type the point type (real point).

real point ::float type the corresponding floating-point type (point).

3. Creation

real point p; introduces a variable p of type real point initialized to the
point (0, 0).

real point p(real x, real y);

introduces a variable p of type real point initialized to the
point (x, y).

real point p(const point& p1 , int prec = 0);

introduces a variable p of type real point initialized to the
point p1. (The second argument is for compatibility with
rat point .)

real point p(const rat point& p1);

introduces a variable p of type real point initialized to the
point p1.

real point p(double x, double y);

introduces a variable p of type real point initialized to the real
point (x, y).

4. Operations

real p.xcoord() returns the first coordinate of p.

real p.ycoord() returns the second coordinate of p.

12.17. REAL POINTS (REAL POINT) 399

int p.orientation(const real point& q, const real point& r)

returns orientation(p, q, r) (see below).

real p.area(const real point& q, const real point& r)

returns area(p, q, r) (see below).

real p.sqr dist(const real point& q)

returns the square of the Euclidean distance between p
and q.

int p.cmp dist(const real point& q, const real point& r)

returns compare(p.sqr dist(q), p.sqr dist(r)).

real p.xdist(const real point& q)

returns the horizontal distance between p and q.

real p.ydist(const real point& q)

returns the vertical distance between p and q.

real p.distance(const real point& q)

returns the Euclidean distance between p and q.

real p.distance() returns the Euclidean distance between p and (0, 0).

real point p.translate(real dx , real dy)

returns p translated by vector (dx, dy).

real point p.translate(double dx , double dy)

returns p translated by vector (dx, dy).

real point p.translate(const real vector& v)

returns p+v, i.e., p translated by vector v.
Precondition: v.dim() = 2.

real point p+ const real vector& v

returns p translated by vector v.

real point p− const real vector& v

returns p translated by vector −v.

real point p.rotate90(const real point& q, int i = 1)

returns p rotated about q by an angle of i× 90 degrees.
If i > 0 the rotation is counter-clockwise otherwise it is
clockwise.

real point p.rotate90(int i = 1) returns p.rotate90(real point(0, 0), i).

400 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

real point p.reflect(const real point& q, const real point& r)

returns p reflected across the straight line passing
through q and r.

real point p.reflect(const real point& q)

returns p reflected across point q.

real vector p− const real point& q

returns the difference vector of the coordinates.

Non-Member Functions

int cmp distances(const real point& p1 , const real point& p2 ,
const real point& p3 , const real point& p4)

compares the distances (p1 , p2) and (p3 , p4). Returns
+1 (−1) if distance (p1 , p2) is larger (smaller) than dis-
tance (p3 , p4), otherwise 0.

real point center(const real point& a, const real point& b)

returns the center of a and b, i.e. a+ ~ab/2.

real point midpoint(const real point& a, const real point& b)

returns the center of a and b.

int orientation(const real point& a, const real point& b, const real point& c)

computes the orientation of points a, b, and c as the
sign of the determinant

∣

∣

∣

∣

∣

∣

∣

ax ay 1
bx by 1
cx cy 1

∣

∣

∣

∣

∣

∣

∣

i.e., it returns +1 if point c lies left of the directed line
through a and b, 0 if a,b, and c are collinear, and −1
otherwise.

int cmp signed dist(const real point& a, const real point& b, const real point& c,
const real point& d)

compares (signed) distances of c and d to the straight
line passing through a and b (directed from a to b). Re-
turns +1 (−1) if c has larger (smaller) distance than d
and 0 if distances are equal.

12.17. REAL POINTS (REAL POINT) 401

real area(const real point& a, const real point& b, const real point& c)

computes the signed area of the triangle determined by
a,b,c, positive if orientation(a, b, c) > 0 and negative
otherwise.

bool collinear(const real point& a, const real point& b, const real point& c)

returns true if points a, b, c are collinear, i.e.,
orientation(a, b, c) = 0, and false otherwise.

bool right turn(const real point& a, const real point& b, const real point& c)

returns true if points a, b, c form a righ turn, i.e.,
orientation(a, b, c) < 0, and false otherwise.

bool left turn(const real point& a, const real point& b, const real point& c)

returns true if points a, b, c form a left turn, i.e.,
orientation(a, b, c) > 0, and false otherwise.

int side of halfspace(const real point& a, const real point& b, const real point& c)

returns the sign of the scalar product (b − a) · (c − a).
If b 6= a this amounts to: Let h be the open halfspace
orthogonal to the vector b− a, containing b, and having
a in its boundary. Returns +1 if c is contained in h,
returns 0 is c lies on the the boundary of h, and returns
−1 is c is contained in the interior of the complement of
h.

int side of circle(const real point& a, const real point& b, const real point& c,
const real point& d)

returns +1 if point d lies left of the directed circle
through points a, b, and c, 0 if a,b,c,and d are cocir-
cular, and −1 otherwise.

bool inside circle(const real point& a, const real point& b, const real point& c,
const real point& d)

returns true if point d lies in the interior of the circle
through points a, b, and c, and false otherwise.

bool outside circle(const real point& a, const real point& b, const real point& c,
const real point& d)

returns true if point d lies outside of the circle through
points a, b, and c, and false otherwise.

bool on circle(const real point& a, const real point& b, const real point& c,
const real point& d)

returns true if points a, b, c, and d are cocircular.

bool cocircular(const real point& a, const real point& b, const real point& c,
const real point& d)

returns true if points a, b, c, and d are cocircular.

402 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

int compare by angle(const real point& a, const real point& b,
const real point& c, const real point& d)

compares vectors b−a and d−c by angle (more efficient
than calling compare by angle(b− a, d− x) on vectors).

bool affinely independent(const array<real point>& A)

decides whether the points in A are affinely independent.

bool contained in simplex(const array<real point>& A, const real point& p)

determines whether p is contained in the simplex
spanned by the points in A. A may consist of up to
3 points.
Precondition: The points in A are affinely independent.

bool contained in affine hull(const array<real point>& A, const real point& p)

determines whether p is contained in the affine hull of
the points in A.

12.18. REAL SEGMENTS (REAL SEGMENT) 403

12.18 Real Segments (real segment)

1. Definition

An instance s of the data type real segment is a directed straight line segment in the

two-dimensional plane, i.e., a straight line segment [p, q] connecting two points p, q ∈ R2.

p is called the source or start point and q is called the target or end point of s. The length

of s is the Euclidean distance between p and q. If p = q, s is called empty. We use line(s)

to denote a straight line containing s.

#include < LEDA/geo/real segment.h >

2. Types

real segment ::coord type the coordinate type (real).

real segment ::point type the point type (real point).

3. Creation

real segment s(const real point& p, const real point& q);

introduces a variable s of type real segment . s is initialized to
the segment [p, q].

real segment s(const real point& p, const real vector& v);

introduces a variable s of type real segment . s is initialized to
the segment [p, p+ v].
Precondition: v.dim() = 2.

real segment s(real x1 , real y1 , real x2 , real y2);

introduces a variable s of type real segment . s is initialized to
the segment [(x1, y1), (x2, y2)].

real segment s; introduces a variable s of type real segment . s is initialized to
the empty segment.

real segment s(const segment& s1 , int prec = 0);

introduces a variable s of type real segment initialized to the
segment s1. (The second argument is for compatibility with
rat segment .)

real segment s(const rat segment& s1);

introduces a variable s of type real segment initialized to the
segment s1.

404 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

4. Operations

real point s.start() returns the source point of segment s.

real point s.end() returns the target point of segment s.

real s.xcoord1() returns the x-coordinate of s.source().

real s.xcoord2() returns the x-coordinate of s.target().

real s.ycoord1() returns the y-coordinate of s.source().

real s.ycoord2() returns the y-coordinate of s.target().

real s.dx() returns the xcoord2− xcoord1.

real s.dy() returns the ycoord2− ycoord1.

real s.slope() returns the slope of s.
Precondition: s is not vertical.

real s.sqr length() returns the square of the length of s.

real s.length() returns the length of s.

real vector s.to vector() returns the vector s.target()− s.source().

bool s.is trivial() returns true if s is trivial.

bool s.is vertical() returns true iff s is vertical.

bool s.is horizontal() returns true iff s is horizontal.

int s.orientation(const real point& p)

computes orientation(s.source(), s.target(), p) (see below).

real s.x proj(real y) returns p.xcoord(), where p ∈ line(s) with p.ycoord() = y.
Precondition: s is not horizontal.

real s.y proj(real x) returns p.ycoord(), where p ∈ line(s) with p.xcoord() = x.
Precondition: s is not vertical.

real s.y abs() returns the y-abscissa of line(s), i.e., s.y proj(0).
Precondition: s is not vertical.

bool s.contains(const real point& p)

decides whether s contains p.

bool s.intersection(const real segment& t)

decides whether s and t intersect in one point.

12.18. REAL SEGMENTS (REAL SEGMENT) 405

bool s.intersection(const real segment& t, real point& p)

if s and t intersect in a single point this point is assigned
to p and the result is true, otherwise the result is false.

bool s.intersection of lines(const real segment& t, real point& p)

if line(s) and line(t) intersect in a single point this point
is assigned to p and the result is true, otherwise the result
is false.

real segment s.translate(real dx , real dy)

returns s translated by vector (dx, dy).

real segment s.translate(const real vector& v)

returns s+ v, i.e., s translated by vector v.
Precondition: v.dim() = 2.

real segment s+ const real vector& v

returns s translated by vector v.

real segment s− const real vector& v

returns s translated by vector −v.

real segment s.perpendicular(const real point& p)

returns the segment perpendicular to s with source p and
target on line(s).

real s.distance(const real point& p)

returns the Euclidean distance between p and s.

real s.sqr dist(const real point& p)

returns the squared Euclidean distance between p and s.

real s.distance() returns the Euclidean distance between (0, 0) and s.

real segment s.rotate90(const real point& q, int i = 1)

returns s rotated about q by an angle of i × 90 degrees.
If i > 0 the rotation is counter-clockwise otherwise it is
clockwise.

real segment s.rotate90(int i = 1)

returns s.rotate90(s.source(),i).

real segment s.reflect(const real point& p, const real point& q)

returns s reflected across the straight line passing through
p and q.

real segment s.reflect(const real point& p)

returns s reflected across point p.

406 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

real segment s.reverse() returns s reversed.

Non-Member Functions

int orientation(const real segment& s, const real point& p)

computes orientation(s.source(), s.target(), p).

int cmp slopes(const real segment& s1 , const real segment& s2)

returns compare(slope(s1), slope(s2)).

int cmp segments at xcoord(const real segment& s1 , const real segment& s2 ,
const real point& p)

compares points l1 ∩ v and l2 ∩ v where li is the line under-
lying segment si and v is the vertical straight line passing
through point p.

bool parallel(const real segment& s1 , const real segment& s2)

returns true if s1 and s2 are parallel and false otherwise.

12.19. REAL RAYS (REAL RAY) 407

12.19 Real Rays (real ray)

1. Definition

An instance r of the data type real ray is a directed straight ray in the two-dimensional

plane.

#include < LEDA/geo/real ray.h >

2. Types

real ray ::coord type the coordinate type (real).

real ray ::point type the point type (real point).

3. Creation

real ray r(const real point& p, const real point& q);

introduces a variable r of type real ray . r is initialized to the
ray starting at point p and passing through point q.

real ray r(const real segment& s);

introduces a variable r of type real ray . r is initialized to
real ray(s.source(), s.target()).

real ray r(const real point& p, const real vector& v);

introduces a variable r of type real ray . r is initialized to
real ray(p, p+ v).

real ray r; introduces a variable r of type real ray . r is initialized to the
ray starting at the origin with direction 0.

real ray r(const ray& r1 , int prec = 0);

introduces a variable r of type real ray initialized to the ray
r1. (The second argument is for compatibility with rat ray .)

real ray r(const rat ray& r1);

introduces a variable r of type real ray initialized to the ray
r1.

4. Operations

real point r.source() returns the source of r.

real point r.point1() returns the source of r.

408 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

real point r.point2() returns a point on r different from r.source().

bool r.is vertical() returns true iff r is vertical.

bool r.is horizontal() returns true iff r is horizontal.

real r.slope() returns the slope of the straight line underlying r.
Precondition: r is not vertical.

bool r.intersection(const real ray& s, real point& inter)

if r and s intersect in a single point this point is
assigned to inter and the result is true, otherwise
the result is false.

bool r.intersection(const real segment& s, real point& inter)

if r and s intersect in a single point this point is
assigned to inter and the result is true, otherwise
the result is false.

real ray r.translate(real dx , real dy)

returns r translated by vector (dx, dy).

real ray r.translate(const real vector& v)

returns r translated by vector v
Precondition: v.dim() = 2.

real ray r + const real vector& v returns r translated by vector v.

real ray r − const real vector& v returns r translated by vector −v.

real ray r.rotate90(const real point& q, int i = 1)

returns r rotated about q by an angle of i × 90
degrees. If i > 0 the rotation is counter-clockwise
otherwise it is clockwise.

real ray r.reflect(const real point& p, const real point& q)

returns r reflected across the straight line passing
through p and q.

real ray r.reflect(const real point& p)

returns r reflected across point p.

real ray r.reverse() returns r reversed.

bool r.contains(const real point&)

decides whether r contains p.

bool r.contains(const real segment&)

decides whether r contains s.

12.19. REAL RAYS (REAL RAY) 409

Non-Member Functions

int orientation(const real ray& r, const real point& p)

computes orientation(a, b, p) (see the manual page
of real point), where a 6= b and a and b appear in
this order on ray r.

int cmp slopes(const real ray& r1 , const real ray& r2)

returns compare(slope(r1), slope(r2)) where
slope(ri) denotes the slope of the straight line
underlying ri.

410 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

12.20 Straight Real Lines (real line)

1. Definition

An instance l of the data type real line is a directed straight line in the two-dimensional

plane.

#include < LEDA/geo/real line.h >

2. Types

real line ::coord type the coordinate type (real).

real line ::point type the point type (real point).

3. Creation

real line l(const real point& p, const real point& q);

introduces a variable l of type real line. l is initialized to the
line passing through points p and q directed form p to q.

real line l(const real segment& s);

introduces a variable l of type real line. l is initialized to the
line supporting segment s.

real line l(const real ray& r);

introduces a variable l of type real line. l is initialized to the
line supporting ray r.

real line l(const real point& p, const real vector& v);

introduces a variable l of type real line. l is initialized to the
line passing through points p and p+ v.

real line l; introduces a variable l of type real line. l is initialized to the
line passing through the origin with direction 0.

real line l(const line& l1 , int prec = 0);

introduces a variable l of type real line initialized to the line
l1. (The second argument is for compatibility with rat line.)

real line l(const rat line& l1);

introduces a variable l of type real line initialized to the line
l1.

12.20. STRAIGHT REAL LINES (REAL LINE) 411

4. Operations

real point l.point1() returns a point on l.

real point l.point2() returns a second point on l.

real segment l.seg() returns a segment on l.

bool l.is vertical() returns true iff l is vertical.

bool l.is horizontal() returns true iff l is horizontal.

real l.sqr dist(const real point& q)

returns the square of the distance between l and
q.

real l.distance(const real point& q)

returns the distance between l and q.

int l.orientation(const real point& p)

returns orientation(l.point1(), l.point2(), p).

real l.slope() returns the slope of l.
Precondition: l is not vertical.

real l.y proj(real x) returns p.ycoord(), where p ∈ l with p.xcoord() =
x.
Precondition: l is not vertical.

real l.x proj(real y) returns p.xcoord(), where p ∈ l with p.ycoord() =
y.
Precondition: l is not horizontal.

real l.y abs() returns the y-abscissa of l (l.y proj(0)).
Precondition: l is not vertical.

bool l.intersection(const real line& g, real point& p)

if l and g intersect in a single point this point is
assigned to p and the result is true, otherwise the
result is false.

bool l.intersection(const real segment& s, real point& inter)

if l and s intersect in a single point this point is
assigned to p and the result is true, otherwise the
result is false.

bool l.intersection(const real segment& s)

returns true, if l and s intersect, false otherwise.

real line l.translate(real dx , real dy)

returns l translated by vector (dx, dy).

412 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

real line l.translate(const real vector& v)

returns l translated by vector v.
Precondition: v.dim() = 2.

real line l + const real vector& v returns l translated by vector v.

real line l − const real vector& v returns l translated by vector −v.

real line l.rotate90(const real point& q, int i = 1)

returns l rotated about q by an angle of i × 90
degrees. If i > 0 the rotation is counter-clockwise
otherwise it is clockwise.

real line l.reflect(const real point& p, const real point& q)

returns l reflected across the straight line passing
through p and q.

real line l.reverse() returns l reversed.

real segment l.perpendicular(const real point& p)

returns the segment perpendicular to l with source
p. and target on l.

real point l.dual() returns the point dual to l.
Precondition: l is not vertical.

int l.side of(const real point& p)

computes orientation(a, b, p), where a 6= b and a
and b appear in this order on line l.

bool l.contains(const real point& p)

returns true if p lies on l.

bool l.clip(real point p, real point q, real segment& s)

clips l at the rectangle R defined by p and q. Re-
turns true if the intersection of R and l is non-
empty and returns false otherwise. If the intersec-
tion is non-empty the intersection is assigned to
s; it is guaranteed that the source node of s is no
larger than its target node.

Non-Member Functions

int orientation(const real line& l, const real point& p)

computes orientation(a, b, p) (see the manual page
of real point), where a 6= b and a and b appear in
this order on line l.

12.20. STRAIGHT REAL LINES (REAL LINE) 413

int cmp slopes(const real line& l1 , const real line& l2)

returns compare(slope(l1), slope(l2)).

414 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

12.21 Real Circles (real circle)

1. Definition

An instance C of the data type real circle is an oriented circle in the plane passing through

three points p1, p2, p3. The orientation of C is equal to the orientation of the three defining

points, i.e. orientation(p1, p2, p3). If |{p1, p2, p3}|= 1 C is the empty circle with center

p1. If p1, p2, p3 are collinear C is a straight line passing through p1, p2 and p3 in this order

and the center of C is undefined.

#include < LEDA/geo/real circle.h >

2. Types

real circle ::coord type the coordinate type (real).

real circle ::point type the point type (real point).

3. Creation

real circle C(const real point& a, const real point& b, const real point& c);

introduces a variable C of type real circle. C is initialized to
the oriented circle through points a, b, and c.

real circle C(const real point& a, const real point& b);

introduces a variable C of type real circle. C is initialized
to the counter-clockwise oriented circle with center a passing
through b.

real circle C(const real point& a);

introduces a variable C of type real circle. C is initialized to
the trivial circle with center a.

real circle C; introduces a variable C of type real circle. C is initialized to
the trivial circle with center (0, 0).

real circle C(const real point& c, real r);

introduces a variable C of type real circle. C is initialized
to the circle with center c and radius r with positive (i.e.
counter-clockwise) orientation.

real circle C(real x, real y, real r);

introduces a variable C of type real circle. C is initialized
to the circle with center (x, y) and radius r with positive
(i.e. counter-clockwise) orientation.

12.21. REAL CIRCLES (REAL CIRCLE) 415

real circle C(const circle& c, int prec = 0);

introduces a variable C of type real circle initialized to the
circle c. (The second argument is for compatibility with
rat circle.)

real circle C(const rat circle& c);

introduces a variable C of type real circle initialized to the
circle c.

4. Operations

real point C.center() returns the center of C.
Precondition: The orientation of C is not 0.

real C.radius() returns the radius of C.
Precondition: The orientation of C is not 0.

real C.sqr radius() returns the squared radius of C.
Precondition: The orientation of C is not 0.

real point C.point1() returns p1.

real point C.point2() returns p2.

real point C.point3() returns p3.

bool C.is degenerate() returns true if the defining points are collinear.

bool C.is trivial() returns true if C has radius zero.

bool C.is line() returns true if C is a line.

real line C.to line() returns line(point1 (), point3 ()).

int C.orientation() returns the orientation of C.

int C.side of(const real point& p)

returns −1, +1, or 0 if p lies right of, left of, or on
C respectively.

bool C.inside(const real point& p)

returns true iff p lies inside of C.

bool C.outside(const real point& p)

returns true iff p lies outside of C.

bool C.contains(const real point& p)

returns true iff p lies on C.

416 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

real circle C.translate(real dx , real dy)

returns C translated by vector (dx, dy).

real circle C.translate(const real vector& v)

returns C translated by vector v.

real circle C + const real vector& v returns C translated by vector v.

real circle C − const real vector& v returns C translated by vector −v.

real circle C.rotate90(const real point& q, int i = 1)

returns C rotated about q by an angle of i × 90
degrees. If i > 0 the rotation is counter-clockwise
otherwise it is clockwise.

real circle C.reflect(const real point& p, const real point& q)

returns C reflected across the straight line passing
through p and q.

real circle C.reflect(const real point& p)

returns C reflected across point p.

real circle C.reverse() returns C reversed.

list<real point> C.intersection(const real circle& D)

returns C ∩D as a list of points.

list<real point> C.intersection(const real line& l)

returns C ∩ l as a list of (zero, one, or two) points
sorted along l.

list<real point> C.intersection(const real segment& s)

returns C ∩ s as a list of (zero, one, or two) points
sorted along s.

real segment C.left tangent(const real point& p)

returns the line segment starting in p tangent to
C and left of segment [p, C.center()].

real segment C.right tangent(const real point& p)

returns the line segment starting in p tangent to
C and right of segment [p, C.center()].

real C.distance(const real point& p)

returns the distance between C and p.

real C.sqr dist(const real point& p)

returns the squared distance between C and p.

12.21. REAL CIRCLES (REAL CIRCLE) 417

real C.distance(const real line& l)

returns the distance between C and l.

real C.distance(const real circle& D)

returns the distance between C and D.

bool radical axis(const real circle& C1 , const real circle& C2 ,
real line& rad axis)

if the radical axis for C1 and C2 exists, it is as-
signed to rad axis and true is returned; otherwise
the result is false.

418 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

12.22 Real Triangles (real triangle)

1. Definition

An instance t of the data type real triangle is an oriented triangle in the two-dimensional

plane. A triangle splits the plane into one bounded and one unbounded region. If the

triangle is positively oriented, the bounded region is to the left of it, if it is negatively

oriented, the unbounded region is to the left of it. A triangle t is called degenerate, if the

3 vertices of t are collinear.

#include < LEDA/geo/real triangle.h >

2. Types

real triangle ::coord type the coordinate type (real).

real triangle ::point type the point type (real point).

3. Creation

real triangle t; introduces a variable t of type real triangle. t is initialized to
the empty triangle.

real triangle t(const real point& p, const real point& q, const real point& r);

introduces a variable t of type real triangle. t is initialized to
the triangle [p, q, r].

real triangle t(real x1 , real y1 , real x2 , real y2 , real x3 , real y3);

introduces a variable t of type real triangle. t is initialized to
the triangle [(x1, y1), (x2, y2), (x3, y3)].

real triangle t(const triangle& t1 , int prec = 0);

introduces a variable t of type real triangle initialized to the
triangle t1. (The second argument is for compatibility with
rat triangle.)

real triangle t(const rat triangle& t1);

introduces a variable t of type real triangle initialized to the
triangle t1.

4. Operations

real point t.point1() returns the first vertex of triangle t.

real point t.point2() returns the second vertex of triangle t.

12.22. REAL TRIANGLES (REAL TRIANGLE) 419

real point t.point3() returns the third vertex of triangle t.

real point t[int i] returns the i-th vertex of t. Precondition: 1 ≤ i ≤ 3.

int t.orientation() returns the orientation of t.

real t.area() returns the signed area of t (positive, if
orientation(a, b, c) > 0, negative otherwise).

bool t.is degenerate() returns true if the vertices of t are collinear.

int t.side of(const real point& p)

returns +1 if p lies to the left of t, 0 if p lies on t and −1
if p lies to the right of t.

region kind t.region of(const real point& p)

returns BOUNDED REGION if p lies in the bounded
region of t, ON REGION if p lies on t and
UNBOUNDED REGION if p lies in the unbounded re-
gion.

bool t.inside(const real point& p)

returns true, if p lies to the left of t.

bool t.outside(const real point& p)

returns true, if p lies to the right of t.

bool t.on boundary(const real point& p)

decides whether p lies on the boundary of t.

bool t.contains(const real point& p)

decides whether t contains p.

bool t.intersection(const real line& l)

decides whether the bounded region or the boundary of t
and l intersect.

bool t.intersection(const real segment& s)

decides whether the bounded region or the boundary of t
and s intersect.

real triangle t.translate(real dx , real dy)

returns t translated by vector (dx, dy).

real triangle t.translate(const real vector& v)

returns t+ v, i.e., t translated by vector v.
Precondition: v.dim() = 2.

420 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

real triangle t+ const real vector& v

returns t translated by vector v.

real triangle t− const real vector& v

returns t translated by vector −v.

real triangle t.rotate90(const real point& q, int i = 1)

returns t rotated about q by an angle of i × 90 degrees.
If i > 0 the rotation is counter-clockwise otherwise it is
clockwise.

real triangle t.rotate90(int i = 1)

returns t.rotate90(t.source(),i).

real triangle t.reflect(const real point& p, const real point& q)

returns t reflected across the straight line passing through
p and q.

real triangle t.reflect(const real point& p)

returns t reflected across point p.

real triangle t.reverse() returns t reversed.

12.23. ISO-ORIENTED REAL RECTANGLES (REAL RECTANGLE) 421

12.23 Iso-oriented Real Rectangles (real rectangle)

1. Definition

An instance r of the data type real rectangle is an iso-oriented rectangle in the two-

dimensional plane.

#include < LEDA/geo/real rectangle.h >

2. Creation

real rectangle r(const real point& p, const real point& q);

introduces a variable r of type real rectangle. r is initialized to the
real rectangle with diagonal corners p and q

real rectangle r(const real point& p, real w, real h);

introduces a variable r of type real rectangle. r is initialized to the
real rectangle with lower left corner p, width w and height h.

real rectangle r(real x1 , real y1 , real x2 , real y2);

introduces a variable r of type real rectangle. r is initialized to the
real rectangle with diagonal corners (x1 , y1) and (x2 , y2).

real rectangle r(const rectangle& r1 , int prec = 0);

introduces a variable r of type real rectangle initialized to the
rectangle r1. (The second argument is for compatibility with
rat rectangle.)

real rectangle r(const rat rectangle& r1);

introduces a variable r of type real rectangle initialized to the rect-
angle r1.

3. Operations

real point r.upper left() returns the upper left corner.

real point r.upper right() returns the upper right corner.

real point r.lower left() returns the lower left corner.

real point r.lower right() returns the lower right corner.

real point r.center() returns the center of r.

list<real point> r.vertices() returns the vertices of r in counter-clockwise order
starting from the lower left point.

422 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

real r.xmin() returns the minimal x-coordinate of r.

real r.xmax() returns the maximal x-coordinate of r.

real r.ymin() returns the minimal y-coordinate of r.

real r.ymax() returns the maximal y-coordinate of r.

real r.width() returns the width of r.

real r.height() returns the height of r.

bool r.is degenerate() returns true, if r degenerates to a segment or point
(the 4 corners are collinear), false otherwise.

bool r.is point() returns true, if r degenerates to a point.

bool r.is segment() returns true, if r degenerates to a segment.

int r.cs code(const real point& p)

returns the code for Cohen-Sutherland algorithm.

bool r.inside(const real point& p)

returns true, if p is inside of r, false otherwise.

bool r.outside(const real point& p)

returns true, if p is outside of r, false otherwise.

bool r.inside or contains(const real point& p)

returns true, if p is inside of r or on the border,
false otherwise.

bool r.contains(const real point& p)

returns true, if p is on the border of r, false other-
wise.

region kind r.region of(const real point& p)

returns BOUNDED REGION if p lies in the
bounded region of r, returns ON REGION if p lies
on r, and returns UNBOUNDED REGION if p lies
in the unbounded region.

real rectangle r.include(const real point& p)

returns a new rectangle that includes the points of
r and p.

real rectangle r.include(const real rectangle& r2)

returns a new rectangle that includes the points of
r and r2.

12.23. ISO-ORIENTED REAL RECTANGLES (REAL RECTANGLE) 423

real rectangle r.translate(real dx , real dy)

returns a new rectangle that is the translation of
r by (dx , dy).

real rectangle r.translate(const real vector& v)

returns a new rectangle that is the translation of
r by v.

real rectangle r + const real vector& v

returns r translated by v.

real rectangle r − const real vector& v

returns r translated by −v.

real point r[int i] returns the i− th vertex of r. Precondition: (0 <
i < 5).

real rectangle r.rotate90(const real point& p, int i = 1)

returns r rotated about p by an angle of i × 90
degrees. If i > 0 the rotation is counter-clockwise
otherwise it is clockwise.

real rectangle r.rotate90(int i = 1) returns r rotated by an angle of i × 90 degrees
about the origin.

real rectangle r.reflect(const real point& p)

returns r reflected across p .

list<real point> r.intersection(const real segment& s)

returns r ∩ s .

bool r.clip(const real segment& t, real segment& inter)

clips t on r and returns the result in inter .

bool r.clip(const real line& l, real segment& inter)

clips l on r and returns the result in inter .

bool r.clip(const real ray& ry , real segment& inter)

clips ry on r and returns the result in inter .

bool r.difference(const real rectangle& q, list<real rectangle>& L)

returns true iff the difference of r and q is not
empty, and false otherwise. The difference L is
returned as a partition into rectangles.

list<real point> r.intersection(const real line& l)

returns r ∩ l.

424 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

list<real rectangle> r.intersection(const real rectangle& s)

returns r ∩ s.

bool r.do intersect(const real rectangle& b)

returns true iff r and b intersect, false otherwise.

real r.area() returns the area of r.

12.24. GEOMETRY ALGORITHMS (GEO ALG) 425

12.24 Geometry Algorithms (geo alg)

All functions listed in this section work for geometric objects based on both floating-point

and exact (rational) arithmetic. In particular, point can be replace by rat point , segment

by rat segment , and circle by rat circle.

The floating point versions are faster but unreliable. They may produce incorrect results,

abort, or run forever. Only the rational versions will produce correct results for all inputs.

The include-file for the rational version is rat geo alg.h, the include-file for the floating

point version is float geo alg.h, and geo alg.h includes both versions. Including both

versions increases compile time. An alternative name for geo alg.h is plane alg.h.

• Convex Hulls

list<point> CONVEX HULL(const list<point>& L)

CONVEX HULL takes as argument a list of points and returns the poly-
gon representing the convex hull of L. The cyclic order of the vertices
in the result list corresponds to counter-clockwise order of the vertices
on the hull. The algorithm calls our current favorite of the algorithms
below.

polygon CONVEX HULL POLY(const list<point>& L)

as above, but returns the convex hull of L as a polygon.

list<point> UPPER CONVEX HULL(const list<point>& L)

returns the upper convex hull of L.

list<point> LOWER CONVEX HULL(const list<point>& L)

returns the lower convex hull of L.

list<point> CONVEX HULL S(const list<point>& L)

as above, but the algorithm is based on the sweep paradigm. Running
time is O(n log n) in the worst and in the best case.

list<point> CONVEX HULL IC(const list<point>& L)

as above, but the algorithm is based on incremental construction. The
running time is O(n2) worst case and is O(n log n) expected case. The
expectation is computed as the average over all permutations of L. The
running time is linear in the best case.

list<point> CONVEX HULL RIC(const list<point>& L)

as above. The algorithm permutes L randomly and then calls the pre-
ceding function.

426 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

double WIDTH(const list<point>& L, line& l1 , line& l2)

returns the square of the minimum width of a stripe covering all points
in L and the two boundaries of the stripe.
Precondition: L is non-empty

• Halfplane intersections

void HALFPLANE INTERSECTION(const list<line>& L, list<line>& Lout)

For every line ℓ ∈ L let hℓ be the closed halfplane lying on the pos-
itive side of ℓ, i.e., hℓ = { p ∈ R2 | orientation(ℓ, p) ≥ 0 }, and let
H = ∩ℓ∈Lhℓ. Then HALFPLANE INTERSECTION computes the list
of lines Lout defining the boundary of H in counter-clockwise ordering.

• Point Location

edge LOCATE IN TRIANGULATION(const GRAPH <point , int>& G, point p,
edge start = 0)

returns an edge e of triangulation G that contains p or that borders
the face that contains p. In the former case, a hull edge is returned if
p lies on the boundary of the convex hull. In the latter case we have
orientation(e, p) > 0 except if all points of G are collinear and p lies on
the induced line. In this case target(e) is visible from p. The function
returns nil if G has no edge. The optional third argument is an edge of
G, where the locate operation starts searching.

edge LOCATE IN TRIANGULATION(const GRAPH <point , segment>& G, point p,
edge start = 0)

as above, for constraint triangulations.

edge LOCATE IN TRIANGULATION(const graph& G, const node array<point>& pos ,
point p, edge start = 0)

as above, for arbitrary graph types representing a triangulation. Node
positions have to be supplied in a node array pos .

• Triangulations

edge TRIANGULATE POINTS(const list<point>& L, GRAPH <point , int>& T)

computes a triangulation (planar map) T of the points in L and returns
an edge of the outer face (convex hull).

void DELAUNAY TRIANG(const list<point>& L, GRAPH <point , int>& DT)

computes the delaunay triangulation DT of the points in L.

void DELAUNAY DIAGRAM(const list<point>& L, GRAPH <point , int>& DD)

computes the delaunay diagram DD of the points in L.

12.24. GEOMETRY ALGORITHMS (GEO ALG) 427

void F DELAUNAY TRIANG(const list<point>& L, GRAPH <point , int>& FDT)

computes the furthest point delaunay triangulation FDT of the points in
L.

void F DELAUNAY DIAGRAM(const list<point>& L, GRAPH <point , int>& FDD)

computes the furthest point delaunay diagram FDD of the points in L.

• Constraint Triangulations

edge TRIANGULATE SEGMENTS(const list<segment>& L,
GRAPH <point , segment>& G)

computes a constrained triangulation (planar map) T of the segments in
L (trivial segments representing points are allowed). The function returns
an edge of the outer face (convex hull).

edge DELAUNAY TRIANG(const list<segment>& L, GRAPH <point , segment>& G)

computes a constrained Delaunay triangulation T of the segments in L.
The function returns an edge of the outer face (convex hull).

edge TRIANGULATE PLANEMAP(GRAPH <point , segment>& G)

computes a constrained triangulation T of the plane map (counter-
clockwise straight-line embedded Graph) G. The function returns an
edge of the outer face (convex hull). Precondition: G is simple.

edge DELAUNAY TRIANG(GRAPH <point , segment>& G)

computes a constrained Delaunay triangulation T of the plane map G.
The function returns an edge of the outer face (convex hull). Precondition:
G is simple.

edge TRIANGULATE POLYGON(const polygon& P, GRAPH <point , segment>& G,
list<edge>& inner edges , list<edge>& outer edges ,
list<edge>& boundary edges)

triangulates the interior and exterior of the simple polygon P and stores
all edges of the inner (outer) triangulation in inner edges (outer edges)
and the edges of the polygon boundary in boundary edges . The function
returns an edge of the convex hull of P if P is simple and nil otherwise.

428 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

edge TRIANGULATE POLYGON(const gen polygon& GP ,
GRAPH <point , segment>& G,
list<edge>& inner edges , list<edge>& outer edges ,
list<edge>& boundary edges , list<edge>& hole edges)

triangulates the interior and exterior of the generalized polygon GP
and stores all edges of the inner (outer) triangulation in inner edges
(outer edges). The function returns nil if GP is trivial, and an edge
of the convex hull otherwise. boundary edges contains the edges of every
counter-clockwise oriented boundary cycle of GP , and hole edges contains
the edges on every clockwise oriented boundary cycle of GP . Note that
the reversals of boundary and hole edges will be returned in inner edges .
Precondition: GP is simple.

edge CONVEX COMPONENTS(const polygon& P, GRAPH <point , segment>& G,
list<edge>& inner edges , list<edge>& boundary)

if P is a bounded and non-trivial simple polygon its interior is decomposed
into convex parts. All inner edges of the constructed decomposition are
returned in inner edges . boundary edges contains the edges of the polygon
boundary Note that the reversals of boundary edges will be stored in
inner edges . The function returns an edge of the convex hull if P is
simple and non-trivial and nil otherwise.

edge CONVEX COMPONENTS(const gen polygon& GP ,
GRAPH <point , segment>& G,
list<edge>& inner edges , list<edge>& boundary edges ,
list<edge>& hole edges)

if GP is a bounded and non-trivial generalized polygon, its interior is
decomposed into convex parts. All inner edges of the constructed decom-
position are returned in inner edges . boundary edges contains the edges
of every counter-clockwise oriented boundary cycle of GP , and hole edges
contains the edges of every clockwise oriented boundary cycle of GP .
Note that the reversals of boundary and hole edges will be stored in
inner edges . The function returns an edge of the convex hull if GP is a
bounded and non-trivial and nil otherwise. Precondition: GP must be
simple.

list<polygon> TRIANGLE COMPONENTS(const gen polygon& GP)

triangulates the interior of generalized polygon GP and returns the result
of the triangulation as a list of polygons.

list<polygon> CONVEX COMPONENTS(const gen polygon& GP)

if GP is a bounded and non-trivial generalized polygon, its interior is
decomposed into convex parts. The function returns a list of polygons
that form the convex decomposition of GPs interior.

• Minkowski Sums

Please note that the Minkowski sums only work reliable for the rational kernel.

12.24. GEOMETRY ALGORITHMS (GEO ALG) 429

gen polygon MINKOWSKI SUM(const polygon& P, const polygon& R)

computes the Minkowski sum of P and R.

gen polygon MINKOWSKI DIFF(const polygon& P, const polygon& R)

computes the Minkowski difference of P and R, i.e. the Minkowski sum
of P and R.reflect(point(0, 0)).

gen polygon MINKOWSKI SUM(const gen polygon& P, const polygon& R)

computes the Minkowski sum of P and R.

gen polygon MINKOWSKI DIFF(const gen polygon& P, const polygon& R)

computes the Minkowski difference of P and R, i.e. the Minkowski sum
of P and R.reflect(point(0, 0)).

The following variants of the MINKOWSKI functions take two additional call-back func-

tion arguments conv partition and conv unite which are used by the algorithm to partition

the input polygons into convex parts and for computing the union of a list of convex poly-

gons, respectively (instead of using the default methods).

gen polygon MINKOWSKI SUM(const polygon& P, const polygon& R,
void (∗conv partition)(const gen polygon& p,
const polygon& r, list<polygon>& lp,
list<polygon>& lr),
gen polygon (∗conv unite)(const list<gen polygon>&))

gen polygon MINKOWSKI DIFF(const polygon& P, const polygon& R,
void (∗conv partition)(const gen polygon& p,
const polygon& r, list<polygon>& lp,
list<polygon>& lr),
gen polygon (∗conv unite)(const list<gen polygon>&))

gen polygon MINKOWSKI SUM(const gen polygon& P, const polygon& R,
void (∗conv partition)(const gen polygon& p,
const polygon& r, list<polygon>& lp,
list<polygon>& lr),
gen polygon (∗conv unite)(const list<gen polygon>&))

gen polygon MINKOWSKI DIFF(const gen polygon& P, const polygon& R,
void (∗conv partition)(const gen polygon& p,
const polygon& r, list<polygon>& lp,
list<polygon>& lr),
gen polygon (∗conv unite)(const list<gen polygon>&))

• Euclidean Spanning Trees

void MIN SPANNING TREE(const list<point>& L, GRAPH <point , int>& T)

computes the Euclidian minimum spanning tree T of the points in L.

430 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

• Triangulation Checker

bool Is Convex Subdivision(const GRAPH <point , int>& G)

returns true if G is a convex planar subdivision.

bool Is Triangulation(const GRAPH <point , int>& G)

returns true if G is convex planar subdivision in which every bounded
face is a triangle or if all nodes of G lie on a common line.

bool Is Delaunay Triangulation(const GRAPH <point , int>& G,
delaunay voronoi kind kind)

checks whether G is a nearest (kind = NEAREST) or furthest
(kind = FURTHEST) site Delaunay triangulation of its vertex set. G
is a Delaunay triangulation iff it is a triangulation and all triangles have
the Delaunay property. A triangle has the Delaunay property if no vertex
of an adjacent triangle is contained in the interior (kind = NEAREST)
or exterior (kind = FURTHEST) of the triangle.

bool Is Delaunay Diagram(const GRAPH <point , int>& G, delaunay voronoi kind kind)

checks whether G is a nearest (kind = NEAREST) or furthest (kind =
FURTHEST) site Delaunay diagram of its vertex set. G is a Delaunay
diagram if it is a convex subdivision, if the vertices of any bounded face
are co-circular, and if every triangulation ofG is a Delaunay triangulation.

• Voronoi Diagrams

void VORONOI(const list<point>& L, GRAPH <circle, point>& VD)

VORONOI takes as input a list of points (sites) L. It computes a directed
graph V D representing the planar subdivision defined by the Voronoi
diagram of L. For each node v of VD G[v] is the corresponding Voronoi
vertex (point) and for each edge e G[e] is the site (point) whose Voronoi
region is bounded by e. The algorithm has running time O(n2) in the
worst case and O(n log n) with high probability, where n is the number
of sites.

void F VORONOI(const list<point>& L, GRAPH <circle, point>& FVD)

computes the farthest point Voronoi Diagram FVD of the points in L.

circle LARGEST EMPTY CIRCLE(const list<point>& L)

computes a largest circle whose center lies inside the convex hull of L
that contains no point of L in its interior. Returns the trivial circle if L
is empty.

circle SMALLEST ENCLOSING CIRCLE(const list<point>& L)

computes a smallest circle containing all points of L in its interior.

12.24. GEOMETRY ALGORITHMS (GEO ALG) 431

void ALL EMPTY CIRCLES(const list<point>& L, list<circle>& CL)

computes the list CL of all empty circles passing through three or more
points of L.

void ALL ENCLOSING CIRCLES(const list<point>& L, list<circle>& CL)

computes the list CL of all enclosing circles passing through three or more
points of L.

An annulus is either the region between two concentric circles or the region between two

parallel lines.

bool MIN AREA ANNULUS(const list<point>& L, point& center , point& ipoint ,
point& opoint , line& l1)

computes the minimum area annulus containing the points of L. The
function returns false if all points in L are collinear and returns true
otherwise. In the former case a line passing through the points in L is
returned in l1 , and in the latter case the annulus is returned by its center
and a point on the inner and the outer circle, respectively.

bool MINWIDTH ANNULUS(const list<point>& L, point& center , point& ipoint ,
point& opoint , line& l1 , line& l2)

computes the minimum width annulus containing the points of L. The
function returns false if the minimum width annulus is a stripe and re-
turns true otherwise. In the former case the boundaries of the stripes are
returned in l1 and l2 and in the latter case the annulus is returned by its
center and a point on the inner and the outer circle, respectively.

void CRUST(const list<point>& L0 , GRAPH <point , int>& G)

takes a list L0 of points and traces to guess the curve(s) from which L0
are sampled. The algorithm is due to Amenta, Bern, and Eppstein. The
algorithm is guaranteed to succeed if L0 is a sufficiently dense sample
from a smooth closed curve.

432 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

bool Is Voronoi Diagram(const GRAPH <circle, point>& G, delaunay voronoi kind kind)

checks whether G represents a nearest (kind = NEAREST) or furthest
(kind = FURTHEST) site Voronoi diagram.
Voronoi diagrams of point sites are represented as planar maps as follows:
There is a vertex for each vertex of the Voronoi diagram and, in addition,
a vertex “at infinity” for each ray of the Voronoi diagram. Vertices at
infinity have degree one. The edges of the graph correspond to the edges
of the Voronoi diagram. The chapter on Voronoi diagrams of the LEDA-
book [66] contains more details. Each edge is labeled with the site (class
POINT) owning the region to its left and each vertex is labeled with
a triple of points (= the three defining points of a CIRCLE). For a
“finite” vertex the three points are any three sites associated with regions
incident to the vertex (and hence the center of the circle is the position
of the vertex in the plane) and for a vertex at infinity the three points
are collinear and the first point and the third point of the triple are the
sites whose regions are incident to the vertex at infinity. Let a and c be
the first and third point of the triple respectively; a and c encode the
geometric position of the vertex at infinity as follows: the vertex lies on
the perpendicular bisector of a and c and to the left of the segment ac.

• Line Segment Intersection

void SEGMENT INTERSECTION(const list<segment>& S,
GRAPH <point , segment>& G, bool embed = false)

takes a list of segments S as input and computes the planar graph G
induced by the set of straight line segments in S. The nodes of G are
all endpoints and all proper intersection points of segments in S. The
edges of G are the maximal relatively open subsegments of segments in S
that contain no node of G. The edges are directed as the corresponding
segments. If the flag embed is true, the corresponding planar map is
computed. Note that for each edge e G[e] is the input segment that
contains e (see the LEDA book for details).

void SWEEP SEGMENTS(const list<segment>& S, GRAPH <point , segment>& G,
bool embed = false, bool use optimization = true)

as above.
The algorithm ([12]) runs in time O((n + s) log n) + m), where n is the
number of segments, s is the number of vertices of the graph G, and m
is the number of edges of G. If S contains no overlapping segments then
m = O(n+s). If embed is true the running time increases by O(m logm).
If use optimization is true an optimization described in the LEDA book
is used.

12.24. GEOMETRY ALGORITHMS (GEO ALG) 433

void MULMULEY SEGMENTS(const list<segment>& S,
GRAPH <point , segment>& G, bool embed = false)

as above.
There is one additional output convention. If G is an undirected graph,
the undirected planar map corresponding to G(s) is computed. The com-
putation follows the incremental algorithm of Mulmuley ([70]) whose ex-
pected running time is O(M + s + n log n), where n is the number of
segments, s is the number of vertices of the graph G, and m is the num-
ber of edges.

void SEGMENT INTERSECTION(const list<segment>& S,
void (∗report)(const segment& , const segment&))

takes a list of segments S as input and executes for every pair (s1, s2) of
intersecting segments report(s1, s2). The algorithm ([7]) has running time
O(nlog2n + k), where n is the number of segments and k is the number
intersecting pairs of segments.

void SEGMENT INTERSECTION(const list<segment>& S, list<point>& P)

takes a list of segments S as input, computes the set of (proper) inter-
section points between all segments in S and stores this set in P . The
algorithm ([12]) has running time O((|P |+ |S|) log |S|).

• Red-Blue Line Segment Intersection

void SEGMENT INTERSECTION(const list<segment>& S1 , const list<segment>& S2 ,
GRAPH <point , segment>& G, bool embed = false)

takes two lists of segments S1 and S2 as input and computes the planar
graph G induced by the set of straight line segments in S1∪S2 (as defined
above). Precondition: Any pair of segments in S1 or S2, respectively, does
not intersect in a point different from one of the endpoints of the segments,
i.e. segments of S1 or S2 are either pairwise disjoint or have a common
endpoint.

• Closest Pairs

double CLOSEST PAIR(list<point>& L, point& r1 , point& r2)

CLOSEST PAIR takes as input a list of points L. It computes a pair
of points r1, r2 ∈ L with minimal Euclidean distance and returns the
squared distance between r1 and r2. The algorithm ([78]) has running
time O(n log n) where n is the number of input points.

• Miscellaneous Functions

434 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

void Bounding Box(const list<point>& L, point& pl , point& pb, point& pr , point& pt)

computes four points pl, pb, pr, pt from L such that
(xleft, ybot, xright, ytop) with xleft = pl.xcoord(), ybot = pb.ycoord(),
xright = pr.xcoord() and ytop = pt.ycoord() is the smallest iso-
oriented rectangle containing all points of L. Precondition: L is not
empty.

bool Is Simple Polygon(const list<point>& L)

takes as input a list of points L and returns true if L is the vertex sequence
of a simple polygon and false otherwise. The algorithms has running time
O(n log n), where n is the number of points in L.

node Nesting Tree(const gen polygon& P, GRAPH <polygon, int>& T)

The nesting tree T of a generalized polygon P is defined as follows. Every
node v in T is labelled with a polygon T [v] from the boundary representa-
tion of P , except for root r of T which is labelled with the empty polygon.
The root symbolizes the whole two-dimensional plane. There is an edge
(u, v) (with u 6= r) in T iff the bounded region of T [v] is directly nested
in T [u]. The term ”directly means that there is no node w different from
u and v such that T [v] is nested in T [w] and T [w] is nested in T [u]. And
there is an edge (r, v) iff T [v] is not nested in any other polygon of P .
The function computes the nesting tree of P and returns its root. (The
running time of the function depends on the order of the polygons in the
boundary representation of P . The closer directly nested polygons are,
the better.)

• Properties of Geometric Graphs

We give procedures to check properties of geometric graph. We give procedures to verify

properties of geometric graph. A geometric graph is a straight-line embedded map. Every

node is mapped to a point in the plane and every dart is mapped to the line segment

connecting its endpoints.

We use geo graph as a template parameter for geometric graph. Any instantiation of

geo graph must provide a function

VECTOR edge vector(const geo graph& G, const edge& e)

that returns a vector from the source to the target of e. In order to use any of these

template functions the file /LEDA/geo/generic/geo check.h must be included.

template <class geo graph>

bool Is CCWOrdered(const geo graph& G)

returns true if for all nodes v the neighbors of v are in increasing
counter-clockwise order around v.

12.24. GEOMETRY ALGORITHMS (GEO ALG) 435

template <class geo graph>

bool Is CCWWeakly Ordered(const geo graph& G)

returns true if for all nodes v the neighbors of v are in non-decreasing
counter-clockwise order around v.

template <class geo graph>

bool Is CCWOrdered Plane Map(const geo graph& G)

Equivalent to Is Plane Map(G) and Is CCW Ordered(G).

template <class geo graph>

bool Is CCWWeakly Ordered Plane Map(const geo graph& G)

Equivalent to Is Plane Map(G) and Is CCW Weakly Ordered(G).

template <class geo graph>

void SORT EDGES(geo graph& G)

Reorders the edges of G such that for every node v the edges in A(v)
are in non-decreasing order by angle.

template <class geo graph>

bool Is CCWConvex Face Cycle(const geo graph& G, const edge& e)

returns true if the face cycle of G containing e defines a counter-
clockwise convex polygon, i.e, if the face cycle forms a cyclically in-
creasing sequence of edges according to the compare-by-angles order-
ing.

template <class geo graph>

bool Is CCWWeakly Convex Face Cycle(const geo graph& G, const edge& e)

returns true if the face cycle of G containing e defines a counter-
clockwise weakly convex polygon, i.e, if the face cycle forms a cyclically
non-decreasing sequence of edges according to the compare-by-angles
ordering.

template <class geo graph>

bool Is CW Convex Face Cycle(const geo graph& G, const edge& e)

returns true if the face cycle ofG containing e defines a clockwise convex
polygon, i.e, if the face cycle forms a cyclically decreasing sequence of
edges according to the compare-by-angles ordering.

template <class geo graph>

bool Is CWWeakly Convex Face Cycle(const geo graph& G, const edge& e)

returns true if the face cycle ofG containing e defines a clockwise weakly
convex polygon, i.e, if the face cycle forms a cyclically non-increasing
sequence of edges according to the compare-by-angles ordering.

436 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

12.25 Transformation (TRANSFORM)

1. Definition

There are three instantiations of TRANSFORM : transform (floating point kernel),

rat transform (rational kernel) and real transform (real kernel). The respective header

file name corresponds to the type name (with “.h” appended).

An instance T of type TRANSFORM is an affine transformation of two-dimensional

space. It is given by a 3 × 3 matrix T with T2,0 = T2,1 = 0 and T2,2 6= 0 and maps the

point p with homogeneous coordinate vector (px, py, pw) to the point T · p.

A matrix of the form

w 0 x
0 w y
0 0 w

realizes an translation by the vector (x/w, y/w) and a matrix of the form

a −b 0
b a 0
0 0 w

where a2+ b2 = w2 realizes a rotation by the angle α about the origin, where cosα = a/w

and sinα = b/w. Rotations are in counter-clockwise direction.

#include < LEDA/geo/generic/TRANSFORM.h >

2. Creation

TRANSFORM T ; creates a variable introduces a variable T of type TRANSFORM .
T is initialized with the identity transformation.

TRANSFORM T (const INT MATRIX t);

introduces a variable T of type TRANSFORM . T is initialized with
the matrix t.
Precondition: t is a 3× 3 matrix with t2,0 = t2, 1 = 0 and t2,2 6= 0.

3. Operations

INT MATRIX T.Tmatrix() returns the transformation matrix

void T.simplify() The operation has no effect for transform. For
rat transform let g be the ggT of all matrix entries.
Cancels out g.

RAT TYPE T.norm() returns the norm of the transformation

12.25. TRANSFORMATION (TRANSFORM) 437

TRANSFORM T (const TRANSFORM& T1)

returns the transformation T ◦ T1 .

POINT T (const POINT& p) returns T (p).

VECTOR T (const VECTOR& v)

returns T (v).

SEGMENT T (const SEGMENT& s)

returns T (s).

LINE T (const LINE& l) returns T (l).

RAY T (const RAY& r) returns T (r).

CIRCLE T (const CIRCLE& C)

returns T (C).

POLYGON T (const POLYGON& P)

returns T (P).

GEN POLYGON T (const GEN POLYGON& P)

returns T (P).

Non-member Functions

In any of the function below a point can be specified to the origin by replacing it by an

anonymous object of type POINT, e.g., rotation90 (POINT ()) will generate a rotation

about the origin.

TRANSFORM translation(const INT TYPE& dx , const INT TYPE& dy ,
const INT TYPE& dw)

returns the translation by the vector (dx/dw , dy/dw).

TRANSFORM translation(const RAT TYPE& dx , const RAT TYPE& dy)

returns the translation by the vector (dx , dy).

TRANSFORM translation(const VECTOR& v)

returns the translation by the vector v.

TRANSFORM rotation(const POINT& q, double alpha, double eps)

returns the rotation about q by an angle alpha ± eps .

TRANSFORM rotation90(const POINT& q)

returns the rotation about q by an angle of 90 degrees.

438 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

TRANSFORM reflection(const POINT& q, const POINT& r)

returns the reflection across the straight line passing
through q and r.

TRANSFORM reflection(const POINT& q)

returns the reflection across point q.

12.26. POINT GENERATORS (POINT GENERATORS) 439

12.26 Point Generators (point generators)

All generators are available for point , rat point , real point , d3 point , and d3 rat point .

We use POINT to stand for any of these classes. The corresponding header files are

called random point.h, random rat point.h, random real point.h, random d3 point.h, and

random d3 rat point.h, respectively. These header files are included in the corresponding

kernel header files, e.g., random rat point.h is part of rat kernel.h.

We use the following naming conventions: square, circle, segment, and disk refer to two-

dimensional objects (even in 3d) and cube, ball, and sphere refer to full-dimensional

objects, i.e, in 2d cube and square, ball and disk, and circle and sphere are synonymous.

void random point in square(POINT& p, int maxc)

returns a point whose x and y-coordinates are random
integers in [−maxc ..maxc]. The z-coordinate is zero.

void random points in square(int n, int maxc, list<POINT>& L)

returns a list L of n points

void random point in unit square(POINT& p, int D = (1 ≪ 30)− 1)

returns a point whose coordinates are random ratio-
nals of the form i/D where i is a random integer in
the range [0 .. D]. The default value of D is 230 − 1.

void random points in unit square(int n, int D, list<POINT>& L)

returns a list L of n points

void random points in unit square(int n, list<POINT>& L)

returns a list L of n points The default value of
D is used.

void random point in cube(POINT& p, int maxc)

returns a point whose coordinates are random integers
in [−maxc ..maxc]. In 2d this function is equivalent
to random point in square.

void random points in cube(int n, int maxc, list<POINT>& L)

returns a list L of n points

void random point in unit cube(POINT& p, int D = (1 ≪ 30)− 1)

returns a point whose coordinates are random ratio-
nals of the form i/D where i is a random integer in
the range [0 .. D]. The default value of D is 230 − 1.

void random points in unit cube(int n, int D, list<POINT>& L)

returns a list L of n points

440 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

void random points in unit cube(int n, list<POINT>& L)

as above, but the default value of D is used.

void random point in disc(POINT& p, int R)

returns a random point with integer x and y-
coordinates in the disc with radius R centered at the
origin. The z-coordinate is zero.
Precondition: R ≤ 230.

void random points in disc(int n, int R, list<POINT>& L)

returns a list L of n points

void random point in unit disc(POINT& p, int D = (1 ≪ 30)− 1)

returns a point in the unit disc whose coordinates are
quotients with denominator D. The default value of
D is 230 − 1.

void random points in unit disc(int n, int D, list<POINT>& L)

returns a list L of n points

void random points in unit disc(int n, list<POINT>& L)

returns a list L of n points The default value of
D is used.

void random point in ball(POINT& p, int R)

returns a random point with integer coordinates in
the ball with radius R centered at the origin. In 2d
this function is equivalent to random point in disc.
Precondition: R ≤ 230.

void random points in ball(int n, int R, list<POINT>& L)

returns a list L of n points

void random point in unit ball(POINT& p, int D = (1 ≪ 30)− 1)

returns a point in the unit ball whose coordinates are
quotients with denominator D. The default value of
D is 230 − 1.

void random points in unit ball(int n, int D, list<POINT>& L)

returns a list L of n points

void random points in unit ball(int n, list<POINT>& L)

returns a list L of n points The default value of
D is used.

void random point near circle(POINT& p, int R)

returns a random point with integer coordinates that
lies close to the circle with radius R centered at the
origin.

12.26. POINT GENERATORS (POINT GENERATORS) 441

void random points near circle(int n, int R, list<POINT>& L)

returns a list L of n points

void random point near unit circle(POINT& p, int D = (1 ≪ 30)− 1)

returns a point close to the unit circle whose coordi-
nates are quotients with denominator D. The default
value of D is 230 − 1.

void random points near unit circle(int n, int D, list<POINT>& L)

returns a list L of n points

void random points near unit circle(int n, list<POINT>& L)

returns a list L of n points The default value of
D is used.

void random point near sphere(POINT& p, int R)

returns a point with integer coordinates close to the
sphere with radius R centered at the origin.

void random points near sphere(int n, int R, list<POINT>& L)

returns a list L of n points

void random point near unit sphere(POINT& p, int D = (1 ≪ 30)− 1)

returns a point close to the unit sphere whose coordi-
nates are quotients with denominator D. In 2d this
function is equivalent to point near unit circle.

void random points near unit sphere(int n, int D, list<POINT>& L)

returns a list L of n points

void random points near unit sphere(int n, list<POINT>& L)

returns a list L of n points The default value of
D is used.

Wit the rational kernel the functions on circle are guaranteed to produce points that lie

precisely on the specified circle. With the floating point kernel the functions are equivalent

to the near circle functions.

void random point on circle(POINT& p, int R, int C = 1000000)

returns a random point with integer coordinates that
lies on the circle with radius R centered at the origin.
The point is chosen from a set of at least C candidates.

void random points on circle(int n, int R, list<POINT>& L, int C = 1000000)

returns a list L of n points

void random point on unit circle(POINT& p, int C = 1000000)

returns a point on the unit circle. The point is chosen
from a set of at least C candidates.

442 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

void random points on unit circle(int n, list<POINT>& L, int C = 1000000)

returns a list L of n points

void random point on sphere(POINT& p, int R)

same as random point near sphere.

void random points on sphere(int n, int R, list<POINT>& L)

returns a list L of n points

void random point on unit sphere(POINT& p, int D = (1 ≪ 30)− 1)

same as random point near unit sphere.

void random points on unit sphere(int n, int D, list<POINT>& L)

returns a list L of n points

void random points on unit sphere(int n, list<POINT>& L)

returns a list L of n points The default value of
D is used.

void random point on segment(POINT& p, SEGMENT s)

generates a random point on s.

void random points on segment(SEGMENT s, int n, list<POINT>& L)

generates a list L of n points

void points on segment(SEGMENT s, int n, list<POINT>& L)

generates a list L of n equally spaced points on s.

void random point on paraboloid(POINT& p, int maxc)

returns a point (x, y, z) with x and y random integers
in the range [−maxc ..maxc], and z = 0.004 ∗ (x ∗ x+
y∗y)−1.25∗maxc. The function does not make sense
in 2d.

void random points on paraboloid(int n, int maxc, list<POINT>& L)

returns a list L of n points

void lattice points(int n, int maxc, list<POINT>& L)

returns a list L of approximately n points. The points
have integer coordinates id/maxc for an appropriately
chosen d and −maxc/d ≤ i ≤ maxc/d.

void random points on diagonal(int n, int maxc, list<POINT>& L)

generates n points on the diagonal whose coordinates
are random integer in the range from −maxc to maxc.

12.27. POINT ON RATIONAL CIRCLE (R CIRCLE POINT) 443

12.27 Point on Rational Circle (r circle point)

1. Definition

An instance p of type r circle point is a point in the two-dimensional plane that can be

obtained by intersecting a rational circle c and a rational line l (cf. Sections 12.14 and

12.13). Note that c and l may intersect in two points p1 and p2. Assume that we order

these intersections along the (directed) line l. Then p is uniquely determined by a triple

(c, l,which), where which is either first or second . Observe that the coordinates of p

are in general non-rational numbers (because their computation involves square roots).

Therefore the class r circle point is derived from real point (see Section 12.17), which

means that all operations of real point are available.

#include < LEDA/geo/r circle point.h >

2. Types

r circle point :: tag { first, second }
used for selecting between the two possible intersections of a circle
and a line.

3. Creation

r circle point p; creates an instance p initialized to the point (0,0).

r circle point p(const rat point& rat pnt);

creates an instance p initialized to the rational point rat pnt .

r circle point p(const point& pnt);

creates an instance p initialized to the point pnt .

r circle point p(const rat circle& c, const rat line& l, tag which);

creates an instance p initialized to the point determined by
(c, l,which) (see above).

r circle point p(const real point& rp, const rat circle& c, const rat line& l, tag which);

creates an instance p initialized to the real point rp.
Precondition: rp is the point described by (c, l,which).

4. Operations

void p.normalize() simplifies the internal representation of p.

rat circle p.supporting circle() returns a rational circle passing through p.

rat line p.supporting line() returns a rational line passing through p.

444 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

tag p.which intersection()

returns whether p is the first or the second intersection
of the supporting circle and the supporting line.

bool p.is rat point() returns true, if p can be converted to rat point . (The
value false means “do not know”.)

const rat point& p.to rat point() converts p to a rat point .
Precondition: is rat point returns true.

rat point p.approximate by rat point()

approximates p by a rat point .

r circle point p.round(int prec = 0)

returns a rounded representation of p. (experimental)

r circle point p.translate(rational dx , rational dy)

returns p translated by vector (dx, dy).

r circle point p.translate(const rat vector& v)

returns p translated by vector v.

r circle point p+ const rat vector& v

returns p translated by vector v.

r circle point p− const rat vector& v

returns p translated by vector −v.

r circle point p.rotate90(const rat point& q, int i = 1)

returns p rotated about q by an angle of i×90 degrees.
If i > 0 the rotation is counter-clockwise otherwise it
is clockwise.

r circle point p.reflect(const rat point& p, const rat point& q)

returns p reflected across the straight line passing
through p and q.

r circle point p.reflect(const rat point& p)

returns p reflected across point p.

bool r circle point :: intersection(const rat circle& c, const rat line& l, tag which,
real point& p)

checks whether (c, l,which) is a valid triple, if so the
corresponding point is assigned to the real point p.

bool r circle point :: intersection(const rat circle& c, const rat line& l, tag which,
r circle point& p)

same as above, except for the fact that p is of type
r circle point .

12.28. SEGMENT OF RATIONAL CIRCLE (R CIRCLE SEGMENT) 445

12.28 Segment of Rational Circle (r circle segment

)

1. Definition

An instance cs of type r circle segment is a segment of a rational circle (see Section 12.14),

i.e. a circular arc. A segment is called trivial if it consists of a single point. A non-trivial

instance cs is defined by two points s and t (of type r circle point) and an oriented circle

c (of type rat circle) such that c contains both s and t. We call s and t the source and

the target of cs , and c is called its supporting circle. We want to point out that the circle

may be a line, which means that cs is a straight line segment. An instance cs is called

degenerate, if it is trivial or a straight line segment.

#include < LEDA/geo/r circle segment.h >

2. Creation

r circle segment cs ; creates a trivial instance cs with source and target equal to the
point (0, 0).

r circle segment cs(const r circle point& src, const r circle point& tgt ,
const rat circle& c);

creates an instance cs with source src, target tgt and supporting
circle c.
Precondition: src 6= tgt , c is not trivial and contains src and tgt .

r circle segment cs(const r circle point& src, const r circle point& tgt ,
const rat line& l);

creates an instance cs with source src, target tgt and supporting
line l.
Precondition: src 6= tgt , l contains src and tgt .

r circle segment cs(const rat point& src, const rat point& middle, const rat point& tgt);

creates an instance cs with source src and target tgt which passes
through middle.
Precondition: the three points are distinct.

r circle segment cs(const r circle point& p);

creates a trivial instance cs with source and target equal to p.

r circle segment cs(const rat point& rat pnt);

creates a trivial instance cs with source and target equal to rat pnt .

446 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

r circle segment cs(const rat circle& c);

creates an instance cs which is equal to the full circle c.
Precondition: c is not degenerate.

r circle segment cs(const rat point& src, const rat point& tgt);

creates an instance cs which is equal to the straight line segment
from src to tgt .

r circle segment cs(const rat segment& s);

creates an instance cs which is equal to the straight line segment s.

r circle segment cs(const r circle point& src, const r circle point& tgt);

creates an instance cs which is equal to the straight line segment
from src to tgt .
Precondition: Both src and tgt are rat points .

3. Operations

void cs.normalize() simplifies the internal representation of cs .

const r circle point& cs.source() returns the source of cs .

const r circle point& cs.target() returns the target of cs .

const rat circle& cs.circle() returns the supporting circle of cs .

rat line cs.supporting line() returns a line containing cs .
Precondition: cs is a straight line segment.

rat point cs.center() returns the center of the supporting circle of cs .

int cs.orientation() returns the orientation (of the supporting circle) of cs .

real point cs.real middle() returns the middle point of cs , i.e. the intersection of
cs and the bisector of its source and target.

r circle point cs.middle() returns a point on the circle of cs , which is close to
real middle().

bool cs.is trivial() returns true iff cs is trivial.

bool cs.is degenerate() returns true iff cs is degenerate.

bool cs.is full circle() returns true iff cs is a full circle.

bool cs.is proper arc() returns true iff cs is a proper arc, i.e. neither degen-
erate nor a full circle.

12.28. SEGMENT OF RATIONAL CIRCLE (R CIRCLE SEGMENT) 447

bool cs.is straight segment()

returns true iff cs is a straight line segment.

bool cs.is vertical segment()

returns true iff cs is a vertical straight line segment.

bool cs.is rat segment() returns true, if cs can be converted to rat segment .
(The value false means “do not know”.)

rat segment cs.to rat segment() converts cs to a rat segment .
Precondition: is rat segment returns true.

bool cs.contains(const r circle point& p)

returns true iff cs contains p.

bool cs.overlaps(const r circle segment& cs2)

returns true iff cs (properly) overlaps cs2 .

bool cs.wedge contains(const real point& p)

returns true iff the (closed) wedge induced by cs con-
tains p. This wedge is spanned by the rays which
start at the center and pass through source and target.
(Note that p belongs to cs iff p is on the supporting
circle and the wedge contains p.)

r circle segment cs.reverse() returns the reversal of cs, i.e. source and target are
swapped and the supporting circle is reversed.

r circle segment cs.round(int prec = 0)

returns a rounded representation of cs . (experimen-
tal)

r circle segment cs.translate(rational dx , rational dy)

returns cs translated by vector (dx, dy).

r circle segment cs.translate(const rat vector& v)

returns cs translated by vector v.

r circle segment cs + const rat vector& v

returns cs translated by vector v.

r circle segment cs − const rat vector& v

returns cs translated by vector −v.

r circle segment cs.rotate90(const rat point& q, int i = 1)

returns cs rotated about q by an angle of i×90 degrees.
If i > 0 the rotation is counter-clockwise otherwise it
is clockwise.

448 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

r circle segment cs.reflect(const rat point& p, const rat point& q)

returns cs reflected across the straight line passing
through p and q.

r circle segment cs.reflect(const rat point& p)

returns cs reflected across point p.

list<r circle point> cs.intersection(const rat line& l)

computes cs ∩ l (ordered along l).

list<real point> cs.intersection(const real line& l)

as above.

list<r circle point> cs.intersection(const rat circle& c)

computes cs ∩ c (ordered lexicographically).

list<r circle point> cs.intersection(const r circle segment& cs2)

computes cs ∩ cs2 (ordered lexicographically).

real cs.sqr dist(const real point& p)

computes the squared Euclidean distance between cs
and p.

real cs.dist(const real point& p)

computes the euclidean distance between cs and p.

real line cs.tangent at(const r circle point& p)

computes the tanget to cs at p.
Precondition: cs is not trivial.

double cs.approximate area()

computes the (oriented) area enclosed by the convex
hull of cs .

void cs.compute bounding box(real& xmin, real& ymin, real& xmax ,
real& ymax)

computes a tight bounding box for cs .

list<point> cs.approximate(double dist)

approximates cs by a sequence of points. Connecting
the points with straight line segments yields a chain
with the following property: The maximum distance
from a point on cs to the chain is bounded by dist .

list<rat point> cs.approximate by rat points(double dist)

as above, returns rat points instead of points .

12.28. SEGMENT OF RATIONAL CIRCLE (R CIRCLE SEGMENT) 449

list<rat segment> cs.approximate by rat segments(double dist)

approximates cs by a chain of rat segments. The max-
imum distance from a point on cs to the chain is
bounded by dist .

bool equal as sets(const r circle segment& cs1 , const r circle segment& cs2)

returns whether cs1 and cs2 describe the same set of
points.

int compare tangent slopes(const r circle segment& cs1 ,
const r circle segment& cs2 ,
const r circle point& p)

compares the slopes of the tangents to cs1 and cs2 in
the point p.
Precondition: cs1 and cs2 contain p.

We provide the operator << to display an instance cs of type r circle segment in a window

and the operator >> for reading cs from a window (see real window.h).

void SWEEP SEGMENTS(const list<r circle segment>& L,
GRAPH <r circle point , r circle segment>& G,
bool embed = true)

takes as input a list L of r circle segments and com-
putes the planar graph G induced by the segments in
L. The nodes of G are all endpoints and all proper
intersection points of segments in L. The edges of G
are the maximal relatively open subsegments of seg-
ments in L that contain no node of G. The edges
are directed as the corresponding segments, if embed
is false. Otherwise, the corresponding planar map is
computed. Note that for each edge e G[e] is the input
segment containing e.
The algorithm (a variant of [12]) runs in time O((n+
s) log n) +m), where n is the number of segments, s
is the number of vertices of the graph G, and m is the
number of edges of G. If L contains no overlapping
segments then m = O(n+ s).

450 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

12.29 Polygons with circular edges (r circle polygon

)

1. Definition

An instance P of the data type r circle polygon is a cyclic list of r circle segments,

i.e. straight line or circular segments. A polygon is called simple if all nodes of the

graph induced by its segments have degree two and it is called weakly simple, if its seg-

ments are disjoint except for common endpoints and if the chain does not cross itself. See

the LEDA book for details.

A weakly simple polygon splits the plane into an unbounded region and one or more

bounded regions. For a simple polygon there is just one bounded region. When a weakly

simple polygon P is traversed either the bounded region is consistently to the left of P or

the unbounded region is consistently to the left of P . We say that P is positively oriented

in the former case and negatively oriented in the latter case. We use P to also denote the

region to the left of P and call this region the positive side of P .

The number of segments is called the size of P . A polygon of size zero is trivial ; it either

describes the empty set or the full two-dimensional plane.

#include < LEDA/geo/r circle polygon.h >

2. Types

r circle polygon ::coord type

the coordinate type (real).

r circle polygon ::point type

the point type (r circle point).

r circle polygon :: segment type

the segment type (r circle segment).

r circle polygon ::KIND { EMPTY, FULL, NON TRIVIAL }
describes the kind of the polygon: the empty set, the full plane or
a non-trivial polygon.

r circle polygon :: CHECK TYPE { NO CHECK, SIMPLE, WEAKLY SIMPLE, NOT
WEAKLY SIMPLE }

used to specify which checks should be applied and also describes
the outcome of a simplicity check.

12.29. POLYGONS WITH CIRCULAR EDGES (R CIRCLE POLYGON) 451

r circle polygon :: RESPECT TYPE { DISREGARD ORIENTATION, RESPECT
ORIENTATION }

used in contructors to specify whether to force a positive orientation
for the constructed object (DISREGARD ORIENTATION) or to
keep the orientation of the input (RESPECT ORIENTATION).

3. Creation

r circle polygon P ; creates an empty polygon P .

r circle polygon P (KIND k);

creates a polygon P of kind k, where k is either EMPTY or FULL.

r circle polygon P (const list<r circle segment>& chain,
CHECK TYPE check = WEAKLY SIMPLE ,
RESPECT TYPE respect orient = RESPECT ORIENTATION);

creates a polygon P from a closed chain of segments.

r circle polygon P (const list<rat point>& L,
CHECK TYPE check = WEAKLY SIMPLE ,
RESPECT TYPE respect orient = RESPECT ORIENTATION);

creates a polygon P with straight line edges from a list L of vertices.

r circle polygon P (const rat polygon& Q, CHECK TYPE check = NO CHECK ,
RESPECT TYPE respect orient = RESPECT ORIENTATION);

converts a rat polygon Q to an r circle polygon P .

r circle polygon P (const polygon& Q, CHECK TYPE check = NO CHECK ,
RESPECT TYPE respect orient = RESPECT ORIENTATION ,
int prec = rat point ::default precision);

converts the (floating point) polygon Q to an r circle polygon. P is
initialized to a rational approximation of Q of coordinates with de-
nominator at most prec. If prec is zero, the implementation chooses
prec large enough such that there is no loss of precision in the con-
version.

r circle polygon P (const rat circle& circ,
RESPECT TYPE respect orient = RESPECT ORIENTATION);

creates a polygon P whose boundary is the circle circ.

4. Operations

KIND P.kind() returns the kind of P .

bool P.is trivial() returns true iff P is trivial.

bool P.is empty() returns true iff P is empty.

452 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

bool P.is full() returns true iff P is the full plane.

void P.normalize() simplifies the representation by calling s.normalize()
for every segment s of P .

bool P.is closed chain() tests whether P is a closed chain.

bool P.is simple() tests whether P is simple.

bool P.is weakly simple() tests whether P is weakly simple.

bool P.is weakly simple(list<r circle point>& crossings)

as above, returns all proper points of intersection in
crossings .

CHECK TYPE P.check simplicity()

checks P for simplicity. The result can be SIMPLE ,
WEAKLY SIMPLE or NOT WEAKLY SIMPLE .

bool P.is convex() returns true iff P is convex.

int P.size() returns the size of P .

const list<r circle segment>& P.segments()

returns a chain of segments that bound P . The orien-
tation of the chain corresponds to the orientation of
P .

list<r circle point> P.vertices() returns the vertices of P .

list<r circle point> P.intersection(const r circle segment& s)

returns the list of all proper intersections between s
and the boundary of P .

list<r circle point> P.intersection(const rat line& l)

returns the list of all proper intersections between l
and the boundary of P .

r circle polygon P.intersection halfplane(const rat line& l)

clips P against the halfplane on the positive side of
l. Observe that the result is only guaranteed to be
weakly simple if P is convex.

r circle polygon P.translate(rational dx , rational dy)

returns P translated by vector (dx, dy).

r circle polygon P.translate(const rat vector& v)

returns P translated by vector v.

12.29. POLYGONS WITH CIRCULAR EDGES (R CIRCLE POLYGON) 453

r circle polygon P + const rat vector& v

returns P translated by vector v.

r circle polygon P − const rat vector& v

returns P translated by vector −v.

r circle polygon P.rotate90(const rat point& q, int i = 1)

returns P rotated about q by an angle of i×90 degrees.
If i > 0 the rotation is counter-clockwise otherwise it
is clockwise.

r circle polygon P.reflect(const rat point& p, const rat point& q)

returns P reflected across the straight line passing
through p and q.

r circle polygon P.reflect(const rat point& p)

returns P reflected across point p.

real P.sqr dist(const real point& p)

computes the squared Euclidean distance between the
boundary of P and p. (If P is zero, the result is zero.)

real P.dist(const real point& p)

computes the Euclidean distance between the bound-
ary of P and p. (If P is zero, the result is zero.)

list<r circle polygon> P.split into weakly simple parts()

splits P into a set of weakly simple polygons whose
union coincides with the inner points of P . (This func-
tion is experimental.)

r circle gen polygon P.make weakly simple()

creates a weakly simple generalized polygon Q from
a possibly non-simple polygon P such that Q and P
have the same inner points. (This function is experi-
mental.)

r circle polygon P.complement() returns the complement of P .

r circle polygon P.eliminate cocircular vertices()

returns a copy of P without cocircular vertices.

r circle polygon P.round(int prec = 0)

returns a rounded representation of P . (experimental)

bool P.is rat polygon() returns whether P can be converted to a rat polygon.

454 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

rat polygon P.to rat polygon() converts P to a rat polygon.
Precondition: is rat polygon is true.

rat polygon P.approximate by rat polygon(double dist)

approximates P by a rat polygon. The maxmum dis-
tance between a point on P and the approximation is
bounded by dist .

polygon P.to float() computes a floating point approximation of P with
straight line segments.
Precondition: is rat polygon is true.

bool P.is rat circle() returns whether P can be converted to a rat circle.

rat circle P.to rat circle() converts P to a rat circle.
Precondition: is rat circle is true.

void P.bounding box(real& xmin, real& ymin, real& xmax , real& ymax)

computes a tight bounding box for P .

void P.bounding box(double& xmin, double& ymin, double& xmax ,
double& ymax)

computes a bounding box for P , but not necessarily
a tight one.

All functions below assume that P is weakly simple.

int P.orientation() returns the orientation of P .

int P.side of(const r circle point& p)

returns +1 if p lies to the left of P , 0 if p lies on P ,
and −1 if p lies to the right of P .

region kind P.region of(const r circle point& p)

returns BOUNDED REGION if p lies in the bounded
region of P , returns ON REGION if p lies on P , and
returns UNBOUNDED REGION if p lies in the un-
bounded region.

bool P.inside(const r circle point& p)

returns true if p lies to the left of P , i.e., side of (p)==
+1.

bool P.on boundary(const r circle point& p)

returns true if p lies on P , i.e., side of (p) == 0.

bool P.outside(const r circle point& p)

returns true if p lies to the right of P , i.e.,
side of (p) ==−1.

12.29. POLYGONS WITH CIRCULAR EDGES (R CIRCLE POLYGON) 455

bool P.contains(const r circle point& p)

returns true if p lies to the left of or on P .

double P.approximate area()

approximates the (oriented) area of the bounded re-
gion of P .
Precondition: P.kind() is not full.

r circle gen polygon buffer(double d)

adds an exterior buffer zone to P (if d > 0), or re-
moves an interior buffer zone from P (if d < 0). More
precisely, for d ≥ 0 define the buffer tube T as the set
of all points in the complement of P whose distance
to P is at most d. Then the function returns P ∪T .
For d < 0 let T denote the set of all points in P whose
distance to the complement is less than |d|. Then the
result is P \T . Note that the result is a generalized
polygon since the buffer of a connected polygon may
be disconnected, i.e. consist of several parts, if d < 0.

Iterations Macros

forall vertices(v, P) { “the vertices of P are successively assigned to r circle point v” }

forall segments(s, P) { “the edges of P are successively assigned to the segment s” }

456 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

12.30 Generalized polygons with circular edges (

r circle gen polygon)

1. Definition

The data type r circle polygon is not closed under boolean operations, e.g., the set dif-

ference of a polygon P and a polygon Q nested in P is a region that contains a “hole”.

Therefore we provide a generalization called r circle gen polygon which is closed under

(regularized) boolean operations (see below).

A formal definition follows: An instance P of the data type r circle gen polygon is a

regular polygonal region in the plane. A regular region is an open set that is equal to the

interior of its closure. A region is polygonal if its boundary consists of a finite number of

r circle segments.

The boundary of an r circle gen polygon consists of zero or more weakly simple closed

polygonal chains. Each such chain is represented by an object of type r circle ploygon.

There are two regions whose boundary is empty, namely the empty region and the full

region. The full region encompasses the entire plane. We call a region trivial if its

boundary is empty. The boundary cycles P1, P2, . . . , Pk of an r circle gen polygon are

ordered such that no Pi is nested in a Pj with i < j.

#include < LEDA/geo/r circle gen polygon.h >

2. Types

r circle gen polygon ::coord type

the coordinate type (real).

r circle gen polygon ::point type

the point type (r circle point).

r circle gen polygon :: segment type

the segment type (r circle segment).

r circle gen polygon ::polygon type

the polygon type (r circle polygon).

r circle gen polygon ::KIND { EMPTY, FULL, NON TRIVIAL }
describes the kind of the polygon: the empty set, the full plane or
a non-trivial polygon.

r circle gen polygon ::CHECK TYPE { NO CHECK, SIMPLE, WEAKLY SIMPLE, NOT
WEAKLY SIMPLE }

used to specify which checks should be applied and also describes
the outcome of a simplicity check.

12.30. GENERALIZED POLYGONSWITH CIRCULAR EDGES (R CIRCLE GEN POLYGON)457

r circle gen polygon :: RESPECT TYPE { DISREGARD ORIENTATION, RESPECT
ORIENTATION }

used in contructors to specify whether to force a positive orientation
for the constructed object (DISREGARD ORIENTATION) or to
keep the orientation of the input (RESPECT ORIENTATION).

3. Creation

r circle gen polygon P ;

creates an empty polygon P .

r circle gen polygon P (KIND k);

creates a polygon P of kind k, where k is either EMPTY or FULL.

r circle gen polygon P (const list<r circle segment>& seg chain,
CHECK TYPE check = WEAKLY SIMPLE ,
RESPECT TYPE respect orient =
RESPECT ORIENTATION);

creates a polygon P from a single closed chain of segments.

r circle gen polygon P (const r circle polygon& Q,
CHECK TYPE check = NO CHECK ,
RESPECT TYPE respect orient =
RESPECT ORIENTATION);

converts an r circle polygon Q to an r circle gen polygon P .

r circle gen polygon P (const list<rat point>& L,
CHECK TYPE check = NO CHECK ,
RESPECT TYPE respect orient =
RESPECT ORIENTATION);

creates a polygon P with straight line edges from a list L of vertices.

r circle gen polygon P (const list<r circle polygon>& polys ,
CHECK TYPE check = NO CHECK ,
RESPECT TYPE respect orient =
RESPECT ORIENTATION);

introduces a variable P of type r circle gen polygon. P is initialized
to the polygon with boundary representation polys .
Precondition: polys must be a boundary representation.

r circle gen polygon P (const list<r circle gen polygon>& gen polys);

creates a polygon P as the union of all the polygons in gen polys .
Precondition: Every polygon in gen polys must be weakly simple.

458 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

r circle gen polygon P (const rat gen polygon& Q,
CHECK TYPE check = NO CHECK ,
RESPECT TYPE respect orient =
RESPECT ORIENTATION);

converts a rat gen polygon Q to an r circle gen polygon P .

r circle gen polygon P (const gen polygon& Q, CHECK TYPE check = NO CHECK ,
RESPECT TYPE respect orient =
RESPECT ORIENTATION ,
int prec = rat point ::default precision);

converts the (floating point) gen polygon Q to an
r circle gen polygon. P is initialized to a rational approxima-
tion of Q of coordinates with denominator at most prec. If prec
is zero, the implementation chooses prec large enough such that
there is no loss of precision in the conversion.

r circle gen polygon P (const rat circle& circ, RESPECT TYPE respect orient =
RESPECT ORIENTATION);

creates a polygon P whose boundary is the circle circ.

4. Operations

KIND P.kind() returns the kind of P .

bool P.is trivial() returns true iff P is trivial.

bool P.is empty() returns true iff P is empty.

bool P.is full() returns true iff P is full.

void P.normalize() simplifies the representation by calling c.normalize()
for every polygonal chain c of P .

bool P.is simple() tests whether P is simple or not.

bool P.is weakly simple() tests whether P is weakly simple or not.

bool P.is weakly simple(list<r circle point>& crossings)

as above, returns all proper points of intersection in
crossings .

bool r circle gen polygon :: check representation(const list<r circle polygon>& polys ,
CHECK TYPE check =
WEAKLY SIMPLE)

checks whether polys is a boundary representation.
Currently the nesting order is not checked, we check
only for (weak) simplicity.

12.30. GENERALIZED POLYGONSWITH CIRCULAR EDGES (R CIRCLE GEN POLYGON)459

bool P.check representation()

checks the representation of P (see above).

bool P.is convex() returns true iff P is convex.

int P.size() returns the size of P , i.e. the number of segments in
its boundary representation.

const list<r circle polygon>& P.polygons()

returns the boundary representation of P .

list<r circle segment> P.edges() returns a chain of segments that bound P . The orien-
tation of the chain corresponds to the orientation of
P .

list<r circle point> P.vertices() returns the vertices of P .

list<r circle point> P.intersection(const r circle segment& s)

returns the list of all proper intersections between s
and the boundary of P .

list<r circle point> P.intersection(const rat line& l)

returns the list of all proper intersections between l
and the boundary of P .

r circle gen polygon P.translate(rational dx , rational dy)

returns P translated by vector (dx, dy).

r circle gen polygon P.translate(const rat vector& v)

returns P translated by vector v.

r circle gen polygon P + const rat vector& v

returns P translated by vector v.

r circle gen polygon P − const rat vector& v

returns P translated by vector −v.

r circle gen polygon P.rotate90(const rat point& q, int i = 1)

returns P rotated about q by an angle of i×90 degrees.
If i > 0 the rotation is counter-clockwise otherwise it
is clockwise.

r circle gen polygon P.reflect(const rat point& p, const rat point& q)

returns P reflected across the straight line passing
through p and q.

r circle gen polygon P.reflect(const rat point& p)

returns P reflected across point p.

460 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

real P.sqr dist(const real point& p)

computes the squared Euclidean distance between the
boundary of P and p. (If P is zero, the result is zero.)

real P.dist(const real point& p)

computes the Euclidean distance between the bound-
ary of P and p. (If P is zero, the result is zero.)

r circle gen polygon P.make weakly simple()

creates a weakly simple generalized polygon Q from
a possibly non-simple polygon P such that Q and P
have the same inner points. (This function is experi-
mental.)

r circle gen polygon r circle gen polygon ::make weakly simple(const r circle polygon& Q)

same as above, but the input is a polygon Q. (This
function is experimental.)

r circle gen polygon P.complement()

returns the complement of P .

r circle gen polygon P.contour() returns the contour of P , i.e. all holes are removed
from P .

r circle gen polygon P.eliminate cocircular vertices()

returns a copy of P without cocircular vertices.

r circle gen polygon P.round(int prec = 0)

returns a rounded representation of P . (experimental)

bool P.is r circle polygon()

checks if the boundary of P consists of at most one
chain.

r circle polygon P.to r circle polygon()

converts P to an r circle polygon.
Precondition: is r circle polygon is true.

bool P.is rat gen polygon()

returns whether P can be converted to a rat polygon.

rat gen polygon P.to rat gen polygon()

converts P to a rat gen polygon.
Precondition: is rat gen polygon is true.

rat gen polygon P.approximate by rat gen polygon(double dist)

approximates P by a rat gen polygon. The maxmum
distance between a point on P and the approximation
is bounded by dist .

12.30. GENERALIZED POLYGONSWITH CIRCULAR EDGES (R CIRCLE GEN POLYGON)461

gen polygon P.to float() computes a floating point approximation of P with
straight line segments.
Precondition: is rat gen polygon is true.

bool P.is rat circle() returns whether P can be converted to a rat circle.

rat circle P.to rat circle() converts P to a rat circle.
Precondition: is rat circle is true.

void P.bounding box(real& xmin, real& ymin, real& xmax , real& ymax)

computes a tight bounding box for P .

void P.bounding box(double& xmin, double& ymin, double& xmax ,
double& ymax)

computes a bounding box for P , but not necessarily
a tight one.

All functions below assume that P is weakly simple.

int P.orientation() returns the orientation of P .

int P.side of(const r circle point& p)

returns +1 if p lies to the left of P , 0 if p lies on P ,
and −1 if p lies to the right of P .

region kind P.region of(const r circle point& p)

returns BOUNDED REGION if p lies in the bounded
region of P , returns ON REGION if p lies on P , and
returns UNBOUNDED REGION if p lies in the un-
bounded region. The bounded region of the full poly-
gon is the entire plane.

bool P.inside(const r circle point& p)

returns true if p lies to the left of P , i.e., side of (p)==
+1.

bool P.on boundary(const r circle point& p)

returns true if p lies on P , i.e., side of (p) == 0.

bool P.outside(const r circle point& p)

returns true if p lies to the right of P , i.e.,
side of (p) ==−1.

bool P.contains(const r circle point& p)

returns true if p lies to the left of or on P .

462 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

double P.approximate area()

approximates the (oriented) area of the bounded re-
gion of P .
Precondition: P.kind() is not full.

All boolean operations are regularized, i.e., the result R of the standard boolean operation

is replaced by the interior of the closure of R. We use regX to denote the regularization

of a set X.

r circle gen polygon P.unite(const r circle gen polygon& Q)

returns reg(P ∪Q).

r circle gen polygon P.intersection(const r circle gen polygon& Q)

returns reg(P ∩Q).

r circle gen polygon P.diff(const r circle gen polygon& Q)

returns reg(P \Q).

r circle gen polygon P.sym diff(const r circle gen polygon& Q)

returns reg((P ∪Q)− (P ∩Q)).

For optimization purposes we provide a union operation of arbitrary arity. It computes

the union of a set of polygons much faster than with binary operations.

r circle gen polygon r circle gen polygon :: unite(const list<r circle gen polygon>& L)

returns the (regularized) union of all polygons in L.

We offer fast versions of the boolean operations which compute an approximate result.

These operations work as follows: every curved segment is approximated by straight line

segments, then the respective boolean operation is performed on the straight polygons.

Finally, we identify those straight segments in the result that originate from a curved

segment and replace them by curved segments again. (We denote the approximate com-

putation of an operation op scheme by appr(op).) Every operation below takes a

parameter dist that controls the accuracy of the approximation: dist is an upper bound

on the distance of any point on an original polygon P to the approximated polygon P ′.

r circle gen polygon P.unite approximate(const r circle gen polygon& Q,
double dist = 1e − 2)

returns appr(P ∪Q).

r circle gen polygon P.intersection approximate(const r circle gen polygon& Q,
double dist = 1e − 2)

returns appr(P ∩Q).

r circle gen polygon P.diff approximate(const r circle gen polygon& Q,
double dist = 1e − 2)

returns appr(P \Q).

12.30. GENERALIZED POLYGONSWITH CIRCULAR EDGES (R CIRCLE GEN POLYGON)463

r circle gen polygon P.sym diff approximate(const r circle gen polygon& Q,
double dist = 1e − 2)

returns appr((P ∪Q)− (P ∩Q)).

r circle gen polygon r circle gen polygon :: unite approximate(const list<r circle gen polygon>& L,
double dist = 1e − 2)

returns the (approximated) union of all polygons in
L.

r circle gen polygon P.buffer(double d)

adds an exterior buffer zone to P (d > 0), or removes
an interior buffer zone from P (d < 0). More precisely,
for d ≥ 0 define the buffer tube T as the set of all
points in the complement of P whose distance to P
is at most d. Then the function returns P ∪T . For
d < 0 let T denote the set of all points in P whose
distance to the complement is less than |d|. Then the
result is P \T .

Iterations Macros

forall polygons(p, P) { “the boundary polygons of P are successively assigned to

r circle polygon p” }

464 CHAPTER 12. BASIC DATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

12.31 Parser for well known binary format (wkb io

)

1. Definition

The class wkb io provides methods for reading and writing geometries in the well known

binary format (wkb). Every non-trivial generalized polygon from LEDA can be written in

wkb format. The method for reading supports the wkb types Polygon and MultiPolygon,

i.e., those types that can be represented by the LEDA type gen polygon.

#include < LEDA/geo/wkb io.h >

2. Creation

wkb io W ; creates an instance of type wkb io.

3. Operations

bool W.read(const string& filename, gen polygon& P)

reads the geometry stored in the given file and con-
verts it to a generalized polygon P .

bool W.write(const string& filename, const gen polygon& P)

writes the generalized polygon P to the given file.

Chapter 13

Advanced Data Types for
Two-Dimensional Geometry

13.1 Point Sets and Delaunay Triangulations (

POINT SET)

1. Definition

There are three instantiations of POINT SET : point set (floating point kernel),

rat point set (rational kernel) and real point set (real kernel). The respective header file

name corresponds to the type name (with “.h” appended).

An instance T of data type POINT SET is a planar embedded bidirected graph (map)

representing the Delaunay Triangulation of its vertex set. The position of a vertex v is

given by T.pos(v) and we use S = {T.pos(v) | v ∈ T} to denote the underlying point set.

Each face of T (except for the outer face) is a triangle whose circumscribing circle does

not contain any point of S in its interior. For every edge e, the sequence

e, T.face cycle succ(e), T.face cycle succ(T.face cycle succ(e)), . . .

traces the boundary of the face to the left of e. The edges of the outer face of T form the

convex hull of S; the trace of the convex hull is clockwise. The subgraph obtained from

T by removing all diagonals of co-circular quadrilaterals is called the Delaunay Diagram

of S.

POINT SET provides all constant graph operations, e.g., T.reversal(e) returns the re-

versal of edge e, T.all edges() returns the list of all edges of T , and forall edges(e, T)

iterates over all edges of T . In addition, POINT SET provides operations for inserting

and deleting points, point location, nearest neighbor searches, and navigation in both the

triangulation and the diagram.

POINT SET s are essentially objects of type GRAPH <POINT , int>, where the node in-

formation is the position of the node and the edge information is irrelevant. For a graph G

465

466CHAPTER 13. ADVANCEDDATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

of type GRAPH <POINT , int> the function Is Delaunay(G) tests whether G is a Delaunay

triangulation of its vertices.

The data type POINT SET is illustrated by the point set demo in the LEDA demo di-

rectory.

Be aware that the nearest neighbor queries for a point (not for a node) and the range

search queries for circles, triangles, and rectangles are non-const operations and modify

the underlying graph. The set of nodes and edges is not changed; however, it is not

guaranteed that the underlying Delaunay triangulation is unchanged.

#include < LEDA/geo/generic/POINT SET.h >

2. Creation

POINT SET T ; creates an empty POINT SET T .

POINT SET T (const list<POINT>& S);

creates a POINT SET T of the points in S. If S contains multi-
ple occurrences of points only the last occurrence of each point is
retained.

POINT SET T (const GRAPH <POINT , int>& G);

initializes T with a copy of G.
Precondition: Is Delaunay(G) is true.

3. Operations

void T.init(const list<POINT>& L)

makes T a POINT SET for the points in S.

POINT T.pos(node v) returns the position of node v.

POINT T.pos source(edge e) returns the position of source(e).

POINT T.pos target(edge e) returns the position of target(e).

SEGMENT T.seg(edge e) returns the line segment corresponding to edge e
(SEGMENT (T.pos source(e), T.pos target(e))).

LINE T.supporting line(edge e) returns the supporting line of edge e
(LINE (T.pos source(e), T.pos target(e))).

int T.orientation(edge e, POINT p)

returns orientation(T.seg(e), p).

13.1. POINT SETS AND DELAUNAY TRIANGULATIONS (POINT SET) 467

int T.dim() returns −1 if S is empty, returns 0 if S consists
of only one point, returns 1 if S consists of at
least two points and all points in S are collinear,
and returns 2 otherwise.

list<POINT> T.points() returns S.

bool T.get bounding box(POINT& lower left , POINT& upper right)

returns the lower left and upper right corner of
the bounding box of T . The operation returns
true, if T is not empty, false otherwise.

list<node> T.get convex hull() returns the convex hull of T .

edge T.get hull dart() returns a dart of the outer face of T (i.e., a dart
of the convex hull).

edge T.get hull edge() as above.

bool T.is hull dart(edge e) returns true if e is a dart of the convex hull of
T , i.e., a dart on the face cycle of the outer face.

bool T.is hull edge(edge e) as above.

bool T.is diagram dart(edge e) returns true if e is a dart of the Delaunay dia-
gram, i.e., either a dart on the convex hull or a
dart where the incident triangles have distinct
circumcircles.

bool T.is diagram edge(edge e) as above.

edge T.d face cycle succ(edge e) returns the face cycle successor of e in the De-
launay diagram of T . Precondition: e belongs
to the Delaunay diagram.

edge T.d face cycle pred(edge e) returns the face cycle predecessor of e in the De-
launay diagram of T . Precondition: e belongs
to the Delaunay diagram.

bool T.empty() decides whether T is empty.

void T.clear() makes T empty.

468CHAPTER 13. ADVANCEDDATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

edge T.locate(POINT p, edge loc start = NULL)

returns an edge e of T that contains p or that
borders the face that contains p. In the for-
mer case, a hull dart is returned if p lies on
the boundary of the convex hull. In the latter
case we have T.orientation(e, p) > 0 except if
all points of T are collinear and p lies on the in-
duced line. In this case target(e) is visible from
p. The function returns nil if T has no edge.
The optional second argument is an edge of T ,
where the locate operation starts searching.

edge T.locate(POINT p, const list<edge>& loc start)

returns locate(p, e) with e in loc start . If
loc start is empty, we return locate(p, NULL).
The operation tries to choose a good starting
edge for the locate operation from loc start .
Precondition: All edges in loc start must be
edges of T .

node T.lookup(POINT p, edge loc start = NULL)

if T contains a node v with pos(v) = p the result
is v otherwise the result is nil . The optional sec-
ond argument is an edge of T , where the locate
operation starts searching p.

node T.lookup(POINT p, const list<edge>& loc start)

returns lookup(p, e) with e in loc start . If
loc start is empty, we return lookup(p, NULL).
The operation tries to choose a good starting
edge for the lookup operation from loc start .
Precondition: All edges in loc start must be
edges of T .

node T.insert(POINT p) inserts point p into T and returns the corre-
sponding node. More precisely, if there is al-
ready a node v in T positioned at p (i.e., pos(v)
is equal to p) then pos(v) is changed to p (i.e.,
pos(v) is made identical to p) and if there is no
such node then a new node v with pos(v) = p
is added to T . In either case, v is returned.

void T.del(node v) removes the node v, i.e., makes T a Delaunay
triangulation for S \ {pos(v)}.

void T.del(POINT p) removes the node p, i.e., makes T a Delaunay
triangulation for S \ p.

13.1. POINT SETS AND DELAUNAY TRIANGULATIONS (POINT SET) 469

node T.nearest neighbor(POINT p)

computes a node v of T that is closest to p, i.e.,
dist(p, pos(v)) = min{ dist(p, pos(u)) | u ∈ T }.
This is a non-const operation.

node T.nearest neighbor(node w)

computes a node v of T that is clos-
est to p = T [w], i.e., dist(p, pos(v)) =
min{ dist(p, pos(u)) | u ∈ T }.

list<node> T.nearest neighbors(POINT p, int k)

returns the k nearest neighbors of p, i.e., a list
of the min(k, |S|) nodes of T closest to p. The
list is ordered by distance from p. This is a
non-const operation.

list<node> T.nearest neighbors(node w, int k)

returns the k nearest neighbors of p = T [w], i.e.,
a list of the min(k, |S|) nodes of T closest to p.
The list is ordered by distance from p.

list<node> T.range search(const CIRCLE& C)

returns the list of all nodes contained in the
closure of disk C.
Precondition: C must be a proper circle (not a
straight line). This is a non-const operation.

list<node> T.range search(node v, const POINT& p)

returns the list of all nodes contained in the
closure of disk C with center pos[v] and having
p in its boundary.

list<node> T.range search(const POINT& a, const POINT& b, const POINT& c)

returns the list of all nodes contained in the
closure of the triangle (a, b, c).
Precondition: a, b, and c must not be collinear.
This is a non-const operation.

list<node> T.range search parallelogram(const POINT& a, const POINT& b,
const POINT& c)

returns the list of all nodes contained in the
closure of the parallelogram (a, b, c, d) with d =
a+ (c− b).
Precondition: a, b, and c must not be collinear.
This is a non-const operation.

470CHAPTER 13. ADVANCEDDATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

list<node> T.range search(const POINT& a, const POINT& b)

returns the list of all nodes contained in the clo-
sure of the rectangle with diagonal (a, b). This
is a non-const operation.

list<edge> T.minimum spanning tree()

returns the list of edges of T that comprise a
minimum spanning tree of S.

list<edge> T.relative neighborhood graph()

returns the list of edges of T that comprise a
relative neighborhood graph of S.

void T.compute voronoi(GRAPH <CIRCLE ,POINT>& V)

computes the corresponding Voronoi diagram
V . Each node of V D is labeled with its defining
circle. Each edge is labeled with the site lying
in the face to its left.

Drawing Routines

The functions in this section were designed to support the drawing of Delaunay triangu-

lations and Voronoi diagrams.

void T.draw nodes(void (∗draw node)(const POINT&))

calls draw node(pos(v)) for every node v of T .

void T.draw edge(edge e, void (∗draw diagram edge)(const POINT& , const POINT&),
void (∗draw triang edge) (const POINT& , const POINT&),
void (∗draw hull dart) (const POINT& , const POINT&))

calls draw diagram edge(pos source(e), pos target(e) if e is a diagram
dart, draw hull dart(pos source(e), pos target(e) if e is a hull dart, and
draw triang edge(pos source(e), pos target(e) if e is a non-diagram edge.

void T.draw edges(void (∗draw diagram edge)(const POINT& , const POINT&),
void (∗draw triang edge) (const POINT& , const POINT&),
void (∗draw hull dart) (const POINT& , const POINT&))

calls the corresponding function for all edges of T .

void T.draw edges(const list<edge>& L, void (∗draw edge)(const POINT& ,
const POINT&))

calls draw edge(pos source(e), pos target(e) for every edge e ∈ L.

void T.draw voro edges(void (∗draw edge)(const POINT& , const POINT&),
void (∗draw ray) (const POINT& , const POINT&))

calls draw edge and draw ray for the edges of the Voronoi diagram.

void T.draw hull(void (∗draw poly)(const list<POINT>&))

calls draw poly with the list of vertices of the convex hull.

13.1. POINT SETS AND DELAUNAY TRIANGULATIONS (POINT SET) 471

void T.draw voro(const GRAPH <CIRCLE ,POINT>& ,
void (∗draw node)(const POINT&),
void (∗draw edge)(const POINT& , const POINT&),
void (∗draw ray) (const POINT& , const POINT&))

calls ...

4. Implementation

The main ingredients for the implementation are Delaunay flipping, segment walking, and

plane sweep.

The constructor POINT SET (list<POINT> S) first constructs a triangulation of S by

sweeping and then makes the triangulation Delaunay by a sequence of Delaunay flips.

Locate walks through the triangulation along the segment from some fixed point of T to

the query point. Insert first locates the point, then updates the triangulation locally, and

finally performs flips to reestablish the Delaunay property. Delete deletes the node, retri-

angulates the resulting face, and then performs flips. Nearest neighbor searching, circular

range queries, and triangular range queries insert the query point into the triangulation,

then perform an appropriate graph search on the triangulation, and finally remove the

query point.

All algorithms show good expected behavior.

For details we refer the reader to the LEDA implementation report ”Point Sets and

Dynamic Delaunay Triangulations”.

472CHAPTER 13. ADVANCEDDATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

13.2 Point Location in Triangulations (

POINT LOCATOR)

1. Definition

An instance PS of data type POINT LOCATOR is a data structure for efficient point

location in triangulations.

There are three instantiations of POINT LOCATOR: point locator (floating point ker-

nel), rat point locator (rational kernel) and real point locator (real kernel). The respective

header file name corresponds to the type name (with “.h” appended).

#include < LEDA/geo/generic/POINT LOCATOR.h >

2. Creation

POINT LOCATOR PS (const GRAPH <POINT , int>& T);

creates a point locator for a triangulation T .

POINT LOCATOR PS (const GRAPH <POINT , SEGMENT>& T);

creates a point locator for a constrained triangulation T .

POINT LOCATOR PS (const graph& T, node array<POINT>& p);

creates a point locator for a general triangulation T . Node positions
have to be provided in node array p.

3. Operations

edge PS.locate(POINT q) returns an edge e of PS that contains q or that borders
the face that contains q. In the former case, a hull edge
is returned if q lies on the boundary of the convex hull.
In the latter case we have PS.orientation(e, q) > 0 except
if all points of PS are collinear and q lies on the induced
line. In this case target(e) is visible from q. The operation
returns nil if PS is empty.

bool PS.check locate(POINT q, edge e)

checks whether e could be the result of PS.locate(q).

13.3. SETS OF INTERVALS (INTERVAL SET) 473

13.3 Sets of Intervals (interval set)

1. Definition

An instance S of the parameterized data type interval set<I> is a collection of items

(is item). Every item in S contains a closed interval of the double numbers as key and an

information from data type I, called the information type of S. The number of items in

S is called the size of S. An interval set of size zero is said to be empty. We use <x, y, i>

to denote the item with interval [x, y] and information i; x (y) is called the left (right)

boundary of the item. For each interval [x, y] there is at most one item <x, y, i> ∈ S.

#include < LEDA/geo/interval set.h >

2. Creation

interval set<I> S; creates an instance S of type interval set<I> and initializes S to
the empty set.

3. Operations

double S.left(is item it) returns the left boundary of item it.
Precondition: it is an item in S.

double S.right(is item it) returns the right boundary of item it.
Precondition: it is an item in S.

const I& S.inf(is item it) returns the information of item it.
Precondition: it is an item in S.

is item S.insert(double x, double y, const I& i)

associates the information i with interval [x, y].
If there is an item <x, y, j> in S then j is re-
placed by i, else a new item <x, y, i> is added
to S. In both cases the item is returned.

is item S.lookup(double x, double y)

returns the item with interval [x, y] (nil if no such
item exists in S).

list<is item> const S.intersection(double a, double b)

returns all items <x, y, i> ∈ S with [x, y] ∩
[a, b] 6= ∅.

void S.del(double x, double y) deletes the item with interval [x, y] from S.

void S.del item(is item it) removes item it from S.
Precondition: it is an item in S.

474CHAPTER 13. ADVANCEDDATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

void S.change inf(is item it , const I& i)

makes i the information of item it.
Precondition: it is an item in S.

void S.clear() makes S the empty interval set.

bool S.empty() returns true iff S is empty.

int S.size() returns the size of S.

4. Implementation

Interval sets are implemented by two-dimensional range trees [92, 59]. Operations insert,

lookup, del item and del take time O(log2 n), intersection takes time O(k+log2 n), where

k is the size of the returned list. Operations left, right, inf, empty, and size take time

O(1), and clear O(n log n). Here n is always the current size of the interval set. The space

requirement is O(n log n).

13.4. PLANAR SUBDIVISIONS (SUBDIVISION) 475

13.4 Planar Subdivisions (subdivision)

1. Definition

An instance S of the parameterized data type subdivision<I> is a subdivision of the

two-dimensional plane, i.e., an embedded planar graph with straight line edges (see also

sections 9.6 and 9.7). With each node v of S is associated a point, called the position

of v and with each face of S is associated an information from data type I, called the

information type of S.

#include < LEDA/geo/subdivision.h >

2. Creation

subdivision<I> S(GRAPH <point , I>& G);

creates an instance S of type subdivision<I> and initializes it to
the subdivision represented by the parameterized directed graph
G. The node entries of G (of type point) define the positions of
the corresponding nodes of S. Every face f of S is assigned the
information of one of its bounding edges in G.
Precondition: G represents a planar subdivision, i.e., a straight line
embedded planar map.

3. Operations

point S.position(node v) returns the position of node v.

const I& S.inf(face f) returns the information of face f .

face S.locate point(point p) returns the face containing point p.

face S.outer face() returns the outer face of S.

4. Implementation

Planar subdivisions are implemented by parameterized planar maps and an additional

data structure for point location based on partially persistent search trees[26]. Opera-

tions position and inf take constant time, a locate point operation takes (expected) time

O(log n). Here n is the number of nodes. The space requirement is O(n + m) and the

initialization time is O(n+m logm), where m is the number of edges in the map.

476CHAPTER 13. ADVANCEDDATA TYPES FOR TWO-DIMENSIONAL GEOMETRY

Chapter 14

Basic Data Types for
Three-Dimensional Geometry

477

478CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

14.1 Points in 3D-Space (d3 point)

1. Definition

An instance of the data type d3 point is a point in the three-dimensional space R3. We

use (x, y, z) to denote a point with first (or x-) coordinate x, second (or y-) coordinate y,

and third (or z-) coordinate z.

#include < LEDA/geo/d3 point.h >

2. Creation

d3 point p; introduces a variable p of type d3 point initialized to the point
(0, 0, 0).

d3 point p(double x, double y, double z);

introduces a variable p of type d3 point initialized to the point
(x, y, z).

d3 point p(vector v);

introduces a variable p of type d3 point initialized to the point
(v[0], v[1], v[2]).
Precondition: v.dim() = 3.

3. Operations

double p.xcoord() returns the first coordinate of p.

double p.ycoord() returns the second coordinate of p.

double p.zcoord() returns the third coordinate of p.

vector p.to vector() returns the vector ~xyz.

point p.project xy() returns p projected into the xy-plane.

point p.project yz() returns p projected into the yz-plane.

point p.project xz() returns p projected into the xz-plane.

double p.sqr dist(const d3 point& q)

returns the square of the Euclidean distance between p
and q.

double p.xdist(const d3 point& q)

returns the x-distance between p and q.

14.1. POINTS IN 3D-SPACE (D3 POINT) 479

double p.ydist(const d3 point& q)

returns the y-distance between p and q.

double p.zdist(const d3 point& q)

returns the z-distance between p and q.

double p.distance(const d3 point& q)

returns the Euclidean distance between p and q.

double p.distance() returns the Euclidean distance between p and the origin.

d3 point p.translate(double dx , double dy , double dz)

returns p translated by vector (dx, dy, dz).

d3 point p.translate(const vector& v)

returns p+v, i.e., p translated by vector v.
Precondition: v.dim() = 3.

d3 point p+ const vector& v returns p translated by vector v.

d3 point p− const vector& v returns p translated by vector −v.

d3 point p.reflect(const d3 point& q, const d3 point& r, const d3 point& s)

returns p reflected across the plane passing through q, r
and s.

d3 point p.reflect(const d3 point& q)

returns p reflected across point q.

d3 point p.rotate around axis(int a, double phi)

returns p rotated by angle phi around the x-axis if a = 1,
aournd the y-axis if a = 1, or around the z-axis if a = 2.

d3 point p.rotate around vector(const vector& u, double phi)

returns p rotated by angle phi around the axis defined
by vector u.

d3 point p.cartesian to polar() returns p converted to polar coordinates.

d3 point p.polar to cartesian() returns p converted to cartesian coordinates.

vector p− const d3 point& q

returns the difference vector of the coordinates.

ostream& ostream& O ≪ const d3 point& p

writes p to output stream O.

480CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

istream& istream& I ≫ d3 point& p

reads the coordinates of p (three double numbers) from
input stream I.

Non-Member Functions

int cmp distances(const d3 point& p1 , const d3 point& p2 , const d3 point& p3 ,
const d3 point& p4)

compares the distances (p1 , p2) and (p3 , p4). Returns
+1 (−1) if distance (p1 , p2) is larger (smaller) than dis-
tance (p3 , p4), otherwise 0.

d3 point center(const d3 point& a, const d3 point& b)

returns the center of a and b, i.e. a+ ~ab/2.

d3 point midpoint(const d3 point& a, const d3 point& b)

returns the center of a and b.

int orientation(const d3 point& a, const d3 point& b, const d3 point& c,
const d3 point& d)

computes the orientation of points a, b, c, and d as the
sign of the determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
ax bx cx dx
ay by cy dy
az bz cz dz

∣

∣

∣

∣

∣

∣

∣

∣

∣

int orientation xy(const d3 point& a, const d3 point& b, const d3 point& c)

returns the orientation of the projections of a, b and c
into the xy-plane.

int orientation yz(const d3 point& a, const d3 point& b, const d3 point& c)

returns the orientation of the projections of a, b and c
into the yz-plane.

int orientation xz(const d3 point& a, const d3 point& b, const d3 point& c)

returns the orientation of the projections of a, b and c
into the xz-plane.

double volume(const d3 point& a, const d3 point& b, const d3 point& c,
const d3 point& d)

computes the signed volume of the simplex determined
by a,b, c, and d, positive if orientation(a, b, c, d) > 0 and
negative otherwise.

14.1. POINTS IN 3D-SPACE (D3 POINT) 481

bool collinear(const d3 point& a, const d3 point& b, const d3 point& c)

returns true if points a, b, c are collinear and false oth-
erwise.

bool coplanar(const d3 point& a, const d3 point& b, const d3 point& c,
const d3 point& d)

returns true if points a, b, c, d are coplanar and false
otherwise.

int side of sphere(const d3 point& a, const d3 point& b, const d3 point& c,
const d3 point& d, const d3 point& x)

returns +1 (−1) if point x lies on the positive (negative)
side of the oriented sphere through points a, b, c, and d,
and 0 if x is contained in this sphere.

int region of sphere(const d3 point& a, const d3 point& b, const d3 point& c,
const d3 point& d, const d3 point& x)

determines whether the point x lies inside (= +1),
on (= 0), or outside (= −1) the sphere through
points a, b, c, d, (equivalent to orientation(a, b, c, d) ∗
side of sphere(a, b, c, d, x))
Precondition: orientation(A) 6= 0

bool contained in simplex(const d3 point& a, const d3 point& b,
const d3 point& c, const d3 point& d,
const d3 point& x)

determines whether x is contained in the simplex
spanned by the points a, b, c, d.
Precondition: a, b, c, d are affinely independent.

bool contained in simplex(const array<d3 point>& A, const d3 point& x)

determines whether x is contained in the simplex
spanned by the points in A.
Precondition: A must have size ≤ 4 and the points in A
must be affinely independent.

bool contained in affine hull(const list<d3 point>& L, const d3 point& x)

determines whether x is contained in the affine hull of
the points in L.

bool contained in affine hull(const array<d3 point>& A, const d3 point& x)

determines whether x is contained in the affine hull of
the points in A.

int affine rank(const array<d3 point>& L)

computes the affine rank of the points in L.

int affine rank(const array<d3 point>& A)

computes the affine rank of the points in A.

482CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

bool affinely independent(const list<d3 point>& L)

decides whether the points in A are affinely independent.

bool affinely independent(const array<d3 point>& A)

decides whether the points in A are affinely independent.

bool inside sphere(const d3 point& a, const d3 point& b, const d3 point& c,
const d3 point& d, const d3 point& e)

returns true if point e lies in the interior of the sphere
through points a, b, c, and d, and false otherwise.

bool outside sphere(const d3 point& a, const d3 point& b, const d3 point& c,
const d3 point& d, const d3 point& e)

returns true if point e lies in the exterior of the sphere
through points a, b, c, and d, and false otherwise.

bool on sphere(const d3 point& a, const d3 point& b, const d3 point& c,
const d3 point& d, const d3 point& e)

returns true if a, b, c, d, and e lie on a common sphere.

d3 point point on positive side(const d3 point& a, const d3 point& b,
const d3 point& c)

returns a point d with orientation(a, b, c, d) > 0.

14.2. STRAIGHT RAYS IN 3D-SPACE (D3 RAY) 483

14.2 Straight Rays in 3D-Space (d3 ray)

1. Definition

An instance r of the data type d3 ray is a directed straight ray in three-dimensional space.

#include < LEDA/geo/d3 ray.h >

2. Creation

d3 ray r(const d3 point& p1 , const d3 point& p2);

introduces a variable r of type d3 ray . r is initialized to the ray
starting at point p1 and going through p2 .

d3 ray r(const d3 segment& s);

introduces a variable r of type d3 ray . r is initialized to
ray(s.source(), s.target()) .

3. Operations

d3 point r.source() returns the source of r.

d3 point r.point1() returns the source of r.

d3 point r.point2() returns a point on r different from the source.

d3 segment r.seg() returns a segment on r.

bool r.contains(const d3 point& p)

returns true if p lies on r.

bool r.contains(const d3 segment& s)

returns true if s lies on r.

bool r.intersection(const d3 segment& s, d3 point& inter)

if s and r intersect in a single point, true is returned
and the point of intersection is assigned to inter. Oth-
erwise false is returned.

bool r.intersection(const d3 ray& r, d3 point& inter)

if r and r intersect in a single point, true is returned
and the point of intersection is assigned to inter. Oth-
erwise false is returned.

bool r.project xy(ray& m) if the projection of r into the xy plane is not a point,
the function returns true and assignes the projection
to m. Otherwise false is returned.

484CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

bool r.project xz(ray& m) if the projection of r into the xz plane is not a point,
the function returns true and assignes the projection
to m. Otherwise false is returned.

bool r.project yz(ray& m) if the projection of r into the yz plane is not a point,
the function returns true and assignes the projection
to m. Otherwise false is returned.

bool r.project(const d3 point& p, const d3 point& q, const d3 point& v,
d3 ray& m)

if the projection of r into the plane through (p, q, v)
is not a point, the function returns true and assignes
the projection to m. Otherwise false is returned.

d3 ray r.reverse() returns a ray starting at r.source() with direction -
r.to vector().

d3 ray r.translate(const vector& v)

returns r translated by vector v. Precond. : v.dim()
= 3 .

d3 ray r.translate(double dx , double dy , double dz)

returns r translated by vector (dx , dy , dz).

d3 ray r + const vector& v returns r translated by vector v.

d3 ray r − const vector& v returns r translated by vector −v.

d3 ray r.reflect(const d3 point& p, const d3 point& q, const d3 point& v)

returns r reflected across the plane through (p, q, v).

d3 ray r.reflect(const d3 point& p)

returns r reflected across p.

vector r.to vector() returns point2 ()− point1 ().

14.3. SEGMENTS IN 3D-SPACE (D3 SEGMENT) 485

14.3 Segments in 3D-Space (d3 segment)

1. Definition

An instance s of the data type d3 segment is a directed straight line segment in three-

dimensional space, i.e., a straight line segment [p, q] connecting two points p, q ∈ R3. p

is called the source or start point and q is called the target or end point of s. The length

of s is the Euclidean distance between p and q. A segment is called trivial if its source is

equal to its target. If s is not trivial, we use line(s) to denote the straight line containing

s.

#include < LEDA/geo/d3 segment.h >

2. Creation

d3 segment s(const d3 point& p1 , const d3 point& p2);

introduces a variable s of type d3 segment . s is initialized to the
segment from p1 to p2 .

d3 segment s; introduces a variable s of type d3 segment . s is initialized to the
segment from (0, 0, 0) to (1, 0, 0).

3. Operations

bool s.contains(const d3 point& p)

decides whether s contains p.

d3 point s.source() returns the source point of segment s.

d3 point s.target() returns the target point of segment s.

double s.xcoord1() returns the x-coordinate of s.source().

double s.xcoord2() returns the x-coordinate of s.target().

double s.ycoord1() returns the y-coordinate of s.source().

double s.ycoord2() returns the y-coordinate of s.target().

double s.zcoord1() returns the z-coordinate of s.source().

double s.zcoord2() returns the z-coordinate of s.target().

double s.dx() returns xcoord2 ()− xcoord1 ().

double s.dy() returns ycoord2 ()− ycoord1 ().

double s.dz() returns zcoord2 ()− zcoord1 ().

486CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

segment s.project xy() returns the projection into the xy plane.

segment s.project xz() returns the projection into the xz plane.

segment s.project yz() returns the projection into the yz plane.

d3 segment s.project(const d3 point& p, const d3 point& q, const d3 point& v)

returns s projected into the plane through (p, q, v).

d3 segment s.reflect(const d3 point& p, const d3 point& q, const d3 point& v)

returns s reflected across the plane through (p, q, v).

d3 segment s.reflect(const d3 point& p)

returns s reflected across point p.

d3 segment s.reverse() returns s reversed.

vector s.to vector() returns s.target()− s.source().

bool s.intersection(const d3 segment& t)

decides, whether s and t intersect in a single point.

bool s.intersection(const d3 segment& t, d3 point& p)

decides, whether s and t intersect in a single point. If
they intersect in a single point, the point is assigned
to p and the result is true, otherwise the result is false

bool s.intersection of lines(const d3 segment& t, d3 point& p)

If line(s) and line(t) intersect in a single point this
point is assigned to p and the result is true, otherwise
the result is false.

bool s.is trivial() returns true if s is trivial.

double s.sqr length() returns the square of the length of s.

double s.length() returns the length of s.

d3 segment s.translate(const vector& v)

returns s translated by vector v.
Precond. : v.dim() = 3.

d3 segment s.translate(double dx , double dy , double dz)

returns s translated by vector (dx , dy , dz).

d3 segment s+ const vector& v returns s translated by vector v.

d3 segment s− const vector& v returns s translated by vector −v.

14.4. STRAIGHT LINES IN 3D-SPACE (D3 LINE) 487

14.4 Straight Lines in 3D-Space (d3 line)

1. Definition

An instance l of the data type d3 line is a directed straight line in three-dimensional

space.

#include < LEDA/geo/d3 line.h >

2. Creation

d3 line l(const d3 point& p1 , const d3 point& p2);

introduces a variable l of type d3 line. l is initialized to the line
through points p1 , p2 .
Precondition : p1 != p2 .

d3 line l(const d3 segment& s);

introduces a variable l of type d3 line. l is initialized to the line
supporting segment s.
Precondition : s is not trivial .

d3 line l; introduces a variable l of type d3 line. l is initialized to the line
through points (0, 0, 0) and (1, 0, 0).

3. Operations

bool l.contains(const d3 point& p)

returns true if p lies on l.

d3 point l.point1() returns a point on l.

d3 point l.point2() returns a second point on l.

d3 segment l.seg() returns a non-trivial segment on l with the same di-
rection.

bool l.project xy(line& m) if the projection of l into the xy plane is not a point,
the function returns true and assignes the projection
to m. Otherwise false is returned.

bool l.project xz(line& m) if the projection of l into the xz plane is not a point,
the function returns true and assignes the projection
to m. Otherwise false is returned.

bool l.project yz(line& m) if the projection of l into the yz plane is not a point,
the function returns true and assignes the projection
to m. Otherwise false is returned.

488CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

bool l.project(const d3 point& p, const d3 point& q, const d3 point& v,
d3 line& m)

if the projection of l into the plane through (p, q, v)
is not a point, the function returns true and assignes
the projection to m. Otherwise false is returned.

d3 line l.translate(double dx , double dy , double dz)

returns l translated by vector (dx , dy , dz).

d3 line l.translate(const vector& v)

returns l translated by v.
Precond. : v.dim() = 3.

d3 line l + const vector& v returns l translated by vector v.

d3 line l − const vector& v returns l translated by vector −v.

d3 line l.reflect(const d3 point& p, const d3 point& q, const d3 point& v)

returns l reflected across the plane through (p, q, v).

d3 line l.reflect(const d3 point& p)

returns l reflected across point p.

d3 line l.reverse() returns l reversed.

vector l.to vector() returns point2 ()− point1 ().

bool l.intersection(const d3 segment& s)

decides, whether l and s intersect in a single point.

bool l.intersection(const d3 segment& s, d3 point& p)

decides, whether l and s intersect in a single point. If
so, the point of intersection is assigned to p.

bool l.intersection(const d3 line& m)

decides, whether l and m intersect.

bool l.intersection(const d3 line& m, d3 point& p)

decides, whether l and m intersect in a single point.
If so, the point of intersection is assigned to p.

double l.sqr dist(const d3 point& p)

returns the square of the distance between l and p.

double l.distance(const d3 point& p)

returns the distance between l and p.

14.5. PLANES (D3 PLANE) 489

14.5 Planes (d3 plane)

1. Definition

An instance P of the data type d3 plane is an oriented plane in the three-dimensional

space R3. It can be defined by a tripel (a,b,c) of non-collinear points or a single point a

and a normal vector v.

#include < LEDA/geo/d3 plane.h >

2. Creation

d3 plane p; introduces a variable p of type d3 plane initialized to the xy-plane.

d3 plane p(const d3 point& a, const d3 point& b, const d3 point& c);

introduces a variable p of type d3 plane initialized to the plane
through (a, b, c).
Precondition: a, b, and c are not collinear.

d3 plane p(const d3 point& a, const vector& v);

introduces a variable p of type d3 plane initialized to the plane that
contains a with normal vector v.
Precondition: v.dim() = 3 and v.length() > 0.

d3 plane p(const d3 point& a, const d3 point& b);

introduces a variable p of type d3 plane initialized to the plane that
contains a with normal vector b− a.

3. Operations

d3 point p.point1() returns the first point of p.

d3 point p.point2() returns the second point of p.

d3 point p.point3() returns the third point of p.

double p.A() returns the A parameter of the plane equation.

double p.B() returns the B parameter of the plane equation.

double p.C() returns the C parameter of the plane equation.

double p.D() returns the D parameter of the plane equation.

vector p.normal() returns a normal vector of p.

490CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

double p.sqr dist(const d3 point& q)

returns the square of the Euclidean distance between p
and q.

double p.distance(const d3 point& q)

returns the Euclidean distance between p and q.

int p.cmp distances(const d3 point& p1 , const d3 point& p2)

compares the distances of p1 and p2 to p and returns
the result.

vector p.normal project(const d3 point& q)

returns the vector pointing from q to its projection on p
along the normal direction.

int p.intersection(const d3 point p1 , const d3 point p2 , d3 point& q)

if the line l through p1 and p2 intersects p in a single
point this point is assigned to q and the result is 1, if l
and p do not intersect the result is 0, and if l is contained
in p the result is 2.

int p.intersection(const d3 plane& Q, d3 point& i1 , d3 point& i2)

if p and plane Q intersect in a line L then (i1, i2) are
assigned two different points on L and the result is 1, if
p and Q do not intersect the result is 0, and if p = Q
the result is 2.

d3 plane p.translate(double dx , double dy , double dz)

returns p translated by vector (dx, dy, dz).

d3 plane p.translate(const vector& v)

returns p+v, i.e., p translated by vector v.
Precondition: v.dim() = 3.

d3 plane p+ const vector& v returns p translated by vector v.

d3 plane p.reflect(const d3 plane& Q)

returns p reflected across plane Q.

d3 plane p.reflect(const d3 point& q)

returns p reflected across point q.

d3 point p.reflect point(const d3 point& q)

returns q reflected across plane p.

int p.side of(const d3 point& q)

computes the side of p on which q lies.

14.5. PLANES (D3 PLANE) 491

bool p.contains(const d3 point& q)

returns true if point q lies on plane p, i.e.,
(p.side of (q) == 0), and false otherwise.

bool p.parallel(const d3 plane& Q)

returns true if planes p and Q are parallel and false oth-
erwise.

ostream& ostream& O ≪ const d3 plane& p

writes p to output stream O.

istream& istream& I ≫ d3 plane& p

reads the coordinates of p (six double numbers) from
input stream I.

Non-Member Functions

int orientation(const d3 plane& p, const d3 point& q)

computes the orientation of p.sideof (q).

492CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

14.6 Spheres in 3D-Space (d3 sphere)

1. Definition

An instance of the data type d3 sphere is an oriented sphere in 3d space. The sphere is

defined by four points p1 , p2 , p3 , p4 (d3 points).

#include < LEDA/geo/d3 sphere.h >

2. Creation

d3 sphere S(const d3 point& p1 , const d3 point& p2 , const d3 point& p3 ,
const d3 point& p4);

introduces a variable S of type d3 sphere. S is initialized to the
sphere through points p1 , p2 , p3 , p4 .

3. Operations

bool S.contains(const d3 point& p)

returns true, if p is on the sphere, false otherwise.

bool S.inside(const d3 point& p)

returns true, if p is inside the sphere, false otherwise.

bool S.outside(const d3 point& p)

returns true, if p is outside the sphere, false otherwise.

d3 point S.point1() returns p1 .

d3 point S.point2() returns p2 .

d3 point S.point3() returns p3 .

d3 point S.point4() returns p4 .

bool S.is degenerate() returns true, if the 4 defining points are coplanar.

d3 point S.center() returns the center of the sphere.

double S.sqr radius() returns the square of the radius.

double S.radius() returns the radius.

double S.surface() returns the size of the surface.

double S.volume() returns the volume of the sphere.

d3 sphere S.translate(const vector& v)

returns S translated by vector v.

14.6. SPHERES IN 3D-SPACE (D3 SPHERE) 493

d3 sphere S.translate(double dx , double dy , double dz)

returns S translated by vector (dx , dy , dz).

494CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

14.7 Simplices in 3D-Space (d3 simplex)

1. Definition

An instance of the data type d3 simplex is a simplex in 3d space. The simplex is defined

by four points p1 , p2 , p3 , p4 (d3 points). We call the simplex degenerate, if the four

defining points are coplanar.

#include < LEDA/geo/d3 simplex.h >

2. Types

d3 simplex ::coord type the coordinate type (double).

d3 simplex ::point type the point type (d3 point).

3. Creation

d3 simplex S(const d3 point& a, const d3 point& b, const d3 point& c,
const d3 point& d);

creates the simplex (a, b, c, d).

d3 simplex S; creates the simplex ((0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)).

4. Operations

d3 point S.point1() returns p1 .

d3 point S.point2() returns p2 .

d3 point S.point3() returns p3 .

d3 point S.point4() returns p4 .

d3 point S[int i] returns pi . Precondition: i > 0 and i < 5.

int S.index(const d3 point& p)

returns 1 if p== p1 , 2 if p== p2 , 3 if p== p3 , 4 if
p== p4 , and 0 otherwise.

bool S.is degenerate() returns true if S is degenerate and false otherwise.

d3 sphere S.circumscribing sphere()

returns a d3 sphere through (p1 , p2 , p3 , p4) (precon-
dition: the d3 simplex is not degenerate).

bool S.in simplex(const d3 point& p)

returns true, if p is contained in the simplex.

14.7. SIMPLICES IN 3D-SPACE (D3 SIMPLEX) 495

bool S.insphere(const d3 point& p)

returns true, if p lies in the interior of the sphere
through p1 , p2 , p3 , p4 .

double S.vol() returns the signed volume of the simplex.

d3 simplex S.reflect(const d3 point& p, const d3 point& q, const d3 point& v)

returns S reflected across the plane through (p, q, v).

d3 simplex S.reflect(const d3 point& p)

returns S reflected across point p.

d3 simplex S.translate(const vector& v)

returns S translated by vector v.
Precond. : v.dim() = 3.

d3 simplex S.translate(double dx , double dy , double dz)

returns S translated by vector (dx , dy , dz).

d3 simplex S + const vector& v returns S translated by vector v.

d3 simplex S − const vector& v returns S translated by vector −v.

496CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

14.8 Rational Points in 3D-Space (d3 rat point)

1. Definition

An instance of data type d3 rat point is a point with rational coordinates in the three-

dimensional space. A point with cartesian coordinates (a, b, c) is represented by homo-

geneous coordinates (x, y, z, w) of arbitrary length integers (see 5.1) such that a = x/w,

b = y/w, c = z/w and w > 0.

#include < LEDA/geo/d3 rat point.h >

2. Creation

d3 rat point p; introduces a variable p of type d3 rat point initialized to the point
(0, 0, 0).

d3 rat point p(const rational& a, const rational& b, const rational& c);

introduces a variable p of type d3 rat point initialized to the point
(a, b, c).

d3 rat point p(integer a, integer b, integer c);

introduces a variable p of type d3 rat point initialized to the point
(a, b, c).

d3 rat point p(integer x, integer y, integer z, integer w);

introduces a variable p of type d3 rat point initialized to the point
with homogeneous coordinates (x, y, z, w) if w > 0 and to point
(−x,−y,−z,−w) if w < 0.
Precondition: w 6= 0.

d3 rat point p(const rat vector& v);

introduces a variable p of type d3 rat point initialized to the point
(v[0], v[1], v[2]).
Precondition: : v.dim() = 3.

3. Operations

d3 point p.to float() returns a floating point approximation of p.

rat vector p.to vector() returns the vector extending from the origin to p.

integer p.X() returns the first homogeneous coordinate of p.

integer p.Y() returns the second homogeneous coordinate of p.

integer p.Z() returns the third homogeneous coordinate of p.

14.8. RATIONAL POINTS IN 3D-SPACE (D3 RAT POINT) 497

integer p.W() returns the fourth homogeneous coordinate of p.

double p.XD() returns a floating point approximation of p.X().

double p.YD() returns a floating point approximation of p.Y ().

double p.ZD() returns a floating point approximation of p.Z().

double p.WD() returns a floating point approximation of p.W ().

rational p.xcoord() returns the x-coordinate of p.

rational p.ycoord() returns the y-coordinate of p.

rational p.zcoord() returns the z-coordinate of p.

rational p[int i] returns the ith cartesian coordinate of p
Precondition: 0 ≤ i ≤ 2.

double p.xcoordD() returns a floating point approximation of p.xcoord().

double p.ycoordD() returns a floating point approximation of p.ycoord().

double p.zcoordD() returns a floating point approximation of p.zcoord().

integer p.hcoord(int i) returns the ith homogeneous coordinate of p.
Precondition: 0 ≤ i ≤ 3.

rat point p.project xy() returns p projected into the xy-plane.

rat point p.project yz() returns p projected into the yz-plane.

rat point p.project xz() returns p projected into the xz-plane.

d3 rat point p.reflect(const d3 rat point& p, const d3 rat point& q,
const d3 rat point& r)

returns p reflected across the plane passing through p,
q and r.
Precondition: p, q and r are not collinear.

d3 rat point p.reflect(const d3 rat point& q)

returns p reflected across point q.

d3 rat point p.translate(const rational& dx , const rational& dy , const rational& dz)

returns p translated by vector (dx, dy, dz).

d3 rat point p.translate(integer dx , integer dy , integer dz , integer dw)

returns p translated by vector (dx/dw, dy/dw, dz/dw).

498CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

d3 rat point p.translate(const rat vector& v)

returns p+ v, i.e., p translated by vector v
Precondition: v.dim() = 3.

d3 rat point p+ const rat vector& v

returns p translated by vector v
Precondition: v.dim() = 3.

d3 rat point p− const rat vector& v

returns p translated by vector −v
Precondition: v.dim() = 3.

rational p.sqr dist(const d3 rat point& q)

returns the squared distance between p and q.

rational p.xdist(const d3 rat point& q)

returns the x-distance between p and q.

rational p.ydist(const d3 rat point& q)

returns the y-distance between p and q.

rational p.zdist(const d3 rat point& q)

returns the z-distance between p and q.

rat vector p− const d3 rat point& q

returns the difference vector of the coordinates.

ostream& ostream& O ≪ const d3 rat point& p

writes the homogeneous coordinates (x, y, z, w) of p to
output stream O.

istream& istream& I ≫ d3 rat point& p

reads the homogeneous coordinates (x, y, z, w) of p
from input stream I.

Non-Member Functions

14.8. RATIONAL POINTS IN 3D-SPACE (D3 RAT POINT) 499

int orientation(const d3 rat point& a, const d3 rat point& b,
const d3 rat point& c, const d3 rat point& d)

computes the orientation of points a, b, c and d as the
sign of the determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

aw bw cw dw
ax bx cx dx
ay by cy dy
az bz cz dz

∣

∣

∣

∣

∣

∣

∣

∣

∣

i.e., it returns +1 if point d lies left of the directed
plane through a, b, c, 0 if a,b, c and d are coplanar, and
−1 otherwise.

int orientation xy(const d3 rat point& a, const d3 rat point& b,
const d3 rat point& c)

returns the orientation of the projections of a, b and c
into the xy-plane.

int orientation yz(const d3 rat point& a, const d3 rat point& b,
const d3 rat point& c)

returns the orientation of the projections of a, b and c
into the yz-plane.

int orientation xz(const d3 rat point& a, const d3 rat point& b,
const d3 rat point& c)

returns the orientation of the projections of a, b and c
into the xz-plane.

int cmp distances(const d3 rat point& p1 , const d3 rat point& p2 ,
const d3 rat point& p3 , const d3 rat point& p4)

compares the distances (p1 , p2) and (p3 , p4). Returns
+1 (−1) if distance (p1 , p2) is larger (smaller) than
distance (p3 , p4), otherwise 0.

d3 rat point midpoint(const d3 rat point& a, const d3 rat point& b)

returns the midpoint of a and b.

rational volume(const d3 rat point& a, const d3 rat point& b,
const d3 rat point& c, const d3 rat point& d)

computes the signed volume of the simplex determined
by a,b,c, and d, positive if orientation(a, b, c, d) > 0
and negative otherwise.

bool collinear(const d3 rat point& a, const d3 rat point& b,
const d3 rat point& c)

returns true if points a, b, c are collinear, and false
otherwise.

500CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

bool coplanar(const d3 rat point& a, const d3 rat point& b,
const d3 rat point& c, const d3 rat point& d)

returns true if points a, b, c, d are coplanar and false
otherwise.

int side of sphere(const d3 rat point& a, const d3 rat point& b,
const d3 rat point& c, const d3 rat point& d,
const d3 rat point& e)

returns +1 (−1) if point e lies on the positive (negative)
side of the oriented sphere through points a, b, c, and
d, and 0 if e is contained in this sphere.

int region of sphere(const d3 rat point& a, const d3 rat point& b,
const d3 rat point& c, const d3 rat point& d,
const d3 rat point& x)

determines whether the point x lies inside (= +1),
on (= 0), or outside (= −1) the sphere through
points a, b, c, d, (equivalent to orientation(a, b, c, d) ∗
side of sphere(a, b, c, d, x))
Precondition: orientation(A) 6= 0

bool contained in simplex(const d3 rat point& a, const d3 rat point& b,
const d3 rat point& c, const d3 rat point& d,
const d3 rat point& x)

determines whether x is contained in the simplex
spanned by the points a, b, c, d.
Precondition: a, b, c, d are affinely independent.

bool contained in simplex(const array<d3 rat point>& A, const d3 rat point& x)

determines whether x is contained in the simplex
spanned by the points in A.
Precondition: A must have size ≤ 4 and the points in
A must be affinely independent.

bool contained in affine hull(const list<d3 rat point>& L, const d3 rat point& x)

determines whether x is contained in the affine hull of
the points in L.

bool contained in affine hull(const array<d3 rat point>& A,
const d3 rat point& x)

determines whether x is contained in the affine hull of
the points in A.

int affine rank(const array<d3 rat point>& L)

computes the affine rank of the points in L.

int affine rank(const array<d3 rat point>& A)

computes the affine rank of the points in A.

14.8. RATIONAL POINTS IN 3D-SPACE (D3 RAT POINT) 501

bool affinely independent(const list<d3 rat point>& L)

decides whether the points in A are affinely indepen-
dent.

bool affinely independent(const array<d3 rat point>& A)

decides whether the points in A are affinely indepen-
dent.

bool inside sphere(const d3 rat point& a, const d3 rat point& b,
const d3 rat point& c, const d3 rat point& d,
const d3 rat point& e)

returns true if point e lies in the interior of the sphere
through points a, b, c, and d, and false otherwise.

bool outside sphere(const d3 rat point& a, const d3 rat point& b,
const d3 rat point& c, const d3 rat point& d,
const d3 rat point& e)

returns true if point e lies in the exterior of the sphere
through points a, b, c, and d, and false otherwise.

bool on sphere(const d3 rat point& a, const d3 rat point& b,
const d3 rat point& c, const d3 rat point& d,
const d3 rat point& e)

returns true if points a, b, c, d, and e lie on a common
sphere.

d3 rat point point on positive side(const d3 rat point& a, const d3 rat point& b,
const d3 rat point& c)

returns a point d with orientation(a, b, c, d) > 0.

Point Generators

d3 rat point random d3 rat point in cube(int maxc)

returns a point whose coordinates are random integers
in [−maxc ..maxc].

void random d3 rat points in cube(int n, int maxc, list<d3 rat point>& L)

returns a list L of n points

d3 rat point random d3 rat point in square(int maxc)

returns a point whose x and y-coordinates are ran-
dom integers in [−maxc ..maxc]. The z-coordinate
is zero. In 2d, this function is equivalent to
random rat point in cube.

void random d3 rat points in square(int n, int maxc, list<d3 rat point>& L)

returns a list L of n points

502CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

d3 rat point random d3 rat point in unit cube(int D = 16383)

returns a point whose coordinates are random rationals
of the form i/D where i is a random integer in the range
[0 .. D]. The default value of D is 214 − 1.

void random d3 rat points in unit cube(int n, int D, list<d3 rat point>& L)

returns a list L of n points

void random d3 rat points in unit cube(int n, list<d3 rat point>& L)

as above, but the default value of D is used.

d3 rat point random d3 rat point in ball(int R)

returns a random point with integer coordinates in the
ball with radius R centered at the origin.
Precondition: R ≤ 214.

void random d3 rat points in ball(int n, int R, list<d3 rat point>& L)

returns a list L of n points

d3 rat point random d3 rat point in unit ball(int D = 16383)

returns a point in the unit ball whose coordinates are
random rationals of the form i/D where i is a random
integer in the range [0 .. D]. The default value of D is
214 − 1.

void random d3 rat points in unit ball(int n, int D, list<d3 rat point>& L)

returns a list L of n points

void random d3 rat points in unit ball(int n, list<d3 rat point>& L)

returns a list L of n points The default value of
D is used.

d3 rat point random d3 rat point in disc(int R)

returns a random point with integer x and y-
coordinates in the disc with radius R centered at the
origin. The z-coordinate is zero. In 2d this is the same
as the function random rat point in ball .
Precondition: R ≤ 214.

void random d3 rat points in disc(int n, int R, list<d3 rat point>& L)

returns a list L of n points

d3 rat point random d3 rat point on circle(int R)

returns a random point with integer coordinates that
lies close to the circle with radius R centered at the
origin.

void random d3 rat points on circle(int m, int R, list<d3 rat point>& L)

returns a list L of n points

14.8. RATIONAL POINTS IN 3D-SPACE (D3 RAT POINT) 503

d3 rat point random d3 rat point on unit circle(int D = 16383)

returns a point close to the unit circle whose coordi-
nates are random rationals of the form i/D where i
is a random integer in the range [0 .. D]. The default
value of D is 214 − 1.

void random d3 rat points on unit circle(int m, int D, list<d3 rat point>& L)

returns a list L of n points

void random d3 rat points on unit circle(int m, list<d3 rat point>& L)

returns a list L of n points The default value of
D is used.

d3 rat point random d3 rat point on sphere(int R)

returns a point with integer coordinates close to the
sphere with radius R centered at the origin.

void random d3 rat points on sphere(int m, int R, list<d3 rat point>& L)

returns a list L of n points

d3 rat point random d3 rat point on unit sphere(int D = 16383)

returns a point close to the unit sphere whose coordi-
nates are random rationals of the form i/D where i is a
random integer in the range [0 .. D]. The default value
of D is 214 − 1. In 2d this function is equivalent to
point on unit circle.

void random d3 rat points on unit sphere(int m, int D, list<d3 rat point>& L)

returns a list L of n points

void random d3 rat points on unit sphere(int m, list<d3 rat point>& L)

returns a list L of n points The default value of
D is used.

d3 rat point random d3 rat point on paraboloid(int maxc)

returns a point (x, y, z) with x and y random integers
in the range [−maxc ..maxc], and z = 0.004 ∗ (x ∗ x +
y ∗ y)− 1.25 ∗maxc. The function does not make sense
in 2d.

void random d3 rat points on paraboloid(int n, int maxc, list<d3 rat point>& L)

returns a list L of n points

void lattice d3 rat points(int n, int maxc, list<d3 rat point>& L)

returns a list L of approximately n points. The points
have integer coordinates id/maxc for an appropriately
chosen d and −maxc/d ≤ i ≤ maxc/d.

504CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

void random d3 rat points on segment(int n, int maxc, list<d3 rat point>& L)

generates n points on the diagonal whose coordinates
are random integer in the range from −maxc to maxc.

14.9. STRAIGHT RATIONAL RAYS IN 3D-SPACE (D3 RAT RAY) 505

14.9 Straight Rational Rays in 3D-Space (d3 rat ray

)

1. Definition

An instance r of the data type d3 rat ray is a directed straight ray defined by two points

with rational coordinates in three-dimensional space.

#include < LEDA/geo/d3 rat ray.h >

2. Creation

d3 rat ray r(const d3 rat point& p1 , const d3 rat point& p2);

introduces a variable r of type d3 rat ray . r is initialized to the ray
starting at point p1 and going through p2 .

d3 rat ray r(const d3 rat segment& s);

introduces a variable r of type d3 rat ray . r is initialized to
ray(s.source(), s.target()) .

3. Operations

d3 rat point r.source() returns the source of r.

d3 rat point r.point1() returns the source of r.

d3 rat point r.point2() returns a point on r different from the source.

d3 rat segment r.seg() returns a segment on r.

bool r.contains(const d3 rat point& p)

returns true if p lies on r.

bool r.contains(const d3 rat segment& s)

returns true if s lies on r.

bool r.intersection(const d3 rat segment& s, d3 rat point& inter)

if s and r intersect in a single point, true is returned
and the point of intersection is assigned to inter. Oth-
erwise false is returned.

bool r.intersection(const d3 rat ray& r, d3 rat point& inter)

if r and r intersect in a single point, true is returned
and the point of intersection is assigned to inter. Oth-
erwise false is returned.

506CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

bool r.project xy(rat ray& m)

if the projection of r into the xy plane is not a point,
the function returns true and assignes the projection
to m. Otherwise false is returned.

bool r.project xz(rat ray& m)

if the projection of r into the xz plane is not a point,
the function returns true and assignes the projection
to m. Otherwise false is returned.

bool r.project yz(rat ray& m)

if the projection of r into the yz plane is not a point,
the function returns true and assignes the projection
to m. Otherwise false is returned.

bool r.project(const d3 rat point& p, const d3 rat point& q,
const d3 rat point& v, d3 rat ray& m)

if the projection of r into the plane through (p, q, v)
is not a point, the function returns true and assignes
the projection to m. Otherwise false is returned.

d3 rat ray r.reverse() returns a rat ray starting at r.source() with direction
-r.to vector() .

d3 rat ray r.translate(const rat vector& v)

returns r translated by vector v. Precond. : v.dim()
= 3 .

d3 rat ray r.translate(rational dx , rational dy , rational dz)

returns r translated by vector (dx , dy , dz).

d3 rat ray r + const rat vector& v

returns r translated by vector v.

d3 rat ray r − const rat vector& v

returns r translated by vector −v.

d3 rat ray r.reflect(const d3 rat point& p, const d3 rat point& q,
const d3 rat point& v)

returns r reflected across the plane through (p, q, v).

d3 rat ray r.reflect(const d3 rat point& p)

returns r reflected across point p.

rat vector r.to vector() returns point2 ()− point1 ().

14.10. RATIONAL LINES IN 3D-SPACE (D3 RAT LINE) 507

14.10 Rational Lines in 3D-Space (d3 rat line)

1. Definition

An instance l of the data type d3 rat line is a directed straight line in three-dimensional

space.

#include < LEDA/geo/d3 rat line.h >

2. Creation

d3 rat line l(const d3 rat point& p1 , const d3 rat point& p2);

introduces a variable l of type d3 rat line. l is initialized to the line
through points p1 , p2 .

d3 rat line l(const d3 rat segment& s);

introduces a variable l of type d3 rat line. l is initialized to the line
supporting segment s.

d3 rat line l; introduces a variable l of type d3 rat line. l is initialized to the line
through points (0, 0, 0, 1) and (1, 0, 0, 1).

3. Operations

d3 line l.to float() returns a floating point approximation of l.

bool l.contains(const d3 rat point& p)

returns true if p lies on l.

d3 rat point l.point1() returns a point on l.

d3 rat point l.point2() returns a second point on l.

d3 rat segment l.seg() returns a segment on l.

bool l.project xy(rat line& m)

if the projection of l into the xy plane is not a point,
the function returns true and assignes the projection
to m. Otherwise false is returned.

bool l.project xz(rat line& m)

if the projection of l into the xz plane is not a point,
the function returns true and assignes the projection
to m. Otherwise false is returned.

508CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

bool l.project yz(rat line& m)

if the projection of l into the yz plane is not a point,
the function returns true and assignes the projection
to m. Otherwise false is returned.

bool l.project(const d3 rat point& p, const d3 rat point& q,
const d3 rat point& v, d3 rat line& m)

if the projection of l into the plane through (p, q, v)
is not a point, the function returns true and assignes
the projection to m. Otherwise false is returned.

d3 rat line l.translate(integer dx , integer dy , integer dz , integer dw)

returns l translated by vector
(dx/dw , dy/dw , dz/dw).

d3 rat line l.translate(rat vector v)

returns l translated by v.
Precond. : v.dim() = 3.

d3 rat line l + const rat vector& v

returns l translated by vector v.

d3 rat line l − const rat vector& v

returns l translated by vector −v.

d3 rat line l.reflect(const d3 rat point& p, const d3 rat point& q,
const d3 rat point& v)

returns l reflected across the plane through (p, q, v).

d3 rat line l.reflect(const d3 rat point& p)

returns l reflected across point p.

d3 rat line l.reverse() returns l reversed.

rat vector l.to vector() returns point2 ()− point1 ().

bool l.intersection(const d3 rat segment& s)

decides, whether l and s intersect in a single point.

bool l.intersection(const d3 rat segment& s, d3 rat point& p)

decides, whether l and s intersect in a single point. If
so, the point of intersection is assigned to p.

bool l.intersection(const d3 rat line& m)

decides, whether l and m intersect in a single point.

14.10. RATIONAL LINES IN 3D-SPACE (D3 RAT LINE) 509

bool l.intersection(const d3 rat line& m, d3 rat point& p)

decides, whether l and m intersect in a single point.
If so, the point of intersection is assigned to p.

rational l.sqr dist(const d3 rat point& p)

returns the square of the distance between l and p.

510CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

14.11 Rational Segments in 3D-Space (

d3 rat segment)

1. Definition

An instance s of the data type d3 rat segment is a directed straight line segment in

three-dimensional space, i.e., a line segment connecting two rational points p, q ∈ R3. p is

called the source or start point and q is called the target or end point of s. A segment is

called trivial if its source is equal to its target. If s is not trivial, we use line(s) to denote

the straight line containing s.

#include < LEDA/geo/d3 rat segment.h >

2. Creation

d3 rat segment s(const d3 rat point& p1 , const d3 rat point& p2);

introduces a variable S of type d3 rat segment . S is initialized to
the segment through points p1 , p2 .

d3 rat segment s; introduces a variable S of type d3 rat segment . S is initialized to
the segment through points (0, 0, 0, 1) and (1, 0, 0, 1).

3. Operations

d3 segment s.to float() returns a floating point approximation of s.

bool s.contains(const d3 rat point& p)

decides whether s contains p.

d3 rat point s.source() returns the source point of segment s.

d3 rat point s.target() returns the target point of segment s.

rational s.xcoord1() returns the x-coordinate of s.source().

rational s.xcoord2() returns the x-coordinate of s.target().

rational s.ycoord1() returns the y-coordinate of s.source().

rational s.ycoord2() returns the y-coordinate of s.target().

rational s.zcoord1() returns the z-coordinate of s.source().

rational s.zcoord2() returns the z-coordinate of s.target().

rational s.dx() returns xcoord2 ()− xcoord1 ().

14.11. RATIONAL SEGMENTS IN 3D-SPACE (D3 RAT SEGMENT) 511

rational s.dy() returns ycoord2 ()− ycoord1 ().

rational s.dz() returns zcoord2 ()− zcoord1 ().

rat segment s.project xy() returns the projection into the xy plane.

rat segment s.project xz() returns the projection into the xz plane.

rat segment s.project yz() returns the projection into the yz plane.

d3 rat segment s.project(const d3 rat point& p, const d3 rat point& q,
const d3 rat point& v)

returns s projected into the plane through (p, q, v).

d3 rat segment s.reflect(const d3 rat point& p, const d3 rat point& q,
const d3 rat point& v)

returns s reflected across the plane through (p, q, v).

d3 rat segment s.reflect(const d3 rat point& p)

returns s reflected across point p.

d3 rat segment s.reverse() returns s reversed.

rat vector s.to vector() returns S.target()− S.source().

bool s.intersection(const d3 rat segment& t)

decides, whether s and t intersect in a single point.

bool s.intersection(const d3 rat segment& t, d3 rat point& p)

decides, whether s and t intersect. If they intersect
in a single point, the point is assigned to p

bool s.intersection of lines(const d3 rat segment& t, d3 rat point& p)

If line(s) and line(t) intersect in a single point this
point is assigned to p and the result is true, otherwise
the result is false.

bool s.is trivial() returns true if s is trivial.

rational s.sqr length() returns the square of the length of s.

d3 rat segment s.translate(const rat vector& v)

returns s translated by vector v.
Precond. : v.dim() = 3.

d3 rat segment s.translate(rational dx , rational dy , rational dz)

returns s translated by vector (dx , dy , dz).

d3 rat segment s.translate(integer dx , integer dy , integer dz , integer dw)

returns s translated by vector (dx/dw , dy/dw , dz/w).

512CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

d3 rat segment s+ const rat vector& v

returns s translated by vector v.

d3 rat segment s− const rat vector& v

returns s translated by vector −v.

14.12. RATIONAL PLANES (D3 RAT PLANE) 513

14.12 Rational Planes (d3 rat plane)

1. Definition

An instance P of the data type d3 rat plane is an oriented rational plane in the three-

dimensional space R3. It can be defined by a tripel (a,b,c) of non-collinear rational points

or a single rational point a and a normal vector v.

#include < LEDA/geo/d3 rat plane.h >

2. Creation

d3 rat plane p; introduces a variable p of type d3 rat plane initialized to the trivial
plane.

d3 rat plane p(const d3 rat point& a, const d3 rat point& b, const d3 rat point& c);

introduces a variable p of type d3 rat plane initialized to the plane
through (a, b, c).
Precondition: a, b, and c are not collinear.

d3 rat plane p(const d3 rat point& a, const rat vector& v);

introduces a variable p of type d3 rat plane initialized to the plane
that contains a with normal vector v.
Precondition: v.dim() = 3 and v.length() > 0.

d3 rat plane p(const d3 rat point& a, const d3 rat point& b);

introduces a variable p of type d3 rat plane initialized to the plane
that contains a with normal vector b− a.

3. Operations

d3 rat point p.point1() returns the first point of p.

d3 rat point p.point2() returns the second point of p.

d3 rat point p.point3() returns the third point of p.

integer p.A() returns the A parameter of the plane equation.

integer p.B() returns the B parameter of the plane equation.

integer p.C() returns the C parameter of the plane equation.

integer p.D() returns the D parameter of the plane equation.

rat vector p.normal() returns a normal vector of p.

514CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

d3 plane p.to float() returns a floating point approximation of p.

rational p.sqr dist(const d3 rat point& q)

returns the square of the Euclidean distance between p
and q.

rat vector p.normal project(const d3 rat point& q)

returns the vector pointing from q to its projection on
p along the normal direction.

int p.intersection(const d3 rat point p1 , const d3 rat point p2 ,
d3 rat point& q)

if the line l through p1 and p2 intersects p in a single
point this point is assigned to q and the result is 1,
if l and p do not intersect the result is 0, and if l is
contained in p the result is 2.

int p.intersection(const d3 rat plane& Q, d3 rat point& i1 , d3 rat point& i2)

if p and plane Q intersect in a line L then (i1, i2) are
assigned two different points on L and the result is 1,
if p and Q do not intersect the result is 0, and if p = Q
the result is 2.

d3 rat plane p.translate(const rational& dx , const rational& dy , const rational& dz)

returns p translated by vector (dx, dy, dz).

d3 rat plane p.translate(integer dx , integer dy , integer dz , integer dw)

returns p translated by vector (dx/dw, dy/dw, dz/dw).

d3 rat plane p.translate(const rat vector& v)

returns p+v, i.e., p translated by vector v.
Precondition: v.dim() = 3.

d3 rat plane p+ const rat vector& v

returns p translated by vector v.

d3 rat plane p.reflect(const d3 rat plane& Q)

returns p reflected across plane Q.

d3 rat plane p.reflect(const d3 rat point& q)

returns p reflected across point q.

d3 rat point p.reflect point(const d3 rat point& q)

returns q reflected across plane p.

int p.side of(const d3 rat point& q)

computes the side of p on which q lies.

14.12. RATIONAL PLANES (D3 RAT PLANE) 515

bool p.contains(const d3 rat point& q)

returns true if point q lies on plane p, i.e.,
(p.side of (q) == 0), and false otherwise .

bool p.parallel(const d3 rat plane& Q)

returns true if planes p and Q are parallel, and false
otherwise.

ostream& ostream& O ≪ const d3 rat plane& p

writes p to output stream O.

istream& istream& I ≫ d3 rat plane& p

reads p from input stream I.

Non-Member Functions

int orientation(const d3 rat plane& p, const d3 rat point& q)

computes the orientation of p.sideof (q).

516CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

14.13 Rational Spheres (d3 rat sphere)

1. Definition

An instance of the data type d3 rat sphere is an oriented sphere in 3d space. The sphere

is defined by four points p1 , p2 , p3 , p4 with rational coordinates (d3 rat points).

#include < LEDA/geo/d3 rat sphere.h >

2. Creation

d3 rat sphere S(const d3 rat point& p1 , const d3 rat point& p2 ,
const d3 rat point& p3 , const d3 rat point& p4);

introduces a variable S of type d3 rat sphere. S is initialized to the
sphere through points p1 , p2 , p3 , p4 .

3. Operations

d3 sphere S.to float() returns a floating point approximation of S.

bool S.contains(const d3 rat point& p)

returns true, if p is on the sphere, false otherwise.

bool S.inside(const d3 rat point& p)

returns true, if p is inside the sphere, false otherwise.

bool S.outside(const d3 rat point& p)

returns true, if p is outside the sphere, false otherwise.

d3 rat point S.point1() returns p1 .

d3 rat point S.point2() returns p2 .

d3 rat point S.point3() returns p3 .

d3 rat point S.point4() returns p4 .

bool S.is degenerate() returns true, if the 4 defining points are coplanar.

d3 rat point S.center() returns the center of the sphere.

rational S.sqr radius() returns the square of the radius.

d3 rat sphere S.translate(const rat vector& v)

translates the sphere by vector v and returns a new
d3 rat sphere.

14.13. RATIONAL SPHERES (D3 RAT SPHERE) 517

d3 rat sphere S.translate(const rational& r1 , const rational& r2 , const rational& r3)

translates the sphere by vector (r1,r2,r3) and returns
a new d3 rat sphere.

518CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

14.14 Rational Simplices (d3 rat simplex)

1. Definition

An instance of the data type d3 rat simplex is a simplex in 3d space. The simplex is

defined by four points p1 , p2 , p3 , p4 with rational coordinates (d3 rat points). We call

the simplex degenerate, if the four defining points are coplanar.

#include < LEDA/geo/d3 rat simplex.h >

2. Types

d3 rat simplex ::coord type the coordinate type (rational).

d3 rat simplex ::point type the point type (d3 rat point).

3. Creation

d3 rat simplex S(const d3 rat point& a, const d3 rat point& b, const d3 rat point& c,
const d3 rat point& d);

creates the simplex (a, b, c, d).

d3 rat simplex S; creates the simplex ((0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)).

4. Operations

d3 simplex S.to d3 simplex() returns a floating point approximation of S.

d3 rat point S.point1() returns p1 .

d3 rat point S.point2() returns p2 .

d3 rat point S.point3() returns p3 .

d3 rat point S.point4() returns p4 .

d3 rat point S[int i] returns pi . Precondition: i > 0 and i < 5.

int S.index(const d3 rat point& p)

returns 1 if p== p1 , 2 if p== p2 , 3 if p== p3 , 4 if
p== p4 , 0 otherwise.

bool S.is degenerate() returns true if S is degenerate and false otherwise.

d3 rat sphere S.circumscribing sphere()

returns a d3 rat sphere through (p1 , p2 , p3 , p4) (pre-
condition: the d3 rat simplex is not degenerate).

14.14. RATIONAL SIMPLICES (D3 RAT SIMPLEX) 519

bool S.in simplex(const d3 rat point& p)

returns true, if p is contained in the simplex.

bool S.insphere(const d3 rat point& p)

returns true, if p lies in the interior of the sphere
through p1 , p2 , p3 , p4 .

rational S.vol() returns the signed volume of the simplex.

d3 rat simplex S.reflect(const d3 rat point& p, const d3 rat point& q,
const d3 rat point& v)

returns S reflected across the plane through (p, q, v).

d3 rat simplex S.reflect(const d3 rat point& p)

returns S reflected across point p.

d3 rat simplex S.translate(const rat vector& v)

returns S translated by vector v.
Precond. : v.dim() = 3.

d3 rat simplex S.translate(rational dx , rational dy , rational dz)

returns S translated by vector (dx , dy , dz).

d3 rat simplex S.translate(integer dx , integer dy , integer dz , integer dw)

returns S translated by vector (dx/dw , dy/dw , dz/w).

d3 rat simplex S + const rat vector& v

returns S translated by vector v.

d3 rat simplex S − const rat vector& v

returns S translated by vector −v.

520CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

14.15 3D Convex Hull Algorithms (d3 hull)

void CONVEX HULL(const list<d3 rat point>& L, GRAPH <d3 rat point , int>& H)

CONVEX HULL takes as argument a list of points and returns the
(planar embedded) surface graph H of the convex hull of L. The
algorithm is based on an incremental space sweep. The running
time is O(n2) in the worst case and O(n log n) for most inputs.

bool CHECK HULL(const GRAPH <d3 rat point , int>& H)

a checker for convex hulls.

void CONVEX HULL(const list<d3 point>& L, GRAPH <d3 point , int>& H)

a floating point version of CONVEX HULL.

bool CHECK HULL(const GRAPH <d3 point , int>& H)

a checker for floating-point convex hulls.

14.16. 3D TRIANGULATION ANDVORONOI DIAGRAMALGORITHMS (D3 DELAUNAY)521

14.16 3D Triangulation and Voronoi Diagram Algo-

rithms (d3 delaunay)

void D3 TRIANG(const list<d3 rat point>& L, GRAPH <d3 rat point , int>& G)

computes a triangulation G of the points in L.

void D3 DELAUNAY(const list<d3 rat point>& L, GRAPH <d3 rat point , int>& G)

computes a delaunay triangulation G of the points in L.

void D3 VORONOI(const list<d3 rat point>& L0 , GRAPH <d3 rat sphere, int>& G)

computes the voronoi diagramm G of the points in L.

522CHAPTER 14. BASIC DATA TYPES FOR THREE-DIMENSIONAL GEOMETRY

Chapter 15

Graphics

This section describes the data types color, window, panel, and menu.

15.1 Colors (color)

1. Definition

The data type color is the type of all colors available for drawing operations in windows

(cf. 15.2). Each color is defined by a triple of integers (r, g, b) with 0 ≤ r, g, b ≤ 255,

the so-called rgb-value of the color. The number of available colors is restricted and

depends on the underlying hardware. Colors can be created from rgb-values, from

names in a color data base (X11), or from the 16 integer constants (enumeration in

<LEDA/graphics/x window.h>) black, white, red, green, blue, yellow, violet, orange;

cyan, brown, pink, green2, blue2, grey1, grey2, grey3.

#include < LEDA/graphics/color.h >

2. Creation

color col ; creates a color with rgb-value (0, 0, 0) (i.e. black).

color col(int r, int g, int b);

creates a color with rgb-value (r, g, b).

color col(const char ∗ name);

creates a color and initializes it with the rgb-string name.

color col(int val); creates a color and initializes it with a color integer value. In par-
ticular one of the 16 predefined color values constants can be used:
black, white, red, green, blue, yellow, violet, orange, cyan, brown,
pink, green2, blue2, grey1, grey2, or grey3.

523

524 CHAPTER 15. GRAPHICS

3. Operations

void col.set rgb(int r, int g, int b) sets the red, blue, and green components of col
to r, g, b.

void col.get rgb(int& r, int& g, int& b)

assigns the red, green, and blue components of
col to r, g, b.

void col.set red(int x) sets the red component of col to x.

void col.set green(int x) sets the green component of col to x.

void col.set blue(int x) sets the blue component of col to x.

string col.get string() returns a string representation of col .

color col.text color() returns a suitable color (black or white) for
writing text on a background of color col .

15.2. WINDOWS (WINDOW) 525

15.2 Windows (window)

1. Definition

The data type window provides an interface for graphical input and output of basic two-

dimensional geometric objects. Application programs using this data type have to be

linked with libW.a and (on UNIX systems) with the X11 base library libX11.a (cf. sec-

tion 1.6):

CC prog.c -lW -lP -lG -lL -lX11 -lm

An instance W of type window is an iso-oriented rectangular window in the two-

dimensional plane. The default representation of W on the screen is a square of maximal

possible edge length positioned in the upper right corner of the display.

In general, a window consists of two rectangular sections, a panel section in the upper

part and a drawing section in the rest of the window. The panel section contains panel

items such as sliders, choice fields, string items and buttons. They have to be created

before the window is opened by special panel operations described in section 15.2.

The drawing section can be used for the output of geometric objects such as points, lines,

segments, arrows, circles, polygons, graph, . . . and for the input of all these objects using

the mouse input device. All drawing and input operations in the drawing section use a

coordinate system that is defined by three parameters of type double: xmin, the minimal

x-coordinate, xmax, the maximal x-coordinate, and ymin, the minimal y-coordinate. The

two parameters xmin and xmax define the scaling factor scaling as w/(xmax− xmin),

where w is the width of the drawing section in pixels. The maximal y-coordinate ymax

of the drawing section is equal to ymin+ h · scaling and depends on the actual shape of

the window on the screen. Here, h is the height of the drawing section in pixels.

A list of all window parameters:

1. The foreground color parameter (default black) defines the default color to be

used in all drawing operations. There are 18 predefined colors (enumeration in

<LEDA/graphics/x window.h>): black, white, red, green, blue, yellow, violet,

orange, cyan, brown, pink, green2, blue2, grey1, grey2, grey3 ivory, and invisible.

Note that all drawing operations have an optional color argument that can be used

to override the default foreground color. The color invisible can be used for invisible

(transparent) objects.

2. The background color parameter (default white) defines the default background color

(e.g. used by W .clear()).

3. The text font parameter defines the name of the font to be used in all text drawing

operations.

526 CHAPTER 15. GRAPHICS

4. Minimal and maximal coordinates of the drawing area xmin (default 0), xmax

(default 100), ymin (default 0).

5. The grid dist parameter (default 0) defines the width of the grid that is used in the

drawing area. A grid width of 0 indicates that no grid is to be used.

6. The frame label parameter defines a string to be displayed in the frame of the

window.

7. The show coordinates flag (default true) determines whether the current coordinates

of the mouse cursor in the drawing section are displayed in the upper right corner.

8. The flush output flag (default true) determines whether the graphics output stream

is flushed after each draw action.

9. The line width parameter (default value 1 pixel) defines the width of all kinds of

lines (segments, arrows, edges, circles, polygons).

10. The line style parameter defines the style of lines. Possible line styles are solid

(default), dashed , and dotted .

11. The point style parameter defines the style points are drawn by the draw point

operation. Possible point styles are pixel point , cross point (default), plus point ,

circle point , disc point , rect point , and box point .

12. The node width parameter (default value 8 pixels) defines the diameter of nodes

created by the draw node and draw filled node operations.

13. The text mode parameter defines how text is inserted into the window. Possible

values are transparent (default) and opaque.

14. The show orientation parameter defines, whether or not the direction or orientation

of segments, lines, rays, triangles, polygons and gen polygons will be shown (default

false.)

15. The drawing mode parameter defines the logical operation that is used for set-

ting pixels in all drawing operations. Possible values are src mode (default) and

xor mode. In src mode pixels are set to the respective color value, in xor mode the

value is bitwise added to the current pixel value.

16. The redraw function parameter is a pointer to a function of type void (∗F)(window∗).
It is called with a pointer to the corresponding window as argument to redraw (parts

of) the window whenever a redrawing is necessary, e.g., if the shape of the window

is changed or previously hidden parts of it become visible.

17. The window delete handler parameter is a pointer to a function of type void

(∗F)(window∗). It is called with a pointer to the corresponding window as ar-

gument when the window is to be closed by the window manager (e.g. by pressing

the ×-button on Windows-NT systems). The default window delete handler closes

the window and terminates the program.

15.2. WINDOWS (WINDOW) 527

18. The buttons per line parameter (default ∞) defines the maximal number of buttons

in one line of the panel section.

19. The precision parameter (default 16) defines the precision that is used for represent-

ing window coordinates, more precisely, all x and y coordinates generated by window

input operations are doubles whose mantissa are truncated after precision− 1 bits

after the binary point.

In addition to call-back (handler) functions LEDA windows now also support the usage

of function objects. Function object classes have to be derived from the window handler

base class.

class window_handler {

...

virtual void operator()() { }

// parameter access functions

double get_double(int nr) const;

int get_int() const;

window* get_window_ptr() const;

char* get_char_ptr() const;

};

Derived classes have to implement the handling function in the definition of the operator()

method. The different get methods can be called to retrieve parameters.

If both, a handler function and an object for the same action is supplied the object has

higher priority.

#include < LEDA/graphics/window.h >

2. Creation

window W ; creates a squared window with maximal possible edge length (min-
imum of width and height of the display).

window W (const char ∗ label);
creates a maximal squared window with frame label label.

window W (int w, int h);

creates a window W of physical size w pixels × h pixels .

window W (int w, int h, const char ∗ label);
creates a window W of physical size w pixels × h pixels and frame
label label.

528 CHAPTER 15. GRAPHICS

All four variants initialize the coordinates of W to xmin = 0, xmax = 100 and ymin = 0.

The init operation (see below) can later be used to change the window coordinates and

scaling. Please note, that a window is not displayed before the function display is called

for it.

3. Operations

3.1 Initialization

void W.init(double x0, double x1, double y0)

sets xmin to x0, xmax to x1, and ymin to y0,
the scaling factor scaling to w/(xmax−xmin),
and ymax to ymin+ h/scaling. Here w and h
are the width and height of the drawing section
in pixels.

void W.init(double x0, double x1, double y0, double y1)

adjusts the window such that the points (x0, y0)
and (x1, y1) are contained in the drawing sec-
tion.

double W.set grid dist(double d)

sets the grid distance of W to d.

grid style W.set grid style(grid style s)

sets the grid style of W to s.

int W.set grid mode(int d) sets the grid distance of W to d pixels.

int W.set precision(int prec)

sets the precision of W to prec.

void W.init(double x0, double x1, double y0, int d, bool erase = true)

same as W .init(x0, x1, y0) followed by
W .set grid mode(d). If the optional flag
erase is set to false the window will not be
erased.

void W.display() opens W and displays it at the center of the
screen. Note that W .display() has to be called
before all drawing operations and that all oper-
ations adding panel items to W (cf. 15.2) have
to be called before the first call of W .display().

15.2. WINDOWS (WINDOW) 529

void W.display(int x, int y) opens W and displays it with its left upper cor-
ner at position (x, y). Special values for x and
y are window :: min, window :: center, and
window :: max for positioning W at the mini-
mal or maximal x or y coordinate or centering
it in the x or y dimension.

void W.display(window& W0, int x, int y)

opens W and displays it with its left upper cor-
ner at position (x, y) relative to the upper left
corner of window W0.

W.open. . . can be used as a synonym for W.display. . . Note, that the open operation for

panels (cf. 15.3) is defined slightly different.

void W.close() closes W by removing it from the display.

void W.clear() clears W using the current background color or
pixmap, i.e., if W has a background pixmap
defined it is tiled with P such that the upper
left corner is the tiling origin. Otherwise, it is
filled with background color of W .

void W.clear(double x0, double y0, double x1, double y1)

only clears the rectangular area (x0, y0, x1, y1)
of window W using the current background
color or pixmap.

void W.clear(color c) clears W with color c and sets the background
color of W to c.

void W.clear(double xorig , double yorig)

clears W . If a background pixmap is defined
the point (xorig, yorig) is used as the origin of
tiling.

void W.redraw() repaints the drawing area if W has a redraw
function.

3.2 Setting parameters

color W.set color(color c) sets the foreground color parameter to c and
returns its previous value.

color W.set fill color(color c) sets the fill color parameter (used by ≪ opera-
tors) to c and returns its previous value.

color W.set bg color(color c) sets the background color parameter to c and
returns its previous value.

530 CHAPTER 15. GRAPHICS

char∗ W.set bg pixmap(char ∗ pr)
sets the background pixmap to pr and returns
its previous value.

int W.set line width(int pix)

sets the line width parameter to pix pixels and
returns its previous value.

line style W.set line style(line style s)

sets the line style parameter to s and returns its
previous value.

int W.set node width(int pix)

sets the node width parameter to pix pixels and
returns its previous value.

text mode W.set text mode(text mode m)

sets the text mode parameter to m and returns
its previous value.

drawing mode W.set mode(drawing mode m)

sets the drawing mode parameter to m and re-
turns its previous value.

int W.set cursor(int cursor id = −1)

sets the mouse cursor of W to cursor id . Here
cursor id must be one of the constants prede-
fined in <X11/cursorfont.h> or −1 for the sys-
tem default cursor. Returns the previous cur-
sor.

void W.set show coordinates(bool b)

sets the show coordinates flag to b.

bool W.set show orientation(bool orient)

sets the show orientation parameter to orient.

void W.set frame label(string s)

makes s the window frame label.

void W.set icon label(string s)

makes s the window icon label.

void W.reset frame label() restores the standard LEDA frame label.

void W.set window delete handler(void (∗F)(window∗))
sets the window delete handler function param-
eter to F .

15.2. WINDOWS (WINDOW) 531

void W.set window delete object(const window handler& obj)

sets the window delete object parameter to obj.

void W.set show coord handler(void (∗F)(window∗, double, double))
sets the show coordinate handler function pa-
rameter to F .

void W.set show coord object(const window handler& obj)

sets the show coordinate object parameter to
obj.

void W.set redraw(void (∗F)(window∗))
sets the redraw function parameter to F .

void W.set redraw(const window handler& obj)

sets the redraw object parameter to obj.

void W.set redraw(void (∗F)(window∗, double, double, double, double) = 0)

sets the redraw function parameter to F .

void W.set redraw2(const window handler& obj)

sets the redraw object parameter to obj.

void W.set bg redraw(void (∗F)(window∗, double, double, double,
double) = 0)

sets the background redraw function parameter
to F .

void W.set bg redraw(const window handler& obj)

sets the background redraw object parameter to
obj.

void W.start timer(int msec, void (∗F)(window∗))
starts a timer that runs F every msec millisec-
onds with a pointer to W .

void W.start timer(int msec, const window handler& obj)

starts a timer that runs the operator() of obj
every msec milliseconds.

void W.stop timer() stops the timer.

void W.set flush(bool b) sets the flush parameter to b.

void W.set icon pixrect(char ∗ pr)
makes pr the new icon of W .

532 CHAPTER 15. GRAPHICS

void∗ W.set client data(void ∗ p, int i = 0)

sets the i-th client data pointer of W to p and
returns its previous value. Precondition: i < 16.

3.3 Reading parameters

int W.get line width() returns the current line width.

line style W.get line style() returns the current line style.

int W.get node width() returns the current node width.

text mode W.get text mode() returns the current text mode.

drawing mode W.get mode() returns the current drawing mode.

int W.get cursor() returns the id of the current cursor, i.e, one of
the constants predefined in ¡X11/cursorfont.h¿
or −1 for the default cursor.

double W.xmin() returns the minimal x-coordinate of the drawing
area of W .

double W.ymin() returns the minimal y-coordinate of the drawing
area of W .

double W.xmax() returns the maximal x-coordinate of the draw-
ing area of W .

double W.ymax() returns the maximal y-coordinate of the draw-
ing area of W .

double W.scale() returns the scaling factor of the drawing area of
W , i.e. the number of pixels of a unit length
line segment.

double W.get grid dist() returns the width of the current grid (zero if no
grid is used).

grid style W.get grid style() returns the current grid style.

int W.get grid mode() returns the width of the current grid in pixels
(zero if no grid is used).

bool W.get show orientation()

returns the show orientation parameter.

void∗ W.get client data(int i = 0)

returns the i-th client data pointer of ofW . Pre-
condition: i < 16.

15.2. WINDOWS (WINDOW) 533

GraphWin∗ W.get graphwin() returns a pointer to the GraphWin (see 15.6)
that uses W as its display window or NULL if
W is not used by any GraphWin.

GeoWinTypeName∗ W.get geowin() returns a pointer to the GeoWin (see Section
15.8) that uses W as its display window or
NULL if W is not used by any GeoWin.

int W.width() returns the width of W in pixels.

int W.height() returns the height of W in pixels.

int W.menu bar height() returns the height of the menu bar of W
in pixels and 0 if W has no menu bar (see
W.make menu bar()).

int W.xpos() returns the x-coordinate of the upper left corner
of the frame of W .

int W.ypos() returns the y-coordinate of the upper left corner
of the frame of W .

int W.get state() returns the state of W .

void W.set state(int stat) sets the state of W to stat .

bool W.contains(const point& p)

returns true if p lies in the drawing area.

3.4 Drawing Operations

All drawing operations have an optional color argument at the end of the parameter list.

If this argument is omitted the current foreground color (cf. section 15.2) of W is used.

3.4.1 Drawing points

void W.draw point(double x, double y, color c = window :: fgcol)

draws the point (x, y) (a cross of two short segments).

void W.draw point(const point& p, color c = window :: fgcol)

draws point p.

void W.draw pixel(double x, double y, color c = window :: fgcol)

sets the color of the pixel at position (x, y) to c.

void W.draw pixel(const point& p, color c = window :: fgcol)

sets the color of the pixel at position p to c.

void W.draw pixels(const list<point>& L, color c = window :: fgcol)

sets the color of all pixels in L to c.

534 CHAPTER 15. GRAPHICS

void W.draw pixels(int n, double ∗ xcoord , double ∗ ycoord , color c = window :: fgcol)

draws all pixels (xcoord[i], ycoord[i]) for 0 ≤ i ≤ n− 1.

3.4.2 Drawing line segments

void W.draw segment(double x1, double y1, double x2, double y2,
color c = window :: fgcol)

draws a line segment from (x1, y1) to (x2, y2).

void W.draw segment(const point& p, const point& q, color c = window :: fgcol)

draws a line segment from point p to point q.

void W.draw segment(const segment& s, color c = window :: fgcol)

draws line segment s.

void W.draw segment(point p, point q, line l, color c = window :: fgcol)

draws the part of the line l between p and q. This version
of draw segment should be used if p or q may lie far outside
W . Precondition: p and q lie on l or at least close to l.

void W.draw segments(const list<segment>& L, color c = window :: fgcol)

draws all segments in L.

3.4.3 Drawing lines

void W.draw line(double x1, double y1, double x2, double y2, color c = window :: fgcol)

draws a straight line passing through points (x1, y1) and
(x2, y2).

void W.draw line(const point& p, const point& q, color c = window :: fgcol)

draws a straight line passing through points p and q.

void W.draw line(const segment& s, color c = window :: fgcol)

draws the line supporting segment s.

void W.draw line(const line& l, color c = window :: fgcol)

draws line l.

void W.draw hline(double y, color c = window :: fgcol)

draws a horizontal line with y-coordinate y.

void W.draw vline(double x, color c = window :: fgcol)

draws a vertical line with x-coordinate x.

3.4.4 Drawing Rays

void W.draw ray(double x1, double y1, double x2, double y2, color c = window :: fgcol)

draws a ray starting in (x1, y1) and passing through
(x2, y2).

15.2. WINDOWS (WINDOW) 535

void W.draw ray(const point& p, const point& q, color c = window :: fgcol)

draws a ray starting in p and passing through q.

void W.draw ray(const segment& s, color c = window :: fgcol)

draws a ray starting in s.source() containing s.

void W.draw ray(const ray& r, color c = window :: fgcol)

draws ray r.

void W.draw ray(point p, point q, line l, color c = window :: fgcol)

draws the part of the line l on the ray with source p and
passing through q. This version of draw ray should be used
if p may lie far outside W . Precondition: p and q lie on l
or at least close to l.

3.4.5 Drawing Arcs and Curves

void W.draw arc(const point& p, const point& q, const point& r,
color c = window :: fgcol)

draws a circular arc starting in p passing through q and
ending in r.

void W.draw bezier(const list<point>& C, int n, color c = window :: fgcol)

draws the bezier curve with control polygon C by a poly-
line with n points.

void W.draw spline(const list<point>& L, int n, color c = window :: fgcol)

draws a spline curve through the points of L. Each seg-
ment is approximated by a polyline with m points.

void W.draw closed spline(const list<point>& L, int n, color c = window :: fgcol)

draws a closed spline through the points of L.

void W.draw spline(const polygon& P, int n, color c = window :: fgcol)

draws a closed spline through the vertices of P .

3.4.6 Drawing arrows

void W.draw arrow(double x1, double y1, double x2, double y2,
color c = window :: fgcol)

draws an arrow pointing from (x1, y1) to (x2, y2).

void W.draw arrow(const point& p, const point& q, color c = window :: fgcol)

draws an arrow pointing from point p to point q.

void W.draw arrow(const segment& s, color = window :: fgcol)

draws an arrow pointing from s.start() to s.end().

536 CHAPTER 15. GRAPHICS

void W.draw polyline arrow(const list<point>& lp, color c = window :: fgcol)

draws a polyline arrow with vertex sequence lp.

void W.draw arc arrow(const point& p, const point& q, const point& r,
color c = window :: fgcol)

draws a circular arc arrow starting in p passing through q
and ending in r.

void W.draw bezier arrow(const list<point>& C, int n, color c = window :: fgcol)

draws the bezier curve with control polygon C by a poly-
line with n points, the last segment is drawn as an arrow.

void W.draw spline arrow(const list<point>& L, int n, color c = window :: fgcol)

draws a spline curve through the points of L. Each seg-
ment is approximated by a polyline with n points. The
last segment is drawn as an arrow.

point W.draw arrow head(const point& p, double dir , color c = window :: fgcol)

draws an arrow head at position p pointing to direction
dir, where dir is an angle from [0, 2π].

3.4.7 Drawing circles

void W.draw circle(double x, double y, double r, color c = window :: fgcol)

draws the circle with center (x, y) and radius r.

void W.draw circle(const point& p, double r, color c = window :: fgcol)

draws the circle with center p and radius r.

void W.draw circle(const circle& C, color c = window :: fgcol)

draws circle C.

void W.draw ellipse(double x, double y, double r1, double r2, color c = window :: fgcol)

draws the ellipse with center (x, y) and radii r1 and r2.

void W.draw ellipse(const point& p, double r1, double r2, color c = window :: fgcol)

draws the ellipse with center p and radii r1 and r2.

3.4.8 Drawing discs

void W.draw disc(double x, double y, double r, color c = window :: fgcol)

draws a filled circle with center (x, y) and radius r.

void W.draw disc(const point& p, double r, color c = window :: fgcol)

draws a filled circle with center p and radius r.

void W.draw disc(const circle& C, color c = window :: fgcol)

draws filled circle C.

15.2. WINDOWS (WINDOW) 537

void W.draw filled circle(double x, double y, double r, color c = window :: fgcol)

draws a filled circle with center (x, y) and radius r.

void W.draw filled circle(const point& p, double r, color c = window :: fgcol)

draws a filled circle with center p and radius r.

void W.draw filled circle(const circle& C, color c = window :: fgcol)

draws filled circle C.

void W.draw filled ellipse(double x, double y, double r1, double r2,
color c = window :: fgcol)

draws a filled ellipse with center (x, y) and radii r1 and r2.

void W.draw filled ellipse(const point& p, double r1, double r2,
color c = window :: fgcol)

draws a filled ellipse with center p and radii r1 and r2.

3.4.9 Drawing polygons

void W.draw polyline(const list<point>& lp, color c = window :: fgcol)

draws a polyline with vertex sequence lp.

void W.draw polyline(int n, double ∗ xc, double ∗ yc, color c = window :: fgcol)

draws a polyline with vertex sequence
(xc[0], yc[0]), . . . , (xc[n− 1], yc[n− 1]).

void W.draw polygon(const list<point>& lp, color c = window :: fgcol)

draws the polygon with vertex sequence lp.

void W.draw oriented polygon(const list<point>& lp, color c = window :: fgcol)

draws the polygon with vertex sequence lp and indicates
the orientation by an arrow.

void W.draw polygon(const polygon& P, color c = window :: fgcol)

draws polygon P .

void W.draw oriented polygon(const polygon& P, color c = window :: fgcol)

draws polygon P and indicates the orientation by an ar-
row.

void W.draw filled polygon(const list<point>& lp, color c = window :: fgcol)

draws the filled polygon with vertex sequence lp.

void W.draw filled polygon(const polygon& P, color c = window :: fgcol)

draws filled polygon P .

void W.draw polygon(const gen polygon& P, color c = window :: fgcol)

draws polygon P .

538 CHAPTER 15. GRAPHICS

void W.draw oriented polygon(const gen polygon& P, color c = window :: fgcol)

draws polygon P and indicates the orientation by an ar-
row.

void W.draw filled polygon(const gen polygon& P, color c = window :: fgcol)

draws filled polygon P .

void W.draw rectangle(double x0, double y0, double x1, double y1,
color = window :: fgcol)

draws a rectangle with lower left corner (x0, y0) and upper
right corner (x1, y1).
Precondition: x0 < x1 and y0 < y1.

void W.draw rectangle(point p, point q, color = window :: fgcol)

draws a rectangle with lower left corner p and upper right
corner q.
Precondition: p < q.

void W.draw rectangle(const rectangle& R, color = window :: fgcol)

draws rectangle R.

void W.draw box(double x0, double y0, double x1, double y1, color c = window :: fgcol)

draws a filled rectangle with lower left corner (x0, y0) and
upper right corner (x1, y1).
Precondition: x0 < x1 and y0 < y1.

void W.draw filled rectangle(point p, point q, color = window :: fgcol)

draws a filled rectangle with lower left corner p and upper
right corner q.
Precondition: p < q.

void W.draw filled rectangle(const rectangle& R, color = window :: fgcol)

draws rectangle R.

void W.draw box(point p, point q, color c = window :: fgcol)

same as draw filled rectangle(p, q, c).

void W.draw box(const rectangle& R, color c = window :: fgcol)

same as draw filled rectangle(p, q, c).

void W.draw roundrect(double x0, double y0, double x1, double y1, double rndness ,
color col = window :: fgcol)

draws a rectangle (x0, y0, x1, y1) with round corners. The
rndness argument must be a real number in the interval
[0, 1] and defines the “roundness” of the rectangle.

void W.draw roundrect(point p, point q, double rndness , color col = window :: fgcol)

draws a round rectangle with lower left corner p, upper
right corner q, and roundness rndness .

15.2. WINDOWS (WINDOW) 539

void W.draw roundbox(double x0, double y0, double x1, double y1, double rndness ,
color col = window :: fgcol)

draws a filled rectangle (x0, y0, x1, y1) with round corners.
The rndness argument must be a real number in the in-
terval [0, 1] and defined the “roundness” of the rectangle.

void W.draw roundbox(point p, point q, double rndness , color col = window :: fgcol)

draws a round filled rectangle with lower left corner p,
upper right corner q, and roundness rndness .

void W.draw triangle(point a, point b, point c, color = window :: fgcol)

draws triangle (a, b, c).

void W.draw triangle(const triangle& T, color = window :: fgcol)

draws triangle T .

void W.draw filled triangle(point a, point b, point c, color = window :: fgcol)

draws filled triangle (a, b, c).

void W.draw filled triangle(const triangle& T, color = window :: fgcol)

draws filled triangle T .

3.4.10 Drawing functions

void W.plot xy(double x0, double x1, win draw func F, color c = window :: fgcol)

draws the graph of function F in the x-range [x0, x1], i.e.,
all pixels (x, y) with y = F (x) and x0 ≤ x ≤ x1.

void W.plot yx(double y0, double y1, win draw func F, color c = window :: fgcol)

draws the graph of function F in the y-range [y0, y1], i.e.,
all pixels (x, y) with x = F (y) and y0 ≤ y ≤ y1.

3.4.11 Drawing text

void W.draw text(double x, double y, string s, color c = window :: fgcol)

writes string s starting at position (x, y).

void W.draw text(const point& p, string s, color c = window :: fgcol)

writes string s starting at position p.

void W.draw ctext(double x, double y, string s, color c = window :: fgcol)

writes string s centered at position (x, y).

void W.draw ctext(const point& p, string s, color c = window :: fgcol)

writes string s centered at position p.

void W.draw ctext(string s, color c = window :: fgcol)

writes string s centered in window W .

540 CHAPTER 15. GRAPHICS

double W.text box(double x0, double x1, double y, string s, bool draw = true)

formats and writes string s into a box with its left bor-
der at x-coordinate x0, its right border at x1, and its up-
per border at y-coordinate y. Some LaTeX-like format-
ting commands can be used: \bf, \tt, \rm, \n, \c,
\<color>, . . . returns y-coordinate of lower border of box.
If the optional last parameter draw is set to false no draw-
ing takes place and only the lower y-coordinate of the box
is computed.

void W.text box(string s) as above with x0 = W.xmin(), x1 = W.xmax (), and
y = W.ymax ().

void W.message(string s) displays the message s (each call adds a new line).

void W.del message() deletes the text written by all previous message operations.

3.4.12 Drawing nodes

Nodes are represented by circles of diameter node width.

void W.draw node(double x0, double y0, color c = window :: fgcol)

draws a node at position (x0, y0).

void W.draw node(const point& p, color c = window :: fgcol)

draws a node at position p.

void W.draw filled node(double x0, double y0, color c = window ::bgcol)

draws a filled node at position (x0, y0).

void W.draw filled node(const point& p, color c = window ::bgcol)

draws a filled node at position p.

void W.draw text node(double x, double y, string s, color c = window ::bgcol)

draws a node with label s at position (x, y).

void W.draw text node(const point& p, string s, color c = window ::bgcol)

draws a node with label s at position p.

void W.draw int node(double x, double y, int i, color c = window ::bgcol)

draws a node with integer label i at position (x, y).

void W.draw int node(const point& p, int i, color c = window ::bgcol)

draws a node with integer label i at position p.

3.4.13 Drawing edges

Edges are drawn as straigth line segments or arrows with a clearance of node width/2 at

each end.

15.2. WINDOWS (WINDOW) 541

void W.draw edge(double x1, double y1, double x2, double y2, color c = window :: fgcol)

draws an edge from (x1, y1) to (x2, y2).

void W.draw edge(const point& p, const point& q, color c = window :: fgcol)

draws an edge from p to q.

void W.draw edge(const segment& s, color c = window :: fgcol)

draws an edge from s.start() to s.end().

void W.draw edge arrow(double x1, double y1, double x2, double y2,
color c = window :: fgcol)

draws a directed edge from (x1, y1) to (x2, y2).

void W.draw edge arrow(const point& p, const point& q, color c = window :: fgcol)

draws a directed edge from p to q.

void W.draw edge arrow(const segment& s, color c = window :: fgcol)

draws a directed edge from s.start() to s.end().

3.4.14 Bitmaps and Pixrects

char∗ W.create bitmap(int w, int h, unsigned char ∗ bm data)

creates a bitmap (monochrome pixrect) of width w, height
h, from the bits in data.

char∗ W.create pixrect from color(int w, int h, unsigned int clr)

creates a a solid pixrect of width w und height h.

char∗ W.create pixrect from xpm(const char ∗ ∗xpm str)

creates a pixrect from the xpm data string xpm str .

char∗ W.create pixrect(const char ∗ ∗xpm str)

creates a pixrect from the xpm data string xpm str .

char∗ W.create pixrect from xpm(string xpm file)

creates a pixrect from the xpm file xpm file.

char∗ W.create pixrect(string xpm file)

creates a pixrect from the xpm file xpm file.

char∗ W.create pixrect from bits(int w, int h, unsigned char ∗ bm data,
int fg = window :: fgcol , int bg = window ::bgcol)

creates a pixrect of width w, height h, foreground color
fg, and background color bg from bitmap data.

char∗ W.get pixrect(double x1, double y1, double x2, double y2)

creates a color pixrect of width w = x2 − x1, height h =
y2 − y1, and copies all pixels from the rectangular area
(x1, x2, y1, y2) of W into it.

542 CHAPTER 15. GRAPHICS

char∗ W.get window pixrect()

creates a pixrect copy of the current window contents.

int W.get pixrect width(char ∗ pr)
returns the width (number of pixels in a row) of pixrect
pr .

int W.get pixrect height(char ∗ pr)
returns the height (number of pixels in a column) of pixrect
pr .

void W.put pixrect(double x, double y, char ∗ pr)
copies the contents of pixrect pr with lower left corner at
position (x, y) into W .

void W.put pixrect(point p, char ∗ pr)
copies the contents of pixrect pr with lower left corner at
position p into W .

void W.center pixrect(double x, double y, char ∗ pr)
copies the contents of pixrect pr intoW such that its center
lies on position (x, y).

void W.center pixrect(char ∗ pr)
copies the contents of pixrect pr intoW such that its center
lies on the center of W .

void W.put pixrect(char ∗ pr)
copies pixrect pr with lower left corner at position
(W.xmin(),W.ymin()) into W .

void W.set pixrect(char ∗ pr)
copies pixrect pr with upper left corner at position (0, 0)
into W .

void W.fit pixrect(char ∗ pr) scales pixrect pr to fit into W .

void W.put bitmap(double x, double y, char ∗ bm, color c = window :: fgcol)

draws all pixels corresponding to 1-bits in bm with color
c, here the lower left corner of bm corresponds to the pixel
at position (x, y) in W .

void W.put pixrect(double x, double y, char ∗ pr , int x0, int y0, int w, int h)

copies (pixel) rectangle (x0, y0, x0 + w, y0 + h) of pr with
lower left corner at position (x, y) into W .

void W.del bitmap(char ∗ bm)

destroys bitmap bm.

15.2. WINDOWS (WINDOW) 543

void W.del pixrect(char ∗ pr)
destroys pixrect pr.

void W.copy rect(double x0, double y0, double x1, double y1, double x, double y)

copies all pixels of rectangle (x0, y0, x1, y1) into the rectan-
gle (x, y, x+w, y+h), where w = x1−x0 and h = y1− y0.

void W.screenshot(string fname, bool full color = true)

creates a screenshot of the current window. On unix sys-
tems suffix .ps is appended to fname and the output format
is postscript. On windows systems the suffix .wmf is added
and the format is windows metafile. If the flag full color
is set to false colors will be translated into grey scales.

3.4.15 Buffering

void W.start buffering() starts buffering mode for W . If W has no associated buffer
a buffer pixrect buf of the same size as the current drawing
area of W is created. All subsequent drawing operations
draw into buf instead of W until buffering mode is ended
by calling W.stop buffering().

void W.flush buffer() copies the contents of the buffer pixrect into the drawing
area of W .

void W.flush buffer(double dx , double dy)

copies the contents of the buffer pixrect translated by vec-
tor (dx, dy) into the drawing area of W .

void W.flush buffer(double x0, double y0, double x1, double y1)

copies the contents of rectangle (x0, y0, x1, y1) of the buffer
pixrect into the corresponding rectangle of the drawin
area.

void W.flush buffer(double dx , double dy , double x0, double y0, double x1, double y1)

copies the contents of rectangle (x0, y0, x1, y1) of the buffer
pixrect into the corresponding rectangle of the drawin area
translated by vector (dx, dy).

void W.stop buffering() ends buffering mode.

void W.stop buffering(char ∗& prect)

ends buffering mode and returns the current buffer pixrect
in prect .

3.4.16 Clipping

void W.set clip rectangle(double x0, double y0, double x1, double y1)

sets the clipping region of W to rectangle (x0, y0, x1, y1).

544 CHAPTER 15. GRAPHICS

void W.reset clipping() restores the clipping region to the entire drawing area of
W .

3.5 Input

The main input operation for reading positions, mouse clicks, and buttons from a window

W is the operation W .read mouse(). This operation is blocking, i.e., waits for a button to

be pressed which is either a “real” button on the mouse device pressed inside the drawing

area of W or a button in the panel section of W . In both cases, the number of the selected

button is returned. Mouse buttons have pre-defined numbers MOUSE BUTTON(1) for

the left button, MOUSE BUTTON(2) for the middle button, and MOUSE BUTTON(3)

for the right button. The numbers of the panel buttons can be defined by the user. If the

selected button has an associated action function or sub-window this function/window is

executed/opened (cf. 15.2 for details).

There is also a non-blocking version W .get mouse() which returns the constant

NO BUTTON if no button was pressed.

The window data type also provides two more general input operations W .read event()

and W .get event() for reading events. They return the event type (enumeration in

<LEDA/graphics/x window.h>), the value of the event, the position of the event in

the drawing section, and a time stamp of the event.

3.5.1 Read Mouse

int W.read mouse() waits until a mouse button is pressed inside of the drawing
area or until a button of the panel section is selected. In
both cases, the number n of the button is returned which
is one of the predefined constants MOUSE BUTTON(i)
with i ∈ {1, 2, 3} for mouse buttons and a user defined
value (defined when adding the button with W .button())
for panel buttons. If the button has an associated ac-
tion function this function is called with parameter n. If
the button has an associated window M it is opened and
M .read mouse() is returned.

int W.read mouse(double& x, double& y)

If a button is pressed inside the drawing area the cur-
rent position of the cursor is assigned to (x, y). The op-
eration returns the number of the pressed button (see
W .read mouse().)

int W.read mouse(point& p)

as above, the current position is assigned to point p.

15.2. WINDOWS (WINDOW) 545

int W.read mouse seg(double x0, double y0, double& x, double& y)

displays a line segment from (x0, y0) to the current cursor
position until a mouse button is pressed inside the drawing
section of W . When a button is pressed the current po-
sition is assigned to (x, y) and the number of the pressed
button is returned.

int W.read mouse seg(const point& p, point& q)

as above with x0 = p.xcoord() and y0 = p.ycoord() and
the current position is assigned to q.

int W.read mouse line(double x0, double y0, double& x, double& y)

displays a line passing through (x0, y0) and the current
cursor position until a mouse button is pressed inside the
drawing section of W . When a button is pressed the cur-
rent position is assigned to (x, y) and the number of the
pressed button is returned.

int W.read mouse line(const point& p, point& q)

as above with x0 = p.xcoord() and y0 = p.ycoord() and
the current position is assigned to q.

int W.read mouse ray(double x0, double y0, double& x, double& y)

displays a ray from (x0, y0) passing through the current
cursor position until a mouse button is pressed inside the
drawing section of W . When a button is pressed the cur-
rent position is assigned to (x, y) and the number of the
pressed button is returned.

int W.read mouse ray(const point& p, point& q)

as above with x0 = p.xcoord() and y0 = p.ycoord() and
the current position is assigned to q.

int W.read mouse rect(double x0, double y0, double& x, double& y)

displays a rectangle with diagonal from (x0, y0) to the cur-
rent cursor position until a mouse button is pressed inside
the drawing section of W . When a button is pressed the
current position is assigned to (x, y) and the number of
the pressed button is returned.

int W.read mouse rect(const point& p, point& q)

as above with x0 = p.xcoord() and y0 = p.ycoord() and
the current position is assigned to q.

546 CHAPTER 15. GRAPHICS

int W.read mouse circle(double x0, double y0, double& x, double& y)

displays a circle with center (x0, y0) passing through the
current cursor position until a mouse button is pressed
inside the drawing section of W . When a button is pressed
the current position is assigned to (x, y) and the number
of the pressed button is returned.

int W.read mouse circle(const point& p, point& q)

as above with x0 = p.xcoord() and y0 = p.ycoord() and
the current position is assigned to q.

int W.read mouse arc(double x0, double y0, double x1, double y1, double& x,
double& y)

displays an arc that starts in (x0, y0), ends in (x1, y1) and
passes through the current cursor position. When a mouse
button is pressed inside the drawing section of W , the
current position is assigned to (x, y) and the number of
the pressed button is returned.

int W.read mouse arc(const point& p, const point& q, point& r)

as above with (x0, y0) = p and (x1, y1) = q and the current
position is assigned to r.

int W.get mouse() non-blocking read operation, i.e., if a button was
pressed its number is returned, otherwise the constant
NO BUTTON is returned.

int W.get mouse(double& x, double& y)

if a mouse button was pressed the corresponding position
is assigned to (x, y) and the button number is returned,
otherwise the constant NO BUTTON is returned.

int W.get mouse(point& p) if a mouse button was pressed the corresponding position is
assigned to p and the button number is returned, otherwise
the constant NO BUTTON is returned.

int W.read mouse(double& x0, double& y0, int timeout1 , int timeout2 ,
bool& double click , bool& drag)

...

int W.read mouse(point& p, int timeout1 , int timeout2 , bool& double click ,
bool& drag)

...

3.5.2 Events

15.2. WINDOWS (WINDOW) 547

int W.read event(int& val , double& x, double& y, unsigned long& t)

waits for next event in window W and returns it. As-
signs the button or key to val, the position in W to
(x, y), and the time stamp of the event to t. Pos-
sible events are (cf. <LEDA/graphics/x window.h>):
key press event, key release event, button press event,
button release event, configure event, motion event, de-
stroy event.

int W.read event(int& val , double& x, double& y, unsigned long& t, int timeout)

as above, but waits only timeout milliseconds; if no event
occured the special event no event is returned.

int W.read event(int& val , double& x, double& y)

waits for next event in window W and returns it. Assigns
the button or key to val and the position in W to (x, y).

int W.read event() waits for next event in window W and returns it.

int W.get event(int& val , double& x, double& y)

if there is an event for window W in the event queue a
W.read event operation is performed, otherwise the inte-
ger constant no event is returned.

bool W.shift key down() returns true if a shift key was pressed during the last han-
dled mouse button event.

bool W.ctrl key down() returns true if a ctrl key was pressed during the last han-
dled mouse button event.

bool W.alt key down() returns true if an alt key was pressed during the last han-
dled mouse button event.

int W.button press time() returns the time-stamp (in msec) of the last button press
event.

int W.button release time()

returns the time-stamp (in msec) of the last button release
event.

3.6 Panel Input

The operations listed in this section are useful for simple input of strings, numbers, and

Boolean values.

bool W.confirm(string s) displays string s and asks for confirmation. Returns true
iff the answer was “yes”.

void W.acknowledge(string s)

displays string s and asks for acknowledgement.

548 CHAPTER 15. GRAPHICS

int W.read panel(string h, int n, string ∗ S)
displays a panel with header h and an array of n buttons
with labels S[0..n − 1], returns the index of the selected
button.

int W.read vpanel(string h, int n, string ∗ S)
like read panel with vertical button layout.

string W.read string(string p) displays a panel with prompt p for string input, returns
the input.

double W.read real(string p) displays a panel with prompt p for double input returns
the input.

int W.read int(string p) displays a panel with prompt p for integer input, returns
the input.

3.7 Input and output operators

For input and output of basic geometric objects in the plane such as points, lines, line seg-

ments, circles, and polygons the << and >> operators can be used. Similar to C++input

streams windows have an internal state indicating whether there is more input to read or

not. Its initial value is true and it is turned to false if an input sequence is terminated by

clicking the right mouse button (similar to ending stream input by the eof character). In

conditional statements, objects of type window are automatically converted to boolean

by returning this internal state. Thus, they can be used in conditional statements in the

same way as C++input streams. For example, to read a sequence of points terminated by

a right button click, use “ while (W >> p) { . . . } ”.

3.7.1 Output

window& W ≪ const point& p like W .draw point(p).

window& W ≪ const segment& s

like W .draw segment(s).

window& W ≪ const ray& r like W .draw ray(r).

window& W ≪ const line& l like W .draw line(l).

window& W ≪ const circle& C like W .draw circle(C).

window& W ≪ const polygon& P

like W .draw polygon(P).

window& W ≪ const gen polygon& P

like W .draw polygon(P).

15.2. WINDOWS (WINDOW) 549

window& W ≪ const rectangle& R

like W .draw rectangle(R).

window& W ≪ const triangle& T

like W .draw triangle(T).

3.7.2 Input

window& W ≫ point& p reads a point p: clicking the left button assigns the
current cursor position to p.

window& W ≫ segment& s reads a segment s: use the left button to define the
start and end point of s.

window& W ≫ ray& r reads a ray r: use the left button to define the start
point and a second point on r.

window& W ≫ line& l reads a line l: use the left button to define two
different points on l.

window& W ≫ circle& C reads a circle C: use the left button to define the
center of C and a point on C.

window& W ≫ rectangle& R reads a rectangle R: use the left button to define
two opposite corners of R.

window& W ≫ triangle& T reads a triangle T : use the left button to define the
corners of T .

window& W ≫ polygon& P reads a polygon P : use the left button to define
the sequence of vertices of P , end the sequence by
clicking the right button.

window& W ≫ gen polygon& P

reads a generalized polygon P ; input the polygons
defining P and end the input by clicking the middle
button.

list<point> W.read polygon() as above, however, returns list of vertices.

As long as an input operation has not been completed the last read point can be erased

by simultaneously pressing the shift key and the left mouse button.

3.8 Non-Member Functions

int read mouse(window ∗& w, double& x, double& y)

waits for mouse input, assigns a pointer to the cor-
responding window to w and the position in ∗w to
(x, y) and returns the pressed button.

550 CHAPTER 15. GRAPHICS

int get mouse(window ∗& w, double& x, double& y)

non-blocking variant of read mouse, returns
NO BUTTON if no button was pressed.

void put back event() puts last handled event back to the event queue.

3.9 Panel Operations

The panel section of a window is used for displaying text messages and for updating the

values of variables. It consists of a list of panel items and a list of buttons. The operations

in this section add panel items or buttons to the panel section of W . Note that they have

to be called before the window is displayed the first time.

In general, a panel item consists of a string label and an associated variable of a certain

type (int, bool, string, double, color). The value of this variable can be manipulated

through the item. Each button has a label (displayed on the button) and an associated

number. The number of a button is either defined by the user or is the rank of the button

in the list of all buttons. If a button is pressed (i.e. selected by a mouse click) during a

read mouse operation its number is returned.

Action functions can be associated with buttons and some items (e.g. slider items) when-

ever a button with an associated action function is pressed this function is called with the

number of the button as actual parameter. Action functions of items are called whenever

the value of the corresponding variable is changed with the new value as actual parameter.

All action functions must have the type void func(int).

Another way to define a button is to associate another window with it. In this case the

button will have a menu sign and as soon as it is pressed the attached window will open.

This method can be used to implement pop-up menues. The return value of the current

read mouse operation will be the number associated with the button in the menu.

3.9.1 General Settings

void W.set panel bg color(color c)

sets the background color of the panel area to c.

void W.buttons per line(int n)

defines the maximal number n of buttons per line.

void W.set button space(int s)

sets the space between to adjacent buttons to s
pixels.

void W.set item height(int h)

sets the vertical size of all items to h pixels.

15.2. WINDOWS (WINDOW) 551

void W.set item width(int w)

sets the horizontal size of all slider and string items
to w pixels.

void W.set bitmap colors(int c0, int c1)

sets the unpressed/pressed colors used for drawing
the pixels in bitmap buttons to c0 and c1.

3.9.2 Simple Panel Items

panel item W.text item(string s) adds a text item s to W .

panel item W.bool item(string s, bool& x, const char ∗ hlp = 0)

adds a boolean item with label s and variable x to
W .

panel item W.bool item(string s, bool& x, void (∗F)(int), const char ∗ hlp = 0)

as above with action function F .

panel item W.bool item(string s, bool& x, const window handler& obj ,
const char ∗ hlp = 0)

as above with handler object obj .

panel item W.int item(string s, int& x, const char ∗ hlp = 0)

adds an integer item with label s and variable x to
W .

panel item W.string item(string s, string& x, void (∗F)(char∗), const char ∗ hlp = 0)

as above with action function F .

panel item W.string item(string s, string& x, const window handler& obj ,
const char ∗ hlp = 0)

as above with handler object obj .

panel item W.string item(string s, string& x, const char ∗ hlp = 0)

adds a string item with label s and variable x to
W .

panel item W.double item(string s, double& x, const char ∗ hlp = 0)

adds a real item with label s and variable x to W .

panel item W.color item(string s, color& x, const char ∗ hlp = 0)

adds a color item with label s and variable x to W .

panel item W.color item(string s, color& x, void (∗F)(int), const char ∗ hlp = 0)

as above with action function F .

panel item W.color item(string s, color& x, const window handler& obj ,
const char ∗ hlp = 0)

as above with handler object obj .

552 CHAPTER 15. GRAPHICS

panel item W.pstyle item(string s, point style& x, const char ∗ hlp = 0)

adds a point style item with label s and variable x
to W .

panel item W.pstyle item(string s, point style& x, void(∗F)(int), const char ∗ hlp = 0)

as above with action function F .

panel item W.pstyle item(string s, point style& x, const window handler& obj ,
const char ∗ hlp = 0)

as above with handler object obj .

panel item W.lstyle item(string s, line style& x, const char ∗ hlp = 0)

adds a line style item with label s and variable x
to W .

panel item W.lstyle item(string s, line style& x, void(∗F)(int), const char ∗ hlp = 0)

as above with action function F .

panel item W.lstyle item(string s, line style& x, const window handler& obj ,
const char ∗ hlp = 0)

as above with handler object obj .

panel item W.lwidth item(string s, int& x, const char ∗ hlp = 0)

adds a line width item with label s and variable x
to W .

panel item W.lwidth item(string s, int& x, void(∗F)(int), const char ∗ hlp = 0)

as above with action function F .

panel item W.lwidth item(string s, int& x, const window handler& obj ,
const char ∗ hlp = 0)

as above with handler object obj .

3.9.3 Integer Choice Items

panel item W.int item(string s, int& x, int l, int h, int step, const char ∗ hlp = 0)

adds an integer choice item with label s, variable
x, range l,. . . , h, and step size step to W .

panel item W.int item(string s, int& x, int l, int h, int step, void (∗F)(int),
const char ∗ hlp = 0)

adds an integer choice item with label s, variable
x, range l,. . . , h, and step size step to W . Func-
tion F (x) is executed whenever the value of x is
changed.

panel item W.int item(string s, int& x, int l, int h, int step,
const window handler& obj , const char ∗ hlp = 0)

as above with handler object obj .

15.2. WINDOWS (WINDOW) 553

panel item W.int item(string s, int& x, int l, int h, const char ∗ hlp = 0)

adds an integer slider item with label s, variable x,
and range l,. . . ,h to W .

panel item W.int item(string s, int& x, int l, int h, void (∗F)(int),
const char ∗ hlp = 0)

adds an integer slider item with label s, variable x,
and range l,. . . ,h to W . Function F (x) is executed
whenever the value of x has changed by moving the
slider.

panel item W.int item(string s, int& x, int l, int h, const window handler& obj ,
const char ∗ hlp = 0)

as above with handler object obj .

3.9.4 String Menu Items

panel item W.string item(string s, string& x, const list<string>& L,
const char ∗ hlp = 0)

adds a string item with label s, variable x, and
menu L to W .

panel item W.string item(string s, string& x, const list<string>& L,
const window handler& obj , const char ∗ hlp = 0)

as above with handler object obj .

panel item W.string item(string s, string& x, const list<string>& L, int sz ,
const char ∗ hlp = 0)

menu L is displayed in a scroll box of height sz .

panel item W.string item(string s, string& x, const list<string>& L, int sz ,
void (∗F)(char∗), const char ∗ hlp = 0)

as above with action function F .

panel item W.string item(string s, string& x, const list<string>& L, int sz ,
const window handler& obj , const char ∗ hlp = 0)

as above with handler object obj .

void W.set menu(panel item it , const list<string>& L, int sz = 0)

replaces the menu of string menu item it by a menu
for list L (table style if sz = 0 and scroll box with
sz entries otherwise).

3.9.5 Choice Items

panel item W.choice item(string s, int& x, const list<string>& L, void (∗F)(int) = 0,
const char ∗ hlp = 0)

adds an integer item with label s, variable x, and
choices from L to W .

554 CHAPTER 15. GRAPHICS

panel item W.choice item(string s, int& x, const list<string>& L,
const window handler& obj , const char ∗ hlp = 0)

as above with handler object obj .

panel item W.choice item(string s, int& x, string s1, ..., string sk)

adds an integer item with label s, variable x, and
choices s1, . . . , sk to W (k ≤ 8).

panel item W.choice item(string s, int& x, int n, int w, int h, unsigned char ∗ ∗bm,
const char ∗ hlp = 0)

adds an integer item with label s, variable x, and
n bitmaps bm[0], . . . , bm[n− 1] each of width w
and height h.

panel item W.choice item(string s, int& x, int n, int w, int h, unsigned char ∗ ∗bm,
void (∗F)(int), const char ∗ hlp = 0)

panel item W.choice item(string s, int& x, int n, int w, int h, unsigned char ∗ ∗bm,
const window handler& obj , const char ∗ hlp = 0)

as above with handler object obj .

3.9.6 Multiple Choice Items

panel item W.choice mult item(string s, int& x, const list<string>& L,
const char ∗ hlp = 0)

panel item W.choice mult item(string s, int& x, string s1, const char ∗ hlp = 0)

panel item W.choice mult item(string s, int& x, string s1, string s2,
const char ∗ hlp = 0)

panel item W.choice mult item(string s, int& x, const list<string>& L,
void (∗F)(int), const char ∗ hlp = 0)

panel item W.choice mult item(string s, int& x, const list<string>& L,
const window handler& obj , const char ∗ hlp = 0)

panel item W.choice mult item(string s, int& x, int n, int w, int h,
unsigned char ∗ ∗bm, const char ∗ hlp = 0)

panel item W.choice mult item(string s, int& x, int n, int w, int h,
unsigned char ∗ ∗bm, void (∗F)(int),
const char ∗ hlp = 0)

panel item W.choice mult item(string s, int& x, int n, int w, int h,
unsigned char ∗ ∗bm, const window handler& obj ,
const char ∗ hlp = 0)

15.2. WINDOWS (WINDOW) 555

3.9.7 Buttons

The first occurence of character ’&’ in a button label makes the following character c an

accelerator character, i.e., the button can be selected by typing ALT-c from the keyboard.

int W.button(string s, int n, const char ∗ hlp = 0)

adds a button with label s and number n to W .

int W.fbutton(string s, int n, const char ∗ hlp = 0)

as above but makes this button the focus button of
W , i.e., this button can be selected by pressing the
return key.

int W.button(string s, const char ∗ hlp = 0)

adds a new button to W with label s and num-
ber equal to its position in the list of all buttons
(starting with 0).

int W.fbutton(string s, const char ∗ hlp = 0)

as above but makes this button the focus button.

int W.button(int w, int h, unsigned char ∗ bm, string s, int n,
const char ∗ hlp = 0)

adds a button with bitmap bm, label s, and number
n to W .

int W.button(char ∗ pr1 , char ∗ pr2 , string s, int n, const char ∗ hlp = 0)

adds a button with pixrects pr1 and pr2, label s,
and number n to W .

int W.button(int w, int h, unsigned char ∗ bm, string s, const char ∗ hlp = 0)

adds a new button to W with bitmap bm, label s,
and number equal to its position in the list of all
buttons (starting with 0).

int W.button(string s, int n, void (∗F)(int), const char ∗ hlp = 0)

adds a button with label s, number n and action
function F to W . Function F is called with actual
parameter n whenever the button is pressed.

int W.button(string s, int n, const window handler& obj ,
const char ∗ hlp = 0)

as above with handler object obj .

int W.fbutton(string s, int n, void (∗F)(int), const char ∗ hlp = 0)

as above but makes this button the focus button.

int W.fbutton(string s, int n, const window handler& obj ,
const char ∗ hlp = 0)

as above with handler object obj .

556 CHAPTER 15. GRAPHICS

int W.button(int w, int h, unsigned char ∗ bm, string s, int n,
void (∗F)(int), const char ∗ hlp = 0)

adds a button with bitmap bm, label s, number n
and action function F to W . Function F is called
with actual parameter n whenever the button is
pressed.

int W.button(int w, int h, unsigned char ∗ bm, string s, int n,
const window handler& obj , const char ∗ hlp = 0)

int W.button(char ∗ pr1 , char ∗ pr2 , string s, int n, void (∗F)(int),
const char ∗ hlp = 0)

as above, but with pixrect pr1 and pr2.

int W.button(char ∗ pr1 , char ∗ pr2 , string s, int n,
const window handler& obj , const char ∗ hlp = 0)

int W.button(string s, void (∗F)(int), const char ∗ hlp = 0)

adds a button with label s, number equal to its
rank and action function F to W . Function F is
called with the value of the button as argument
whenever the button is pressed.

int W.button(string s, const window handler& obj , const char ∗ hlp = 0)

int W.button(int w, int h, unsigned char ∗ bm, string s, void (∗F)(int),
const char ∗ hlp = 0)

adds a button with bitmap bm, label s, number
equal to its rank and action function F toW . Func-
tion F is called with the value of the button as
argument whenever the button is pressed.

int W.button(int w, int h, unsigned char ∗ bm, string s,
const window handler& obj , const char ∗ hlp = 0)

int W.button(char ∗ pr1 , char ∗ pr2 , string s, void (∗F)(int),
const char ∗ hlp = 0)

as above, but with pixrect pr1 and pr2.

int W.button(char ∗ pr1 , char ∗ pr2 , string s, const window handler& obj ,
const char ∗ hlp = 0)

int W.button(string s, int n, window& M, const char ∗ hlp = 0)

adds a button with label s, number n and attached
sub-window (menu)M toW . WindowM is opened
whenever the button is pressed.

15.2. WINDOWS (WINDOW) 557

int W.button(int w, int h, unsigned char ∗ bm, string s, int n, window& M,
const char ∗ hlp = 0)

adds a button with bitmap bm, label s, number n
and attached sub-window (menu) M to W . Win-
dow M is opened whenever the button is pressed.

int W.button(char ∗ pr1 , char ∗ pr2 , string s, int n, window& M,
const char ∗ hlp = 0)

as above, but with pixrect pr1 and pr2.

int W.button(string s, window& M, const char ∗ hlp = 0)

adds a button with label s and attached sub-
window M to W . The number returned by
read mouse is the number of the button selected
in sub-window M .

int W.button(int w, int h, unsigned char ∗ bm, string s, window& M,
const char ∗ hlp = 0)

adds a button with bitmap bm, label s and attached
sub-window M to W . The number returned by
read mouse is the number of the button selected
in sub-window M .

int W.button(char ∗ pr1 , char ∗ pr2 , string s, window& M,
const char ∗ hlp = 0)

as above, but with pixrect pr1 and pr2.

void W.make menu bar() inserts a menu bar at the top of the panel section
that contains all previously added menu buttons
(buttons with a subwindow attached).

window∗ window :: get call window()

A static function that can be called in action func-
tions attached to panel items or buttons to retrieve
a pointer to the window containing the correspond-
ing item or button.

panel item window :: get call item() A static function that can be called in action func-
tions attached to panel items to retrieve the corre-
sponding item.

int window :: get call button()

A static function that can be called in action func-
tions attached to panel buttons to retrieve the num-
ber of the corresponding button.

3.9.8. Manipulating Panel Items and Buttons

Disabling and Enabling Items or buttons

558 CHAPTER 15. GRAPHICS

void W.disable item(panel item it)

disables panel item it.

void W.enable item(panel item it)

enables panel item it.

bool W.is enabled(panel item it)

tests whether item it is enabled or not.

void W.disable button(int b) disables button b.

void W.enable button(int b) enables button b.

void W.disable buttons() disables all buttons.

void W.enable buttons() enables all buttons.

bool W.is enabled(int b) tests whether button b is enabled or not.

void W.disable panel(bool disable items = true)

disables the entire panel section of W .

void W.enable panel() enables the entire panel section of W .

Accessing and Updating Item Data

void W.set text(panel item it , string s)

replaces the text of text item it by s.

panel item W.get item(string s) returns the item with label s and NULL if no such
item exists in W .

int W.get button(string s) returns the button with label s and −1 if no such
button exists in W .

string W.get button label(int but)

returns the label of button but.

void W.set button label(int but , string s)

sets the label of button but to s.

void W.set button pixrects(int but , char ∗ pr1 , char ∗ pr2)
sets the pixrects of button but to pr1 and pr2.

window∗ W.get window(int but) returns a pointer to the subwindow attached to
button but (NULL if but has no subwindow)

window∗ W.set window(int but , window ∗M)

associates subwindow (menu) ∗M with button but.
Returns a pointer to the window previously at-
tached to but.

15.2. WINDOWS (WINDOW) 559

void W.set function(int but , void (∗F)(int))

assign action function F to button but.

void W.set object(int but , const window handler& obj)

assign handler object obj to button but.

3.9.9. Miscellanous

void W.redraw panel() redraw the panel area of W .

void W.redraw panel(panel item it)

redraw item i in the panel area of W .

void W.display help text(string fname)

displays the help text contained in name.hlp. The
file name.hlp must exist either in the current work-
ing directory or in $LEDAROOT/incl/Help.

void W.set tooltip(int i, double x0, double y0, double x1, double y1, string txt)

inserts a tooltip with id i, rectangle (x0, y0,x1,y1)
and text txt into the window. The text is shown
when the mouse pointer enters the rectangle. The
text disappears as soon as the mouse pointer leaves
the rectangle.
CAUTION: Currently the method has to be called
after the call of W .display(). Setting a tooltip be-
fore the call W .display() has no effect.

void W.del tooltip(int i) removes the tooltip with id i.

4. Example

Example programs can be found on LEDAROOT/demo/win and LEDAROOT/test/win.

560 CHAPTER 15. GRAPHICS

15.3 Panels (panel)

1. Definition

Panels are windows consisting of a panel section only (cf. section 15.2). They are used

for displaying text messages and updating the values of variables.

#include < LEDA/graphics/panel.h >

2. Creation

panel P ; creates an empty panel P .

panel P (string s); creates an empty panel P with header s.

panel P (int w, int h);

creates an empty panel P of width w and height h.

panel P (int w, int h, string s);

creates an empty panel P of width w and height h with header s.

3. Operations

All window operations for displaying, reading, closing and adding panel items are available

(see section 15.2). There are two additional operations for opening and reading panels.

int P.open(int x = window ::center , int y = window ::center)

P.display(x, y) + P.read mouse() + P.close().

int P.open(window& W, int x = window ::center , int y = window ::center)

P.display(W,x, y) + P.read mouse() + P.close().

15.4. MENUES (MENU) 561

15.4 Menues (menu)

1. Definition

Menues are special panels consisting only of a vertical list of buttons.

#include < LEDA/graphics/menu.h >

2. Creation

menu M ; creates an empty menu M .

3. Operations

int M.button(string s, int n) adds a button with label s and number n to M .

int M.button(string s) adds a new button to M with label s and number equal
to its position in the list of all buttons (starting with 0).

int M.button(string s, int n, void (∗F)(int))

adds a button with label s, number n and action func-
tion F toM . Function F is called with actual parameter
n whenever the button is pressed.

int M.button(string s, int n, const window handler& obj)

as above with handler object obj .

int M.button(string s, void (∗F)(int))

adds a button with label s, number equal to its rank and
action function F to M . Function F is called with the
number of the button as argument whenever the button
is pressed.

int M.button(string s, const window handler& obj)

as above with handler object obj .

int M.button(string s, int n, window& W)

adds a button with label s, number n, and attached
window W to M .Whenever the button is pressed W is
opened.

int M.button(string s, window& W)

adds a button with label s and attached window W to
M . Whenever the button is pressed W is opened and
W .read mouse() is returned.

void M.separator() inserts a separator (horizontal line) at the current posi-
tion.

562 CHAPTER 15. GRAPHICS

int M.open(window& W, int x, int y)

open and read menu M at position (x, y) in window W .

15.5. POSTSCRIPT FILES (PS FILE) 563

15.5 Postscript Files (ps file)

1. Definition

The date type ps file is a graphical input/output interface for the familiar LEDA drawing

operations of two-dimensional geometry. Unlike the data type window , the output pro-

duced by a ps file object is permanent, i.e., it is not lost after exiting the C++-program

as it is saved in an output file.

An instance of type ps file is (as far as the user takes notice of it) an ordinary ASCII

file that contains the source code of the graphics output in the PostScript description

language. After running the C++-program, the file is created in the user’s current working

directory and can later be handled like any other PostScript file, i.e., it may be viewed,

printed etc.

Of course, features like a panel section (as in window type instances) don’t make sense

for a representation that is not supposed to be displayed on the screen and interactively

worked with by the user. Therefore, only drawing operations are applicable to a ps file

instance.

ps file was implemented by

Thomas Wahl

Lehrstuhl für Informatik I

Universität Würzburg

The complete user manual can be found in LEDAROOT/Manual/contrib.

#include < LEDA/graphics/ps file.h >

564 CHAPTER 15. GRAPHICS

15.6 Graph Windows (GraphWin)

1. Definition

GraphWin combines the two types graph and window and forms a bridge between the

graph data types and algorithms and the graphics interface of LEDA. GraphWin can

easily be used in LEDA programs for constructing, displaying and manipulating graphs

and for animating and debugging graph algorithms.

• The user interface of GraphWin is simple and intuitive. When clicking a mouse

button inside the drawing area a corresponding default action is performed that

can be redefined by users. With the initial default settings, the left mouse button

is used for creating and moving objects, the middle button for selecting objects,

and the right button for destroying objects. A number of menues at the top of the

window give access to graph generators, modifiers, basic algorithms, embeddings,

setup panels, and file input and output.

• Graphwin can display and manipulate the data associated with the nodes and edges

of LEDA’s parameterized graph type GRAPH < vtype, etype >. When a Graph-

Win is opened for such a graph the associated node and edge labels of type vtype

and etype can be displayed and edited.

• Most of the actions of GraphWin can be customized by modifying or extending the

menues of the main window or by defining call-back functions. So the user can

define what happens if a node or edge is created, selected, moved, or deleted.

• Graphwin offers a collection of graph generators, modifiers and tests. The generators

include functions for constructing random, planar, complete, bipartite, grid graph,

connected graph, biconnected, graphs . . .

There are also methods for modifying existing graphs (e.g. by removing or adding a

certain set of edges) to fit in one of these categories and for testing whether a given

graph is planar, connected, bipartite . . .

• The standard menu includes a choice of fundamental graph algorithms and basic

embedding algorithms.

For every node and edge of the graph GraphWin maintains a set of parameters.

With every node is associated the following list of parameters. Note that for every param-

eter there are corresponding set and get operations (gw.set param() and gw.get param)

where param has to be replaced by the corresponding parameter name.

position: the position of the node (type point),

15.6. GRAPH WINDOWS (GRAPHWIN) 565

shape: the shape of the node (type gw node shape),

color: the color of the interior of the node (type color),

border color: the color of the node’s border (type color),

label color: the color of the node’s label (type color),

pixmap: the pixmap used to fill the interior of the node (char∗),

width: the width of the node in pixels (int),

height: the height of the node in pixels (int),

radius1: the horizontal radius in real world coordinates (double)

radius2: the vertical radius in real world coordinates (double),

border width: the width of the border in pixels (int),

label type: the type of the node’s label (type gw label type),

user label: the user label of the node (type string), and

label pos: the position of the label (type gw position).

With every edge is associated the following list of parameters

color: the color of the edge (type color),

label color: the color of the edge label (type color),

shape: the shape of the edge (type gw edge shape),

style: the style of the edge (type gw edge style),

direction: the direction of the edge (type gw edge dir),

width: the width of the edge in pixels (type int),

label type: the label type of the edge (type gw label type),

user label: the user label of the edge (type string),

label pos: the position of the edge’s label (type gw position),

bends: the list of edge bends (type list<point>),

source anchor: the source anchor of the edge (type point), and

target anchor: the target anchor of the edge (type point).

566 CHAPTER 15. GRAPHICS

The corresponding types are:

gw_node_shape = { circle_node, ellipse_node, square_node, rectangle_node }

gw_edge_shape = { poly_edge, circle_edge, bezier_edge, spline_edge }

gw_position = { central_pos, northwest_pos, north_pos,

northeast_pos, east_pos, southeast_pos,

south_pos, southwest_pos, west_pos }

gw_label_type = { no_label, user_label, data_label, index_label }

gw_edge_style = { solid_edge, dashed_edge, dotted_edge, dashed_dotted_edge }

gw_edge_dir = { undirected_edge, directed_edge, bidirected_edge, rdirected_edge };

#include < LEDA/graphics/graphwin.h >

2. Creation

GraphWin gw(graph& G, int w, int h, const char ∗ win label = ””);

creates a graph window for graph G with a display window of size
w pixels × h pixels. If win label is not empty it is used as the frame
label of the window, otherwise, a default frame label is used.

GraphWin gw(graph& G, const char ∗ win label = ””);

creates a graph window for graph G with a display window of de-
fault size and frame label win label .

GraphWin gw(int w, int h, const char ∗ win label = ””);

creates a graph window for a new empty graph with a display win-
dow of size w pixels × h pixels, and frame label win label .

GraphWin gw(const char ∗ win label = ””);

creates a graph window for a new empty graph with a display win-
dow of default size and frame label win label .

GraphWin gw(window& W);

as above, but W is used as display window.

GraphWin gw(graph& G, window& W);

as above, but makes G the graph of gw.

3. Operations

a) Window Operations

15.6. GRAPH WINDOWS (GRAPHWIN) 567

void gw.display(int x, int y) displays gw with upper left corner at (x, y). The
predefined constant window :: center can be used
to center the window horizontally (if passed as x)
or vertically (if passed as y).

void gw.display() displays gw at default position.

bool gw.edit() enters the edit mode of GraphWin that allows to
change the graph interactively by operations as-
sociated with certain mouse events or by choos-
ing operations from the windows menu bar (see
section about edit-mode) for a description of the
available commands and operations). Edit mode
is terminated by either pressing the done button
or by selecting exit from the file menu. In the first
case the result of the edit operation is true and in
the latter case the result is false.

bool gw.open(int x, int y) displays the window at position (x, y), enters edit
mode and return the corresponding result.

bool gw.open() as above, but displays the window at default po-
sition.

void gw.close() closes the window.

void gw.message(const char ∗msg)

displays the message msg at the top of the win-
dow.

string gw.get message() returns the current messsage string.

void gw.del message() deletes a previously written message.

double gw.get xmin() returns the minimal x-coordinate of the window.

double gw.get ymin() returns the minimal y-coordinate of the window.

double gw.get xmax() returns the maximal x-coordinate of the window.

double gw.get ymax() returns the maximal y-coordinate of the window.

void gw.win init(double xmin, double xmax , double ymin)

sets the coordinates of the window to
(xmin, xmax, ymin).

void gw.redraw() redraws the graph. If the flush parameter of gw
is set to false (see set flush) this operation can be
used to display the current state of the graph after
a number of update operations.

568 CHAPTER 15. GRAPHICS

void gw.set frame label(const char ∗ label)
makes label the frame label of the window.

int gw.open panel(panel& P)

displays panel P centered on the drawing area of
gw , disables the menu bar of gw and returns the
result of P.open().

window& gw.get window() returns a reference to the window of gw .

void gw.finish menu bar() this operation has to called before additional
buttons are added to the panel section of
gw.get window().

b) Graph Operations

node gw.new node(const point& p)

adds a new node at position p to gw.

void gw.del node(node v) deletes v and all edges incident to v from gw.

edge gw.new edge(node v, node w)

adds a new edge (v, w) to gw.

edge gw.new edge(node v, node w, const list<point>& P)

adds a new edge (v, w) with bend sequence P to
gw.

void gw.del edge(edge e) deletes edge e from gw.

void gw.clear graph() deletes all nodes and egdes.

graph& gw.get graph() returns a reference of the graph of gw .

void gw.update graph() this operation has to be called after any up-
date operation that has been performed directly
(not by GraphWin) on the underlying graph, e.g.,
deleting or inserting nodes or edges.

c) Node Parameters

Node parameters can be retrieved or changed by a collection of get- and set- operations.

We use param type for the type and param for the value of the corresponding parameter.

Individual Parameters

param type gw.get param(node v) returns the value of parameter param for node v.

15.6. GRAPH WINDOWS (GRAPHWIN) 569

param type gw.set param(node v, param type x)

sets the value of parameter param for node v to
x. and returns its previous value.

void gw.set param(list<node>& L, param type x)

sets the value of parameter param for all nodes in
L to x.

Default Parameters

param type gw.get node param() returns the current default value of parameter
param.

param type gw.set node param(param type x, bool apply = true)

sets the default value of parameter param to x.
and returns its previous value. If apply == true
the parameter is changed for all existing nodes as
well.

d) Edge Parameters

Individual Parameters

param type gw.get param(edge e) returns the value of parameter param for edge e.

param type gw.set param(edge e, param type x)

sets the value of parameter param for edge e to x.
and returns its previous value.

void gw.set param(list<edge>& L, param type x)

sets the value of parameter param for all edges in
L to x.

Default Parameters

param type gw.get edge param() returns the current default value of parameter
param.

param type gw.set edge param(param type x, bool apply = true)

sets the default value of parameter param to x.
and returns its previous value. If apply == true
the parameter is changed for all existing edges as
well.

e) Global Options

int gw.set gen nodes(int n) sets the default number of nodes n for all graph
generator dialog panels.

570 CHAPTER 15. GRAPHICS

int gw.set gen edges(int m) sets the default number of edges m for all graph
generator dialog panels.

int gw.set edge distance(int d)

sets the distance of multi-edges to d pixels.

grid style gw.set grid style(grid style s)

sets the grid style to s.

int gw.set grid dist(int d) sets the grid distance to d.

int gw.set grid size(int n) sets the grid distance such that n vertical grid
lines lie inside the drawin area.

bool gw.set show status(bool b)

display a status window (b=true) or not (b=false).

color gw.set bg color(color c) sets the window background color to c.

char∗ gw.set bg pixmap(char ∗ pr , double xorig = 0, double yorig = 0)

sets the window background pixmap to pr and the
tiling origin to (xorig, yorig).

void gw.set bg xpm(const char ∗ ∗xpm data)

sets the window background pixmap to the
pixmap defined by xpm data.

void gw.set bg redraw(void (∗f)(window∗, double, double, double, double))
sets the window background redraw function to f .

void gw.set node label font(gw font type t, int sz)

sets the node label font type and size. Possible
types are roman font , bold font , italic font , and
fixed font .

void gw.set node label font(string fn)

sets the node label font to the font with name fn.

void gw.set edge label font(gw font type t, int sz)

sets the edge label font type and size. roman font ,
bold font , italic font , and fixed font .

void gw.set edge label font(string fn)

sets the edge label font to the font with name fn.

string gw.set node index format(string s)

sets the node index format string to s.

15.6. GRAPH WINDOWS (GRAPHWIN) 571

string gw.set edge index format(string s)

sets the edge index format string s.

bool gw.set edge border(bool b)

sets the edge border flag to b.

bool gw.enable label box(bool b)

enables/disables drawing of blue label boxes. La-
bel boxes are enabled per default.

Animation and Zooming

int gw.set animation steps(int s)

move a node in s steps to its new position.

bool gw.set flush(bool b) show operations on gw instantly (b=true) or not
(b=false).

double gw.set zoom factor(double f)

sets the zoom factor to f used when zooming from
menu.

bool gw.set zoom objects(bool b)

resize nodes and edges when zooming (b== true)
or not (b== false).

bool gw.set zoom labels(bool b)

resize labels when zooming (b == true) or not
(b== false).

f) Node and Edge Selections

void gw.select(node v) adds v to the list of selected nodes.

void gw.select all nodes() selects all nodes.

void gw.deselect(node v) deletes v from the list of selected nodes.

void gw.deselect all nodes() clears the current node selection.

bool gw.is selected(node v) returns true if v is selected and false otherwise.

const list<node>& gw.get selected nodes()

returns the current node selection.

void gw.select(edge e) adds e to the list of selected edges.

void gw.select all edges() selects all edges.

572 CHAPTER 15. GRAPHICS

void gw.deselect(edge e) deletes e from the list of selected edges.

void gw.deselect all edges() clears the current node selection.

bool gw.is selected(edge e) returns true if e is selected and false otherwise.

const list<edge>& gw.get selected edges()

returns the current edge selection.

void gw.deselect all() clears node and edge selections.

g) Layout Operations

void gw.set position(const node array<point>& pos)

for every node v of G the position of v is set to
pos[v].

void gw.set position(const node array<double>& x,
const node array<double>& y)

for every node v of G the position of v is set to
(x[v], y[v]).

void gw.get position(node array<point>& pos)

for every node v of G the position of v is assigned
to pos[v].

void gw.set layout(const node array<point>& pos ,
const node array<double>& r1 ,
const node array<double>& r2 , const edge array<list<point>
>& bends , const edge array<point>& sanch,
const edge array<point>& tanch)

for every node v the position is set to pos [v] and
radiusi is set to ri[v]. For every edge e the list of
bends is set to bends [e] and source (target) anchor
is set to sanch[e] (tanch[e]).

void gw.set layout(const node array<point>& pos , const edge array<list<point>
>& bends , bool reset anchors = true)

for every node v the position is set to pos [v] and
for every edge e the list of bends is set to bends [e].

void gw.set layout(const node array<point>& pos)

for every node v the position is set to pos [v] and
for every edge e the list of bends is made empty.

void gw.set layout(const node array<double>& x, const node array<double>& y)

for every node v the position is set to (x[v], y[v])
and for every edge e the list of bends is made
empty.

15.6. GRAPH WINDOWS (GRAPHWIN) 573

void gw.set layout() same as gw.remove bends().

void gw.transform layout(node array<double>& xpos ,
node array<double>& ypos , edge array<list<double>
>& xbends, edge array<list<double> >& ybends ,
double dx , double dy , double fx , double fy)

transforms the layout given by xpos , ypos , xbends,
and ybends by transforming every node position or
edge bend (x, y) to (dx+ fx ∗x, dy+ fy ∗ y). The
actual layout of the current graph is not changed
by this operation.

void gw.transform layout(node array<double>& xpos ,
node array<double>& ypos ,
node array<double>& xrad ,
node array<double>& yrad , edge array<list<double>
>& xbends, edge array<list<double> >& ybends ,
double dx , double dy , double fx , double fy)

as above, in addition the horizontal and vertical
radius of every node (given in the arrays xrad and
yrad) are enlarged by a factor of fx and fy, re-
spectively.

void gw.fill win params(double wx0 , double wy0 , double wx1 , double wy1 ,
double x0 , double y0 , double x1 , double y1 ,
double& dx , double& dy , double& fx , double& fy)

computes parameters dx , dy , fx , and fy for trans-
forming rectangle x0 ,y0 ,x1 ,y1 into (window) rect-
angle wx0 ,wy0 ,wx1 ,wy1 .

void gw.fill win params(double wx0 , double wy0 , double wx1 , double wy1 ,
node array<double>& xpos , node array<double>& ypos ,
edge array<list<double> >& xbends ,
edge array<list<double> >& ybends , double& dx ,
double& dy , double& fx , double& fy)

computes parameters dx , dy , fx , and fy for trans-
forming the layout given xpos ,ypos ,xbends ,ybends
to fill the (window) rectangle wx0 ,wy0 ,wx1 ,wy1 .

574 CHAPTER 15. GRAPHICS

void gw.fill win params(double wx0 , double wy0 , double wx1 , double wy1 ,
node array<double>& xpos , node array<double>& ypos ,
node array<double>& xrad , node array<double>& yrad ,
edge array<list<double> >& xbends ,
edge array<list<double> >& ybends , double& dx ,
double& dy , double& fx , double& fy)

computes parameters dx , dy , fx , and fy for trans-
forming the layout given xpos ,ypos ,xbends ,ybends ,
xrad ,yrad to fill the (window) rectangle
wx0,wy0,wx1,wy1.

void gw.place into box(double x0 , double y0 , double x1 , double y1)

moves and stretches the graph to fill the given
rectangular box (x0, y0, x1, y1) by appropriate
scaling and translating operations.

void gw.place into win() moves and stretches the graph to fill the entire
window by appropriate scaling and translating op-
erations.

void gw.adjust coords to box(node array<double>& xpos ,
node array<double>& ypos ,
edge array<list<double> >& xbends ,
edge array<list<double> >& ybends , double x0 ,
double y0 , double x1 , double y1)

transforms the layout given by xpos , ypos ,
xbends , and ybends in such way as a call of
place into box (x0 , y0 , x1 , y1) would do. However,
the actual layout of the current graph is not
changed by this operation.

void gw.adjust coords to box(node array<double>& xpos ,
node array<double>& ypos , double x0 , double y0 ,
double x1 , double y1)

transforms the layout given by xpos , ypos in
such way as a call of place into box (x0 , y0 , x1 , y1)
would do ignoring any edge bends. The actual
layout of the current graph is not changed by this
operation.

void gw.adjust coords to win(node array<double>& xpos ,
node array<double>& ypos ,
edge array<list<double> >& xbends,
edge array<list<double> >& ybends)

same as adjust coords to box (xpos , ypos , xbends , ybends ,wx0 ,wy0
for the current window rectangle
(wx0, wy0, wx1, wy1).

15.6. GRAPH WINDOWS (GRAPHWIN) 575

void gw.adjust coords to win(node array<double>& xpos ,
node array<double>& ypos)

same as adjust coords to box (xpos , ypos ,wx0 ,wy0 ,wx1 ,wy1)
for the current window rectangle
(wx0, wy0, wx1, wy1).

void gw.remove bends(edge e) removes all bends from edge e.

void gw.remove bends() removes the bends of all edges of the graph.

void gw.reset edge anchors() resets all edge anchor positions to (0, 0).

int gw.load layout(istream& istr)

read layout from stream istr .

bool gw.save layout(ostream& ostr)

save layout to stream ostr .

bool gw.save layout(string fname, bool ask override = false)

save layout to file fname.

h) Zooming

void gw.zoom(double f) zooms the window by factor f .

void gw.zoom area(double x0 , double y0 , double x1 , double y1)

performs a zoom operation for the rectangular
area with current coordinates (x0, y0, x1, y0).

void gw.zoom graph() performs a zoom operation, such that the graph
fills the entire window.

void gw.unzoom() undoes last zoom operation.

i) Operations in Edit-mode

Before entering edit mode ...

gw action gw.set action(long mask , gw action func)

sets action associated with condition mask
to func and returns previous action for
this condition. Here gw action is the type
void (∗func)(GraphWin&, const point&). For
func = NULL the corresponding action is
deleted.

gw action gw.get action(long mask)

returns the action associated with condition
mask.

576 CHAPTER 15. GRAPHICS

void gw.reset actions() resets all actions to their defaults.

void gw.clear actions() deletes all actions.

void gw.add node menu(string label , gw action func)

appends action function func with label label to
the context menu for nodes (opened by clicking
with the right mouse button on a node).

void gw.add edge menu(string label , gw action func)

appends action function func with label label to
the context menu for edges (opened by clicking
with the right mouse button on an edge).

void gw.set new node handler(bool (∗f)(GraphWin& , const point&))

f(gw, p) is called every time before a node is to
be created at position p.

void gw.set new node handler(void (∗f)(GraphWin& , node) = NULL)

f(gw, v) is called after node v has been created.

void gw.set new edge handler(bool (∗f)(GraphWin& , node, node))

f(gw, v, w) is called before the edge (v, w) is to be
created.

void gw.set new edge handler(void (∗f)(GraphWin& , edge) = NULL)

f(gw, e) is called after the edge e has been created.

void gw.set start move node handler(bool (∗f)(GraphWin& , node) = NULL)

f(gw, v) is called before node v is to be moved.

void gw.set move node handler(void (∗f)(GraphWin& , node) = NULL)

f(gw, v) is called every time node v reaches a new
position during a move operation.

void gw.set end move node handler(void (∗f)(GraphWin& , node))

f(gw, v) is called after node v has been moved.

void gw.set del node handler(bool (∗f)(GraphWin& , node))

f(gw, v) is called before the node v is to be
deleted.

void gw.set del node handler(void (∗f)(GraphWin&) = NULL)

f(gw) is called every time after a node was
deleted.

void gw.set del edge handler(bool (∗f)(GraphWin& , edge))

f(gw, e) is called before the edge e is to be deleted.

15.6. GRAPH WINDOWS (GRAPHWIN) 577

void gw.set del edge handler(void (∗f)(GraphWin&) = NULL)

f(gw) is called every time after an edge was
deleted.

void gw.set start edge slider handler(void (∗f)(GraphWin& , edge,
double) = NULL, int sl = 0)

f(gw, e, pos) is called before slider sl of edge e is to
be moved. Here pos is the current slider position.

void gw.set edge slider handler(void (∗f)(GraphWin& , edge, double) = NULL,
int sl = 0)

f(gw, e, pos) is called every time slider sl of edge
e reaches a new position pos during a slider move.

void gw.set end edge slider handler(void (∗f)(GraphWin& , edge,
double) = NULL, int sl = 0)

f(gw, e, pos) is called after slider sl of edge e has
been moved to the final position pos.

void gw.set init graph handler(bool (∗f)(GraphWin&))

f is called every time before the entire graph is
replaced, e.g. by a clear, generate, or load opera-
tion.

void gw.set init graph handler(void (∗f)(GraphWin&) = NULL)

f is called every time after the entire graph was
replaced.

void gw.set undo graph handler(void (∗f)(GraphWin&) = NULL)

f is called after each undo operation.

j) Menus

The default menu . . .

void gw.set default menu(long mask)

...

void gw.add menu(long menu id)

...

void gw.del menu(long menu id)

...

Extending menus by new buttons and sub-menus . . .

int gw.add menu(string label , int menu id = 0, char ∗ pmap = 0,
const char ∗ hlp = 0)

...

578 CHAPTER 15. GRAPHICS

int gw.add simple call(void (∗func)(GraphWin&), string label ,
int menu id = 0, char ∗ pmap = 0)

...

int gw.add simple call(void (∗func)(GraphWin&), string label , int menu id ,
int bm w , int bm h, unsigned char ∗ bm bits)

...

int gw.add member call(void (GraphWin :: ∗ func)(), string label ,
int menu id = 0, char ∗ pmap = 0)

...

int gw.add member call(void (GraphWin :: ∗ func)(), string label , int menu id ,
int bm w , int bm h, unsigned char ∗ bm bits)

...

void gw.add separator(int menu id)

...

void gw.display help text(string fname)

displays the help text contained in name.hlp. The
file name.hlp must exist either in the current work-
ing directory or in $LEDAROOT/incl/Help.

void gw.add help text(string name)

adds the help text contained in name.hlp with la-
bel name to the help menu of the main window.
The file name.hlp must exist either in the current
working directory or in $LEDAROOT/incl/Help.
Note that this operation must be called before
gw.display().

int gw.get menu(string label)

returns the number of the submenu with label
label or −1 if no such menu exists.

void gw.enable call(int id) enable call with id id.

void gw.disable call(int id) disable call with id id.

bool gw.is call enabled(int id) check if call with id is enabled.

void gw.enable calls() ...

void gw.disable calls() ...

k) Input/Output

int gw.read gw(istream& in)

reads graph in gw format from stream in.

15.6. GRAPH WINDOWS (GRAPHWIN) 579

int gw.read gw(string fname)

reads graph in gw format from file fname.

bool gw.save gw(ostream& out)

writes graph in gw format to output stream out .

bool gw.save gw(string fname, bool ask overwrite = false)

saves graph in gw format to file fname.

int gw.read gml(istream& in)

reads graph in GML format from stream in.

int gw.read gml string(string s)

reads graph in GML format from string s.

int gw.read gml(string fname, bool ask override = false)

reads graph in GML format from file fname. Re-
turns 1 if fname cannot be opened, 2 if a parser
error occurs, and 0 on success.

bool gw.save gml(ostream& out)

writes graph in GML format to output stream out .

bool gw.save gml(string fname, bool ask override = false)

saves graph to file fname in GML format.

bool gw.save ps(string fname, bool ask override = false)

saves a postscript representation of the graph to
fname.

bool gw.save svg(string fname, bool ask override = false)

saves a SVG representation of the graph to fname.

bool gw.save latex(string fname, bool ask override = false)

saves a postscript/latex representation of the
graph to fname.

bool gw.save wmf(string fname, bool ask override = false)

saves a windows metafile representation of the
graph to fname.

bool gw.unsaved changes() returns true if the graph has been changed after
the last save (gw or gml) operation.

bool gw.save defaults(string fname)

saves the default attributes of nodes and edges to
file fname.

580 CHAPTER 15. GRAPHICS

bool gw.read defaults(string fname)

reads the default attributes of nodes and edges
from file fname.

l) Miscellaneous

void gw.set window(window& W)

makes W the window of gw .

void gw.set graph(graph& G) makes G the graph of gw .

void gw.set frameless(bool b) set open frameless mode to b.

void gw.undo clear() empties the undo and redo stacks.

bool gw.wait() waits until the done button is pressed (true re-
turned) or exit is selected from the file menu (false
returned).

bool gw.wait(const char ∗msg)

displays msg and waits until the done button is
pressed (true returned) or exit is selected from the
file menu (false returned).

bool gw.wait(float sec, const char ∗msg = ””)

as above but waits no longer than sec seconds re-
turns ?? if neither button was pressed within this
time interval.

void gw.acknowledge(string s)

displays string s and asks for acknowledgement.

node gw.ask node() asks the user to select a node with the left mouse
button. If a node is selected it is returned other-
wise nil is returned.

edge gw.ask edge() asks the user to select an edge with the left mouse
button. If an edge is selected it is returned other-
wise nil is returned.

bool gw.define area(double& x0 , double& y0 , double& x1 , double& y1 ,
const char ∗msg = ””)

displays message msg and returns the coordinates
of a rectangular area defined by clicking and drag-
ging the mouse.

list<node> gw.get nodes in area(double x0 , double y0 , double x1 , double y1)

returns the list of nodes intersecting the rectan-
gular area (x0, y0, x1, y1).

15.6. GRAPH WINDOWS (GRAPHWIN) 581

list<edge> gw.get edges in area(double x0 , double y0 , double x1 , double y1)

returns the list of edges intersecting the rectangu-
lar area (x0, y0, x1, y1).

void gw.save node attributes()

...

void gw.save edge attributes()

...

void gw.save all attributes() ...

void gw.restore node attributes()

...

void gw.restore edge attributes()

...

void gw.restore all attributes()

...

void gw.reset nodes(long mask = N ALL)

reset node parameters to their default values.

void gw.reset edges(long mask = E ALL)

reset edge parameters to their default values.

void gw.reset() reset node and edge parameters to their default
values.

void gw.reset defaults() resets default parameters to their original values.

node gw.get edit node() returns a node under the current mouse pointer
position (nil if there is no node at the current
position)

edge gw.get edit edge() returns an edge under the current mouse pointer
position (nil if there is no edge at the current po-
sition).

int gw.get edit slider() returns the number of the slider under the current
mouse pointer position (0 if there is no edge slider
at the current position).

void gw.get bounding box(double& x0 , double& y0 , double& x1 , double& y1)

computes the coordinates (x0, y0, x1, y1) of a min-
imal bounding box for the current layout of the
graph.

582 CHAPTER 15. GRAPHICS

void gw.get bounding box(const list<node>& V, const list<edge>& E,
double& x0 , double& y0 , double& x1 , double& y1)

computes the coordinates (x0, y0, x1, y1) of a min-
imal bounding box for the current layout of sub-
graph (V,E).

15.7. THE GRAPHWIN (GW) FILE FORMAT 583

15.7 The GraphWin (GW) File Format

The gw-format is the external graph format of GraphWin. It extends LEDA’s graph
format described in the previous section by additional parameters and attributes for
describing graph drawings. Note that the gw-format was not defined to be a readable
or easy to extend file format (in contrast to the GML format that is also supported by
GraphWin).

Each gw file starts with a LEDA graph followed by a (possibly empty) layout section. An
empty layout section indicates that no drawing of the graph is known, e.g. in the input
file of a layout algorithm. If a layout section is given, it consists of three parts:

1. global parameters

2. node attributes

3. edge attributes

Global Parameters

The global parameter section consists of 7 lines (with an arbitrary number of inter-mixed
comment-lines).

1. version line
The version line specifies the version of of the gw-format. It consists of the string
GraphWin followed by a floating-point number (1.32 for the current version of Graph-
Win).

2. window parameters
scaling wxmin wymin wxmax wymax
This line consists of 5 floating-point numbers specifiying the scaling, mini-
mal/maximal x- and y-coordinates of the window (see the window class of LEDA).

3. node label font
type size
This line defines the font used for node labels. The type value of of type int. Possible
values (see gw font type) are
0 (roman font)
1 (bold font)
2 (italic font)
3 (fixed font). The size value is of type int and defines the size of the font in
points.

4. edge label font
type size as above, but defines the font used for edge labels.

5. node index format
format
This line contains a printf-like format string used for constructing the index label
of nodes (e.g. %d).

584 CHAPTER 15. GRAPHICS

6. edge index format
format
This line contains a printf-like format string used for constructing the index label
of edges (e.g. %d).

7. multi-edge distance
dist
This line contains a floating-point parameter dist that defines the distance used to
draw parallel edges.

We close the description of the global parameter section with an example.

version

GraphWin 1.32

window parameters

1.0 -10.0 -5.0 499.0 517.0

node font

0 12

edge font

0 12

node index string

%d

edge index string

%d

multi-edge distance

4.0

Node Attributes

The node attribute section contains for each node of the graph a line consisting of the
following attributes (separated by blanks). More precisely, the i-th line in this section
defines the attributes of the i-th node of the graph (see section leda-format).

x-coordinate
an attribute of type double defining the x-coordinate of the center of the node.

y-coordinate
an attribute of type double defining the y-coordinate of the center of the node.

shape
an attribute of type int defining the shape of the node. Possible values are (see
gw node shape of GraphWin)
0 (circle node)
1 (ellipse node)
2 (square node)
3 (rectangle node.

15.7. THE GRAPHWIN (GW) FILE FORMAT 585

border color
an attribute of type int defining the color used to draw the boundary line of the
node. Possible values are (see the LEDA color type)
-1 (invisible)
0 (black)
1 (white)
2 (red)
3 (green)
4 (blue)
5 (yellow)
6 (violet)
7 (orange)
8 (cyan)
9 (brown)
10 (pink)
11 (green2)
12 (blue2)
13 (grey1)
14 (grey2)
15 (grey3)
16 (ivory).

border width
an attribute of type double defining the width of the border line of the node.

radius1
an attribute of type double defining the horizontal radius of the node

radius2
an attribute of type double defining the vertical radius of the node

color
an attribute of type int defining the color used to fill the interior of the node. See
the LEDA color type for possible values.

label type
an attribute of type int specifying the label type. Possible values (see gw label type

of GraphWin) are
0 (no label)
1 (user label)
2 (data label)
3 (index label).

label color
an attribute of type int defining the color used to draw the label of the node. See
the LEDA color type for possible values.

label position
an attribute of type int defining the label position. Possible values (see gw position

586 CHAPTER 15. GRAPHICS

of GraphWin) are
0 (central pos)
1 (northwest pos)
2 (north pos)
3 (northeast pos)
4 (east pos)
5 (southeast pos)
6 (south pos)
7 (southwest pos)
8 (west pos).

user label
an attribute of type string defining the user label of the node.

We close this section with an example of a node attribute line that describes a circle node
at position (189, 260) with border color black, border width 0.5, horizontal and vertical
radius 12, interior color ivory, label type index label, label position east pos, and an
empty user label.

x y shape b-clr b-width radius1 radius2 clr l-type l-clr l-pos l-str

189.0 260.0 0 1 0.5 12.0 12.0 16 3 -1 4

Edge Attributes:

The edge attribute section contains for each edge of the graph a line consisting of the
following attributes (separated by blanks). More precisely, the i-th line in this section
defines the attributes of the i-th edge of the graph (see section leda-format).

width
an attribute of type double defining the width of the edge.

color
an attribute of type color defining the color of the edge.

shape
an attribute of type int defining the shape of the edge. Possible values (see
gw edge shape of GraphWin) are
0 (poly edge)
1 (circle edge)
2 (bezier edge)
3 (spline edge).

style
an attribute of type int defining the line style of the edge. Possible values (see the
LEDA line style type) are
o (solid)
1 (dashed)
2 (dotted)
3 (dashed dotted).

15.7. THE GRAPHWIN (GW) FILE FORMAT 587

direction
an attribute of type int defining whether the edge is drawn as a directed or an
undirected edge. Possible values (see gw edge dir of GraphWin) are
0 (undirected edge)
1 (directed edge)
2 (redirected edge)
3 (bidirected edge).

label type
an attribute of type int defining the label type of the edge. Possible values (see
gw label type of GraphWin) are
0 (no label)
1 (user label)
2 (data label)
3 (index label).

label color
an attribute of type int defining the color of the edge label. See the LEDA color
type for possible values.

label position
an attribute of type int defining the position of the label. Possible values (see
gw position of GraphWin) are
0 (central pos)
4 (east pos)
8 (west pos blue).

polyline
an attribute of type list < point > defining the polyline used to draw the edge.
The list is represented by the number n of elements followed by n points (xi, yi)
for i = 1 . . . n. The first element of the list is the point where the edge leaves the
interior of the source node, the last element is the point where the edge enters the
interior of the target node. The remaining elements give the sequence of bends (or
control points in case of a bezier or spline edge).

user label
an attribute of type string defining the user label of the edge.

We close this section with an example of an edge attribute line that describes a blue solid
polygon edge of width 0.5 drawn directed from source to target, with a black user-defined
label ”my label” at position east pos, centered source and target anchors, and with a
bend at position (250, 265).

width clr shape style dir ltype lclr lpos sanch tanch poly lstr

0.5 4 0 0 1 1 1 4 (0,0) (0,0) 3 (202.0,262.0) (250.0,265.0)

15.7.1 A complete example

LEDA.GRAPH

588 CHAPTER 15. GRAPHICS

void

void

5

|{}|

|{}|

|{}|

|{}|

|{}|

7

1 2 0 |{}|

1 3 0 |{}|

2 3 0 |{}|

3 4 0 |{}|

3 5 0 |{}|

4 5 0 |{}|

5 1 0 |{}|

version string

GraphWin 1.320000

scaling wxmin wymin wxmax wymax

1.117676 -10 -5.6875 499.8828 517.6133

node label font and size

0 13.6121

edge label font and size

0 11.79715

node index format

%d

edge index format

%d

multi-edge distance

4.537367

#

node infos

x y shape bclr bwidth r1 r2 clr ltype lclr lpos lstr

189.4805 260.8828 0 1 0.544484 12.70463 12.70463 16 4 -1 4

341.5508 276.0898 0 1 0.544484 12.70463 12.70463 16 4 -1 4

384.4883 175.9023 0 1 0.544484 12.70463 12.70463 16 4 -1 4

294.1406 114.1797 0 1 0.544484 12.70463 12.70463 16 4 -1 4

186.7969 114.1797 0 1 0.544484 12.70463 12.70463 16 4 -1 4

#

edge infos

width clr shape style dir ltype lclr lpos sanch tanch poly lstr

0.9074733 1 0 0 1 1 1 5 (0,0) (0,0) 2 (202.122,262.147) (328.9092,274.8257)

0.9074733 1 0 0 1 1 1 5 (0,0) (0,0) 2 (201.1272,255.8074) (372.8415,180.9778)

0.9074733 1 0 0 1 1 1 5 (0,0) (0,0) 2 (346.5554,264.4124) (379.4837,187.5797)

0.9074733 1 0 0 1 1 1 5 (0,0) (0,0) 2 (373.998,168.7357) (304.6309,121.3463)

0.9074733 1 0 0 1 1 1 5 (0,0) (0,0) 2 (372.361,172.116) (198.9242,117.966)

0.9074733 1 0 0 1 1 1 5 (0,0) (0,0) 2 (281.436,114.1797) (199.5015,114.1797)

15.7. THE GRAPHWIN (GW) FILE FORMAT 589

0.9074733 1 0 0 1 1 1 5 (0,0) (0,0) 2 (187.0292,126.8822) (189.2481,248.1803)

590 CHAPTER 15. GRAPHICS

15.8 Geometry Windows (GeoWin)

1. Definition

An instance of data type GeoWin is an editor for sets of geometric objects . It can

be used for the visualization of result and progression of geometric algorithms. GeoWin

provides an interactive interface and a programming interface to visualize and manipulate

geometric objects and data structures.

Sets of geometric objects are maintained in so-called scenes .

Scenes

Scenes are instances of the various scene data types supported by GeoWin. They are used

to store collections of geometric objects and attributes of the objects and collections.

Furthermore the scene classes have to provide functionality for GeoWin to handle the

geometric objects of a scene.

Each scene stores geometric objects in a container (a LEDA-list or STL-list). We call

these geometric objects stored in a container of a scene the contents of a scene. The scenes

and their contents can be manipulated by the interactive interface and the programming

interface of GeoWin.

With every scene a set of attributes is associated. Most of them describe the visual

representation of the scene, for instance the boundary- and fill-color of the objects, the

visibility of the scene,... .

We use the type geo scene as the scene item type of GeoWin; it may be helpful to view

it as pointers to scenes.

We distinguish the following types of scene classes:

1. Edit Scenes (type GeoEditScene<CONTAINER>)

where CONTAINER is the type of the scene’s container storing the contents of the

scene, for instance list<point>. These scenes can be edited by the user through the

interactive interface of GeoWin. Note that edit scenes have some special features.

An important feature is the possibility to select objects through the interactive

interface. These selected objects have special attributes, see the table of scene

attributes.

2. Result Scenes (type GeoResultScene<I, R>)

These scenes are not independently editable by the user. The contents of result

scenes is computed by a user-defined update function or update object executing a

geometric algorithm. This recomputation of the scene contents will be done every

time when another scene (this other scene we call the input scene of the result scene)

15.8. GEOMETRY WINDOWS (GEOWIN) 591

changes. The contents of the result scene is stored in a container of type R. The

input scene must be a Basic Scene with a container of type I. The update function

void (∗f update)(const I& input , R& result) gets the contents of this input scene

and computes the contents result of the result scene. We say that the result scene

depends on its input scene.

3. Basic Scenes (type GeoBaseScene<CONTAINER>)

Edit Scenes and Result Scenes are derived from Basic Scenes. The basic scene type

works on container types providing an interface as the list of the STL library. More

precisely, CONTAINER has to support the following type definitions and STL-like

operations:

• value type - the type T of the values the container holds

• iterator

• operations begin() and end() returning an iterator that can be used for

begining (ending) the traversal of the container

• void push back(const T&) for inserting an element at the end of the container

• iterator insert(iterator it , const T&) for inserting an element (before it)

• void erase(iterator it) for erasing an element at position it

• operation bool empty() returning true if the container is empty, false otherwise

That means, that LEDA lists can be used as well as containers.

The programming interface of GeoWin provides various operations to create Edit Scenes

and Result Scenes. Basic Scenes are not created directly by the operations of the pro-

gramming interface, but they are used for derivation of the other scene types, and we will

find them in the programming interface, when both Edit and Result Scenes are supported

by an operation.

GeoWin - class

We explain some important terms of the GeoWin data type. Every instance GW of

GeoWin can maintain a number of geo scenes .

Visible scenes will be displayed byGW , non-visible scenes will not be displayed. Displayed

means, that the contents of the scene will be displayed. A special case is the active scene

of GW . Every GeoWin can have at most one active scene. The active scene is an Edit

Scene with input focus. That means that this scene is currently edited by the user through

the interactive interface. Note that the currently active scene will be displayed.

Another important topic is the display order of scenes. Every scene has an associated

non-negative z-coordinate. When a scene is created, it gets z-coordinate 0. When GW

redraws a scene, the contents of this scene and the contents of its visible dependent scenes

is drawn. In the redraw-operation of GeoWin the scenes with higher z-coordinates will be

drawn in the background of scenes with lower z-coordinate.The scenes with z-coordinate

592 CHAPTER 15. GRAPHICS

0 will be drawn on top in the order of their creation in its instance of GeoWin (the scene,

that was created last and has z-coordinae 0 is the scene on top).

Attributes of scenes

The following attributes are associated with every scene.

Name Type Description

active bool activity status of a scene
active line width int line width used for drawing objects of active scenes
client data void∗ some void∗-pointers that can be associated with a scene
color color boundary color of non-selected objects
description string a string describing the scene
fill color color fill color of objects
line style line style line style used for drawing objects
line width int line width used for drawing objects of non-active scenes
name string the name of the scene
point style point style point style used for drawing objects
selection color color boundary color selected objects
selection fill color color fill color of selected objects
show orientation bool disables/enables the drawing of object orientations/directions
text color color text label color
visible bool visibility of a scene in its GeoWin
z order int z-coordinate of a scene in its GeoWin

Attributes and parameters of instances of GeoWin

Every instance of type GeoWin uses the following attributes and parameters. The pa-

rameters starting with d3 are influencing the 3-d output option of GeoWin. This 3-d

output option uses the LEDA-class d3 window for displaying geometric objects. See also

the d3 window - Manualpages for a description of the 3-d output parameters.

Name Type Description

active scene geo scene the active scene
bg color color window background color
bg pixmap string name of the used window background pixmap
d3 elimination bool true - in the d3-output hidden lines will be eliminated
d3 show edges bool enables/disables the redraw of edges in the d3-output
d3 solid bool true - in the d3-output faces will be drawn in different grey scales
grid dist double width of the grid in the drawing area
grid style grid style style of the grid in the drawing area
show grid bool defines if a grid should be used in the drawing area of the window
show position bool true - the coordinates of the mouse cursor are displayed

15.8. GEOMETRY WINDOWS (GEOWIN) 593

The geometric objects

The objects stored in the containers of the scenes have to support input and output

operators for streams and the LEDA window and the output operator to the ps file.

Manual overview

The following manual pages have this structure:

• a) Main operations (creation of scenes)

• b) Window operations (initialization of the drawing window)

• c) Scenes and scene groups (get/set - operations for changing attributes)

• d) I/O operations

• e) View operations (zooming)

• f) Parameter operations (get/set - operations for instances of type GeoWin)

• g) Event handling

• h) Scene group operations

• i) Further operations (changing of the user interface, 3d output, ...)

#include < LEDA/graphics/geowin.h >

2. Creation

GeoWin GW (const char ∗ label = ”GEOWIN ”);

creates a GeoWin GW . GW is constructed with frame label label

GeoWin GW (int w, int h, const char ∗ label = ”GEOWIN ”);

creates a GeoWin GW with frame label label and window size w×h
pixels.

3. Operations

a) Main Operations

In this section you find operations for creating scenes and for starting

the interactive mode of GeoWin.

The new scene and get objects operations use member templates. If your compiler

does not support member templates, you should use instead the templated functions

594 CHAPTER 15. GRAPHICS

geowin new scene and geowin get objects with GW as an additional first parameter.

All new scene operations can get as an optional last parameter a pointer to a function

that is used to compute the three-dimensional output of the scene. The type of such a

function pointer f is

void (∗f)(const T&, d3 window&, GRAPH <d3 point , int>&))

where T is the type of the container used in the scene (for instance list<point>). The

function gets a reference to the container of it’s scene, a reference to the output d3 window

and to the parametrized graph describing the three-dimensional output. The function

usually adds new nodes and edges to this graph. Note that every edge in the graph must

have a reversal edge (and the reversal information has to be set).

Example:

void segments_d3(const list<segment>& L,d3_window& W,

GRAPH<d3_point,int>& H)

{

GRAPH<d3_point,int> G;

segment iter;

forall(iter,L) {

node v1 = G.new_node(d3_point(iter.source().xcoord(),

iter.source().ycoord(),0));

node v2 = G.new_node(d3_point(iter.target().xcoord(),

iter.target().ycoord(),0));

edge e1 = G.new_edge(v1,v2);

edge e2 = G.new_edge(v2,v1);

G.set_reversal(e1,e2);

}

H.join(G);

}

In this simple example the function gets a list of segments. For every segment in the list
two new nodes and two new edges are created. The reversal information is set for the two
edges. At the end the local graph G is merged into H.

The following templated new scene operation can be used to create edit scenes. The
CONTAINER has to be a list<T> , where T is one of the following 2d LEDA kernel type

• (rat)point

• (rat)segment

• (rat)line

• (rat)circle

• (rat)polygon

15.8. GEOMETRY WINDOWS (GEOWIN) 595

• (rat)gen polygon

or a d3 point or a d3 rat point . If you want to use the other 2d LEDA kernel types,
you have to include geowin init.h and to initialize them for usage in GeoWin by calling
the geowin init default type function at the beginning of main (before an object of data
type GW is constructed). If you want to use the other 3d LEDA kernel types, you have
to include geowin init d3.h and to initialize them for usage in GeoWin by calling the
geowin init default type function at the beginning of main (before an object of data type
GW is constructed).

template <class CONTAINER>
GeoEditScene<CONTAINER>∗ GW .new scene(CONTAINER& c)

creates a new edit scene and returns a pointer to the
created scene. c will be the container storing the con-
tents of the scene.

template <class CONTAINER>
GeoEditScene<CONTAINER>∗ GW .new scene(CONTAINER& c, string str ,

D3 FCN f)

creates a new edit scene and returns a pointer to the
created scene. c will be the container storing the con-
tents of the scene. The name of the scene will be set
to str .

The following new scene operations can be used to create result scenes. Result scenes
use the contents of another scene (the input scene) as input for a function (the update
function). This function computes the contents of the result scene. The update function
is called every time when the contents of the input scene changes. Instead of using an
update function you can use an update object that encapsulates an update function. The
type of this update object has to be geowin update<I, R> (I - type of the container in the
input scene, R - type of the container in the result scene) or a class derived from it. A
derived class should overwrite the virtual update function

void update(const I& in, R& out)

of the base class to provide a user defined update function. The class geowin update<I, R>
has 3 constructors getting function pointers as arguments:

geowin update(void (∗f)(const I& in, R& res)

geowin update(void (∗f)(const I& in, R ::value type& obj)

geowin update(R ::value type (∗f)(const I& in)

When the update object is constructed by calling the constructor with one of these func-
tion pointers, the function (∗f) will be called in the update method of the update object.
The first variant is the normal update function that gets the contents in of the input scene
and computes the contents res of the output scene. In the second variant the contents of
the result scene will first be cleared, then the update function will be called and obj will

596 CHAPTER 15. GRAPHICS

be inserted in the result scene. In the third variant the contents of the result scene will
be cleared, and then the object returned by (∗f) will be inserted in the result scene. The
class geowin update has also the following virtual functions:

bool insert(const InpObject& new)

bool del(const InpObject& new)

bool change(const InpObject& old obj , const InpObject& new obj)

where new is a new inserted or deleted object and old obj and new obj are objects be-
fore and after a change. InpObject is the value type of the container of the input scene.
With these functions it is possible to support incremental algorithms. The functions
will be called, when in the input scene new objects are added (insert), deleted (del)
or changed when performing a move or rotate operation (change). In the base class
geowin update<I, R> these functions return false. That means, that the standard update-
function of the update object should be used. But in derived classes it is possible to
overwrite these functions and provide user-defined update operations for these three in-
cremental operations. Then the function has to return true. That means, that the stan-
dard update function of the update object should not be used. Instead the incremental
operation performs the update-operation.

It is also possible to provide user defined redraw for a scene. For this purpose we use
redraw objects derived from geowin redraw . The derived class has to overwrite the virtual
redraw function

void draw(window& W, color c1 , color c2 , double x1 , double y1 , double x2 , double y2)

of the base class to provide a user defined redraw function. The first 3 parameters of this
function are the redraw window and the first and second drawing color (color and color2)
of the scene. The class geowin redraw has also a virtual method

bool draw container()

that returns false in the base class. If you want the user defined redraw of the scene
(provided by the redraw function draw) and the execution of the ’normal’ redraw of
the scene as well (output of the objects stored in the container of the scene), you have
to overwrite draw container in a derived class by a function returning true. A virtual
method

bool write postscript(ps file& PS , color c1 , color c2)

is provided for output to a LEDA postscript file PS . c1 and c2 are the first and second
drawing color (color and color2) of the scene. Another class that can be used for user
defined redraw is the templated class geowin redraw container<CONTAINER>. This class
has as well virtual functions for redraw and postscript output, but provides a slighly
changed interface:

bool draw(const CONTAINER& c, window& w, color c1 , color c2 ,
double, double, double, double)

15.8. GEOMETRY WINDOWS (GEOWIN) 597

bool write postscript(const CONTAINER& c, ps file& ps , color c1 , color c2)

The parameters of these two virtual functions are like the parameters of the members
with the same name of geowin redraw , but there is an additional first parameter. This
parameter is a reference to the container of the scene that has to be redrawn.

In update- and redraw- functions and objects the following static member functions of
the GeoWin class can be used:

GeoWin ∗GeoWin ::get call geowin()
geo scene GeoWin ::get call scene()
geo scene GeoWin ::get call input scene()

The first function returns a pointer to the GeoWin of the calling scene, the second returns
the calling scene and the third (only usable in update functions/ objects) returns the input
scene of the calling scene.

Note that S and R in the following operations are template parameters. S and R have
to be a list<T>, where T is a 2d LEDA kernel type, a d3 point or a d3 rat point . S is the
type of the contents of the input scene, R the type of the contents of the created result
scene. All operations creating result scenes return a pointer to the created result scene.

This section contains three small example programs showing you the usage of the
new scene operations for the creation of result scenes. All example programs compute
the convex hull of a set of points stored in the container of an input scene sc points and
store the computed hull in a result scene sc hull .

template <class S, class R>
GeoResultScene<S,R>∗ GW .new scene(void (∗f update)(const S& , R&), geo scene sc,

string str , D3 FCN f = NULL)

creates a new result scene with name str . The input
scene for this new result scene will be sc. The update
function will be f update.

The first example program shows the usage of the new scene operation taking an update
function pointer. The update function computes the convex hull of the points stored in
the input scene. The result polygon will be inserted in the container P of the result scene.

#include <LEDA/graphics/geowin.h>

#include <LEDA/geo/float_geo_alg.h>

using namespace leda;

void convex_hull(const list<point>& L, list<polygon>& P)

{ P.clear(); P.append(CONVEX_HULL_POLY(L)); }

int main()

{

GeoWin gw;

list<point> LP;

598 CHAPTER 15. GRAPHICS

geo_scene sc_points = gw.new_scene(LP);

geo_scene sc_hull = gw.new_scene(convex_hull, sc_points, "Convex hull");

gw.set_color(sc_hull, blue);

gw.set_visible(sc_hull, true);

gw.edit(sc_points);

return 0;

}

template <class S, class R>
GeoResultScene<S,R>∗ GW .new scene(geowin update<S,R>& up, list<geo scene>& infl ,

string str , D3 FCN f = NULL)

creates a new result scene scr with name str . The
input scene for this new result scene will be the first
scene in infl . The update object will be up. up has
to be constructed by a call up(fu, 0), where fu is a
function of type void fu(const C0&, const C1&, ...,
const Cn&, R&). infl is a list of scenes influencing the
result scene. C0 ,...,Cn are the types of the containers
of the scenes in infl . When one of the scenes in infl
changes, fu will be called to update the contents of
scr . Precondition: infl must not be empty.

template <class S, class R>
GeoResultScene<S,R>∗ GW .new scene(geowin update<S,R>& up, geo scene sc input ,

string str , D3 FCN f = NULL)

creates a new result scene with name str . The input
scene for this new result scene will be sc input . The
update object will be up.

The second variant of the example program uses an update object update.

#include <LEDA/graphics/geowin.h>

#include <LEDA/geo/float_geo_alg.h>

using namespace leda;

int main()

{

GeoWin gw;

list<point> LP;

geo_scene sc_points = gw.new_scene(LP);

geowin_update<list<point>, list<polygon> > update(CONVEX_HULL_POLY);

geo_scene sc_hull = gw.new_scene(update, sc_points, "Convex hull");

gw.set_color(sc_hull, blue);

gw.set_visible(sc_hull, true);

gw.edit(sc_points);

15.8. GEOMETRY WINDOWS (GEOWIN) 599

return 0;

}

template <class S, class R>
void GW .set update(geo scene res , geowin update<S,R>& up)

makes up the update object of res . Precondition: res
points to a scene of type GeoResultScene<S,R> .

template <class S, class R>
void GW .set update(geo scene res , void (∗f update)(const S& , R&))

makes f update the update function of res .
Precondition: res points to a scene of type
GeoResultScene<S,R> .

template <class S, class R>
GeoResultScene<S,R>∗ GW .new scene(geowin update<S,R>& up, geowin redraw& rd ,

geo scene sc input , string str ,
D3 FCN f = NULL)

creates a new result scene with name str . The input
scene for this new result scene will be sc input . The
update object will be ub. The redraw object will be
rd .

The third variant of the example program uses an update and redraw object. We provide
a user defined class for update and redraw of the result scene.

#include <LEDA/graphics/geowin.h>

#include <LEDA/geo/float_geo_alg.h>

using namespace leda;

class hull_update_redraw : public geowin_update<list<point>, list<polygon> > ,

public geowin_redraw

{

list<polygon> polys;

public:

void update(const list<point>& L, list<polygon>& P)

{

polys.clear();

polys.append(CONVEX_HULL_POLY(L));

}

void draw(window& W,color c1,color c2,double x1,double y1,double x2,double y2)

{

polygon piter;

segment seg;

forall(piter, polys){

forall_segments(seg, piter){

W.draw_arrow(seg, c1);

}

}

600 CHAPTER 15. GRAPHICS

}

};

int main()

{

GeoWin gw;

list<point> LP;

geo_scene sc_points = gw.new_scene(LP);

hull_update_redraw up_rd;

geo_scene sc_hull = gw.new_scene(up_rd, up_rd, sc_points, "Convex hull");

gw.set_color(sc_hull, blue);

gw.set_visible(sc_hull, true);

gw.edit(sc_points);

return 0;

}

template <class S, class R>
GeoResultScene<S,R>∗ GW .new scene(geowin update<S,R>& up,

geowin redraw container<R>& rd ,
geo scene sc input , string str ,
D3 FCN f = NULL)

creates a new result scene with name str . The input
scene for this new result scene will be sc input . The
update object will be ub. The redraw container object
will be rd .

template <class CONTAINER>
bool GW .get objects(CONTAINER& c)

If the container storing the contents of the current
edit scene has type CONTAINER, then the contents
of this scene is copied to c.

template <class CONTAINER>
bool GW .get objects(geo scene sc, CONTAINER& c)

If the container storing the contents of scene sc has
type CONTAINER, then the contents of scene sc is
copied to c.

template <class CONTAINER>
void GW .get selected objects(GeoEditScene<CONTAINER> ∗ sc,

CONTAINER& cnt)

returns the selected objects of scene sc in container
cnt .

template <class CONTAINER>

15.8. GEOMETRY WINDOWS (GEOWIN) 601

void GW .set selected objects(GeoEditScene<CONTAINER> ∗ sc,
const list<typename CONTAINER ::iterator>& LIT)

selects the objects of scene sc described by the con-
tents of container LIT .

template <class CONTAINER>
void GW .set selected objects(GeoEditScene<CONTAINER> ∗ sc)

selects all objects of scene sc.

template <class CONTAINER>
void GW .set selected objects(GeoEditScene<CONTAINER> ∗ sc,

const rectangle& R)

selects all objects of scene sc contained in rectangle
R.

void GW .edit() starts the interactive mode of GW . The operation re-
turns if either theDONE or Quit button was pressed.

bool GW .edit(geo scene sc)

edits scene sc. Returns false if the Quit-Button was
pressed, true otherwise.

void GW .register window(window& win, bool (∗ev fcn)(window ∗ w, int event ,
int but , double x, double y))

if you enter the interactive mode of GW in an applica-
tion, but you want to handle events of other windows
as well, you can register a callback function ev fcn for
your other window win that will be called when events
associated with win occur. The parameters of ev fcn
are the window causing the event, the event that oc-
curred, the button and the x and y coordinates of the
position in win. The handler ev fcn has to return true
if the interactive mode of GeoWin has to be stopped,
false otherwise.

Simple Animations

The following operation can be used to perform simple animations. One can animate the
movement of selected objects of a scene. This can be done in the following way: select
a number of objects in an edit scene; then start the animation by calling the animate
member function. The second parameter of this member function is an object anim of
type geowin animation, the first parameter is the scene that will be animated. The object
anim has to be derived from the abstract base class geowin animation. The derived class
has to overwrite some methods of the base class:

class geowin_animation {

public:

virtual void init(const GeoWin&) { }

virtual void finish(const GeoWin&) { }

602 CHAPTER 15. GRAPHICS

virtual bool is_running(const GeoWin&) { return true; }

virtual point get_next_point(const GeoWin&) = 0;

virtual long get_next_action(const GeoWin&)

{ return GEOWIN_STOP_MOVE_SELECTED; }

};

At the start and at the end of an animation the member functions init and finish
are called. The animation is stopped if is running returns false. The member func-
tions get next point and get next action specify the animation. get next point deliv-
ers the next point of the animation path. get next action currently can return two
values: GEOWIN MOVE SELECTED (moves the selected objects of the scene) and
GEOWIN STOP MOVE SELECTED (stops the movement of the selected objects of the
scene).

bool GW .animate(geo scene sc, geowin animation& anim)

starts animation anim for edit scene sc.

b) Window Operations

void GW .close() closes GW .

double GW .get xmin() returns the minimal x-coordinate of the drawing area.

double GW .get ymin() returns the minimal y-coordinate of the drawing area.

double GW .get xmax() returns the maximal x-coordinate of the drawing area.

double GW .get ymax() returns the maximal y-coordinate of the drawing area.

void GW .display(int x = window ::center , int y = window ::center)

opens GW at (x, y).

window& GW .get window() returns a reference to the drawing window.

void GW .init(double xmin, double xmax , double ymin)

same as window::init(xmin, xmax, ymin, g).

void GW .init(double x1 , double x2 , double y1 , double y2 ,
int r = GEOWIN MARGIN)

inializes the window so that the rectangle with lower
left corner (x1 − r, y1 − r) and upper right corner
(x2 + r, y2 + r) is visible. The window must be open.
GEOWIN MARGIN is a default value provided by
GeoWin.

void GW .redraw() redraws the contents of GW (all visible scenes).

int GW .set cursor(int cursor id = −1)

sets the mouse cursor to cursor id.

15.8. GEOMETRY WINDOWS (GEOWIN) 603

bool GW .get show status()

return

bool GW .set show status(bool b)

display a status window (b=true) or not (b=false).
The operation should be called before the first display
- operation of GW .

bool GW .set show menu(bool v)

sets the visibility of the menu of GW to v.

void GW .set menu add fcn(void (∗mfcn)(window& W))

This handler function can be used to add own menus
to the menu bar of a GeoWin. It is called before
the menu initialization of a GeoWin. See the demo
program geowin gui for an example.

bool GW .set show file menu(bool v)

sets the visibility of the file menu of GW to v.

bool GW .set show edit menu(bool v)

sets the visibility of the edit menu of GW to v.

bool GW .set show scenes menu(bool v)

sets the visibility of the scenes menu of GW to v.

bool GW .set show window menu(bool v)

sets the visibility of the window menu of GW to v.

bool GW .set show options menu(bool v)

sets the visibility of the options menu of GW to v.

bool GW .set show algorithms menu(bool v)

sets the visibility of the algorithms menu of GW to v.

bool GW .set show help menu(bool v)

sets the visibility of the help menu of GW to v.

void GW .init menu(window ∗ wptr = NULL)

initializes the menu of GW . Normally you don’t have
to call this operation directly, but if you want to add
additional graphical elements like sliders or buttons to
the window of GW you have to call init window (with
no parameters). After that add the desired elements
and then call edit or display . See the demo programs
for examples.

c) Scene and scene group Operations

604 CHAPTER 15. GRAPHICS

geo scene GW .get scene with name(string nm)

returns the scene with name nm or nil if there is no
scene with name nm.

void GW .activate(geo scene sc)

makes scene sc the active scene of GW .

int GW .get z order(geo scene sc)

returns the z-coordinate of sc.

int GW .set z order(geo scene sc, int n)

sets the z-coordinate of sc to n and returns its previ-
ous value.

In front of the scenes of a GeoWin object a so-called ”user layer” can store some geometric
objects illustrating scenes. The following functions let you add some of these objects.

void GW .add user layer segment(const segment& s)

adds segment s to the segments of the user layer.

void GW .add user layer circle(const circle& c)

adds circle c to the circles of the user layer.

void GW .add user layer point(const point& p)

adds point p to the points of the user layer.

void GW .add user layer rectangle(const rectangle& r)

adds rectangle r to the rectangles of the user layer.

void GW .remove user layer objects()

removes all objects of the user layer.

void GW .set draw user layer fcn(void (∗fcn)(GeoWin∗))
this function can be used for additional user-defined
redraw after drawing the objects of the user layer.

void GW .set postscript user layer fcn(void (∗fcn)(GeoWin∗, ps file&))

geo scene GW .get active scene()

returns the active scene of GW .

bool GW .is active(geo scene sc)

returns true if sc is an active scene in a GeoWin.

The following get and set operations can be used for retrieving and changing scene pa-
rameters. All set operations return the previous value.

string GW .get name(geo scene sc)

returns the name of scene sc.

15.8. GEOMETRY WINDOWS (GEOWIN) 605

string GW .get name(geo scenegroup gs)

returns the name of scene group gs .

string GW .set name(geo scene sc, string nm)

gives scene sc the name nm. If there is already a scene
with name nm, another name is constructed based on
nm and is given to sc. The operation will return the
given name.

color GW .get color(geo scene sc)

returns the boundary drawing color of scene sc.

color GW .set color(geo scene sc, color c)

sets the boundary drawing color of scene sc to c.

void GW .set color(geo scenegroup gs , color c)

sets the boundary drawing color of all scenes in group
gs to c.

color GW .get selection color(geo scene sc)

returns the boundary drawing color for selected ob-
jects of scene sc.

color GW .set selection color(geo scene sc, color c)

sets the boundary drawing color for selected objects
of scene sc to c.

void GW .set selection color(geo scenegroup gs , color c)

sets the boundary drawing color for selected objects
of all scenes in gs to c.

color GW .get selection fill color(geo scene sc)

returns the fill color for selected objects of scene sc.

color GW .set selection fill color(geo scene sc, color c)

sets the fill color for selected objects of scene sc to c.

line style GW .get selection line style(geo scene sc)

returns the line style for selected objects of scene sc.

line style GW .set selection line style(geo scene sc, line style l)

sets the line style for selected objects of scene sc to l.

int GW .get selection line width(geo scene sc)

returns the line width for selected objects of scene sc.

int GW .set selection line width(geo scene sc, int w)

sets the line width for selected objects of scene sc to
w.

606 CHAPTER 15. GRAPHICS

color GW .get fill color(geo scene sc)

returns the fill color of sc.

color GW .set fill color(geo scene sc, color c)

sets the fill color of sc to c. Use color invisible to
disable filling.

void GW .set fill color(geo scenegroup gs , color c)

sets the fill color of all scenes in gs to c. Use color
invisible to disable filling.

color GW .get text color(geo scene sc)

returns the text color of sc.

color GW .set text color(geo scene sc, color c)

sets the text color of sc to c.

void GW .set text color(geo scenegroup gs , color c)

sets the text color of all scenes in gs to c.

int GW .get line width(geo scene sc)

returns the line width of scene sc .

int GW .get active line width(geo scene sc)

returns the active line width of sc .

int GW .set line width(geo scene sc, int w)

sets the line width for scene sc to w.

void GW .set line width(geo scenegroup gs , int w)

sets the line width for all scenes in gs to w.

int GW .set active line width(geo scene sc, int w)

sets the active line width of scene sc to w.

void GW .set active line width(geo scenegroup gs , int w)

sets the active line width for all scenes in gs to w.

line style GW .get line style(geo scene sc)

returns the line style of sc.

line style GW .set line style(geo scene sc, line style l)

sets the line style of scene sc to l.

void GW .set line style(geo scenegroup gs , line style l)

sets the line style of all scenes in gs to l.

bool GW .get visible(geo scene sc)

returns the visible flag of scene sc.

15.8. GEOMETRY WINDOWS (GEOWIN) 607

bool GW .set visible(geo scene sc, bool v)

sets the visible flag of scene sc to v.

void GW .set visible(geo scenegroup gs , bool v)

sets the visible flag of all scenes in gs to v.

void GW .set all visible(bool v)

sets the visible flag of all scenes that are currently in
GW to v.

point style GW .get point style(geo scene sc)

returns the point style of sc.

point style GW .set point style(geo scene sc, point style p)

sets the point style of sc to p

void GW .set point style(geo scenegroup gs , point style p)

sets the point style of all scenes in gs to p

bool GW .get cyclic colors(geo scene sc)

returns the cyclic colors flag for editable scene sc.

bool GW .set cyclic colors(geo scene sc, bool b)

sets the cyclic colors flag for editable scene sc. If the
cyclic colors flag is set, the new inserted objects of
the scene get color counter%16, where counter is the
object counter of the scene.

string GW .get description(geo scene sc)

returns the description string of scene sc.

string GW .set description(geo scene sc, string desc)

sets the description string of scene sc to desc. The
description string has the task to describe the scene
in a more detailed way than the name of the scene
does.

bool GW .get show orientation(geo scene sc)

returns the show orientation/direction parameter of
scene sc

bool GW .set show orientation(geo scene sc, bool o)

sets the show orientation/direction parameter of scene
sc to o.

void∗ GW .get client data(geo scene sc, int i = 0)

returns the i-th client data pointer of of scene sc. Pre-
condition: i < 16.

608 CHAPTER 15. GRAPHICS

void∗ GW .set client data(geo scene sc, void ∗ p, int i = 0)

sets the i-th client data pointer of scene sc to p and
returns its previous value. Precondition: i < 16.

void GW .set handle defining points(geo scene sc, geowin defining points gdp)

sets the attribute for handling of defining points of
editable scene (∗sc) to gdp. Options for gdp are
geowin show (show the defining points of all objects
of the scene, geowin hide (hide the defining points of
all objects of the scene) and geowin highlight (shows
only the defining points of the object under the mouse-
pointer).

geowin defining points GW .get handle defining points(geo scene sc)

returns the attribute for handling of defining points
of editable scene (∗sc).

The following operations can be used for getting/setting a flag influencing the behaviour
of incremental update operations in result scenes. If update state is true (default) : if the
first incremental operation returns false , incremental update loop will be left
false : the incremental update loop will be executed until the end
You can also set an update limit for the incremental update operations. If a number of
objects bigger than this limit will be added/deleted/changed, the incremental update will
not be executed. Instead the ”normal” scene update operation will be used.

bool GW .get incremental update state(geo scene sc)

returns the incremental update flag of scene sc.

bool GW .set incremental update state(geo scene sc, bool us)

sets the incremental update flag of scene sc to us .

int GW .get incremental update limit(geo scene sc)

returns the incremental update limit of scene sc.

int GW .set incremental update limit(geo scene sc, int l)

sets the incremental update limit of scene sc to l.

It is not only possible to assign (graphical) attributes to a whole scene.

The following operations can be used to set/get individual attributes of objects in scenes.
All set operations return the previous value. The first parameter is the scene, where the
object belongs to. The second parameter is a generic pointer to the object or an iterator
pointing to the position of the object in the container of a scene. Precondition: the object
belongs to the scene (is in the container of the scene).
Note that you cannot use a pointer to a copy of the object.
The following example program demonstrates the setting of individual object attributes
in an update member function of an update class:

15.8. GEOMETRY WINDOWS (GEOWIN) 609

#include <LEDA/graphics/geowin.h>

#include <LEDA/geo/rat_geo_alg.h>

using namespace leda;

class attr_update : public geowin_update<list<rat_point>, list<rat_circle> >

{

void update(const list<rat_point>& L, list<rat_circle>& C)

{

GeoWin* GW_ptr = GeoWin::get_call_geowin();

GeoBaseScene<list<rat_circle> >* aec =

(GeoBaseScene<list<rat_circle> >*) GeoWin::get_call_scene();

C.clear();

if (! L.empty()) {

ALL_EMPTY_CIRCLES(L,C);

// now set some attributes

list<rat_circle>::iterator it = C.begin();

int cw=0;

for(;it!=C.end();it++) {

GW_ptr->set_obj_fill_color(aec,it,color(cw % 15));

GW_ptr->set_obj_color(aec,it,color(cw % 10));

cw++;

}

}

}

};

int main()

{

GeoWin GW("All empty circles - object attribute test");

list<rat_point> L;

geo_scene input = GW.new_scene(L);

GW.set_point_style(input, disc_point);

attr_update aec_help;

geo_scene aec = GW.new_scene(aec_help, input, string("All empty circles"));

GW.set_all_visible(true);

GW.edit(input);

return 0;

}

template <class T>
color GW .get obj color(GeoBaseScene<T> ∗ sc, void ∗ adr)

returns the boundary color of the object at (∗adr).

template <class T>
color GW .get obj color(GeoBaseScene<T> ∗ sc, typename T :: iterator it)

returns the boundary color of the object it points to.

template <class T>

610 CHAPTER 15. GRAPHICS

color GW .set obj color(GeoBaseScene<T> ∗ sc, void ∗ adr , color c)

sets the boundary color of the object at (∗adr) to c.

template <class T>
color GW .set obj color(GeoBaseScene<T> ∗ sc, typename T :: iterator it , color c)

sets the boundary color of the object it points to to c.

template <class T>
bool GW .get obj color(GeoBaseScene<T> ∗ sc,

const typename T ::value type& obj , color& c)

if there is an object o in the container of scene sc with
o == obj the boundary color of o is assigned to c and
true is returned. Otherwise false is returned.

template <class T>
bool GW .set obj color(GeoBaseScene<T> ∗ sc,

const typename T ::value type& obj , color c,
bool all = true)

if there is an object o in the container of scene sc with
o == obj the boundary color of o is set to c and true
will be returned. Otherwise false will be returned.

template <class T>
color GW .get obj fill color(GeoBaseScene<T> ∗ sc, void ∗ adr)

returns the interior color of the object at (∗adr).

template <class T>
color GW .set obj fill color(GeoBaseScene<T> ∗ sc, void ∗ adr , color c)

sets the interior color of the object at (∗adr) to c.

template <class T>
bool GW .get obj fill color(GeoBaseScene<T> ∗ sc,

const typename T ::value type& obj , color& c)

if there is an object o in the container of scene sc with
o == obj the interior color of o is assigned to c and
true is returned. Otherwise false is returned.

template <class T>
bool GW .set obj fill color(GeoBaseScene<T> ∗ sc,

const typename T ::value type& obj , color c,
bool all = true)

if there is an object o in the container of scene sc with
o == obj the interior color of o is set to c and true
will be returned. Otherwise false will be returned.

template <class T>
line style GW .get obj line style(GeoBaseScene<T> ∗ sc, void ∗ adr)

returns the line style of the object at (∗adr).

15.8. GEOMETRY WINDOWS (GEOWIN) 611

template <class T>
line style GW .set obj line style(GeoBaseScene<T> ∗ sc, void ∗ adr , line style l)

sets the line style of the object at (∗adr) to l.

template <class T>
bool GW .get obj line style(GeoBaseScene<T> ∗ sc,

const typename T ::value type& obj , line style& l)

if there is an object o in the container of scene sc with
o == obj the line style of o is assigned to l and true
is returned. Otherwise false is returned.

template <class T>
bool GW .set obj line style(GeoBaseScene<T> ∗ sc,

const typename T ::value type& obj , line style l,
bool all = true)

if there is an object o in the container of scene sc with
o == obj the line style of o is set to l and true will be
returned. Otherwise false will be returned.

template <class T>
int GW .get obj line width(GeoBaseScene<T> ∗ sc, void ∗ adr)

returns the line width of the object at (∗adr).

template <class T>
int GW .set obj line width(GeoBaseScene<T> ∗ sc, void ∗ adr , int w)

sets the line width of the object at (∗adr) to w.

template <class T>
bool GW .get obj line width(GeoBaseScene<T> ∗ sc,

const typename T ::value type& obj , int& l)

if there is an object o in the container of scene sc with
o == obj the line width of o is assigned to l and true
is returned. Otherwise false is returned.

template <class T>
bool GW .set obj line width(GeoBaseScene<T> ∗ sc,

const typename T ::value type& obj , int l,
bool all = true)

if there is an object o in the container of scene sc with
o == obj the line width of o is set to l and true will
be returned. Otherwise false will be returned.

template <class T>
string GW .get obj label(GeoBaseScene<T> ∗ sc, void ∗ adr)

returns the label of the object at (∗adr).

template <class T>
string GW .get obj label(GeoBaseScene<T> ∗ sc, typename T :: iterator it)

returns the label of the object it points to.

612 CHAPTER 15. GRAPHICS

template <class T>
string GW .set obj label(GeoBaseScene<T> ∗ sc, void ∗ adr , string lb)

sets the label of the object at (∗adr) to lb.

template <class T>
string GW .set obj label(GeoBaseScene<T> ∗ sc, typename T :: iterator it ,

string lb)

sets the label of the object it points to to lb.

Object texts
The following operations can be used to add/retrieve objects of type geowin text to objects
in scenes. The class geowin text is used to store graphical representations of texts. It stores
a string (the text) and the following attributes:

Name Type Description

font type geowin font type font type
size double font size
text color color color of the text
user font string font name (if font type = user font)
x offset double offset in x-direction to drawing position
y offset double offset in y-direction to drawing position

The enumeration type geowin font type has the following set of integral constants:
roman font , bold font , italic font , fixed font and user font .
The class geowin text has the following constructors:

geowin_text(string t, double ox, double oy, geowin_font_type ft,

double sz, string uf, color c = black);

geowin_text(string t, geowin_font_type ft, double sz);

geowin_text(string t);

The arguments are: t - the text, ox , oy - the x/y offsets, ft - the font type, sz - the font
size, uf - the user font and c - the text color. If a text is associated with an object, it
will be drawn centered at the center of the bounding box of the object translated by the
x/y - offset parameters. Note that it is also possible to add texts to a whole scene and
to instances of class GeoWin. Then the x/y - offset parameters specify the position (see
add text operation).

template <class T>
bool GW .get obj text(GeoBaseScene<T> ∗ sc, void ∗ adr , geowin text& gt)

Gets the text associated with the object at adr in the
container of scene sc and assigns it to gt . If no text
is associated with the object, false will be returned,
otherwise true.

15.8. GEOMETRY WINDOWS (GEOWIN) 613

template <class T>
bool GW .get obj text(GeoBaseScene<T> ∗ sc, typename T :: iterator it ,

geowin text& gt)

Gets the text associated with the object it points to
and assigns it to gt . If no text is associated with the
object, false will be returned, otherwise true.

template <class T>
void GW .set obj text(GeoBaseScene<T> ∗ sc, void ∗ adr , const geowin text& gt)

Assigns gt to the object at adr in scene sc.

template <class T>
void GW .set obj text(GeoBaseScene<T> ∗ sc, typename T :: iterator it ,

const geowin text& gt)

Assigns gt to the object it points to in scene sc.

template <class T>
void GW .reset obj attributes(GeoBaseScene<T> ∗ sc)

deletes all individual attributes of objects in scene
(∗sc).

d) Input and Output Operations

void GW .read(geo scene sc, istream& is)

reads the contents of sc from input stream is . Before
the contents of sc is cleared.

void GW .write(geo scene sc, ostream& os)

writes the contents of sc to output stream os .

void GW .write active scene(ostream& os)

writes the contents of the active scene of GW to out-
put stream os .

e) View Operations

void GW .zoom up() The visible range is reduced to the half.

void GW .zoom down() The visible range is doubled.

void GW .fill window() changes window coordinate system, so that the ob-
jects of the currently active scene fill the window.

void GW .reset window() resets the visible range to the values that where cur-
rent when constructing GW .

f) Parameter Operations
The following operations allow the set and retrieve the various parameters of GeoWin.

614 CHAPTER 15. GRAPHICS

string GW .get bg pixmap() returns the name of the current background pixmap.

string GW .set bg pixmap(string pix name)

changes the window background pixmap to pixmap
with name pix name. Returns the name of the previ-
ous background pixmap.

color GW .get bg color() returns the current background color.

color GW .set bg color(const color& c)

sets the background color to c and returns its previous
value.

color GW .get user layer color()

returns the current color of the user layer.

color GW .set user layer color(const color& c)

sets the user layer color to c and returns its previous
value.

int GW .get user layer line width()

returns the current line width of the user layer.

int GW .set user layer line width(int lw)

sets the user layer line width to lw and returns its
previous value.

bool GW .get show grid() returns true, if the grid will be shown, false otherwise.

bool GW .set show grid(bool sh)

sets the show grid flag to sh and returns the previous
value.

double GW .get grid dist() returns the grid width parameter.

double GW .set grid dist(double g)

sets the grid width parameter to g and returns the
previous value.

grid style GW .get grid style() returns the grid style parameter.

grid style GW .set grid style(grid style g)

sets the grid style parameter to g and returns the pre-
vious value.

bool GW .get show position()

returns true, if the mouse position will be shown, false
otherwise.

15.8. GEOMETRY WINDOWS (GEOWIN) 615

bool GW .set show position(bool sp)

sets the show position flag to sp and returns the pre-
vious value.

The following operations set or return various parameters that are used in the three-
dimensional output of GeoWin. The three-dimensional output can be started by pressing
the Show D3 Output button in the Window menu.

bool GW .get d3 elimination()

returns true, if elimination of hidden lines in the 3d-
output mode is enabled, false otherwise.

bool GW .set d3 elimination(bool b)

sets the d3 elimination flag of GW to b and returns
its previous value.

bool GW .get d3 solid() return true, if faces in the 3d-output mode have to be
drawn in different grey scales, false otherwise.

bool GW .set d3 solid(bool b)

sets the d3 solid flag of GW to b and returns its pre-
vious value.

bool GW .get d3 show edges()

returns true, if the redraw of edges is enabled in the
3d-output mode, false otherwise.

bool GW .set d3 show edges(bool b)

sets the d3 show edges flag of GW to b and returns
its previous value.

g) Handling of events

GeoWin provides operations for changing its default handling of events. As in GraphWin
(cf. Section 15.6) the user can define what action should follow a mouse or key event.
Constants are defined as in GraphWin :

• A LEFT (left mouse-button)

• A MIDDLE (middle mouse-button)

• A RIGHT (right mouse-button)

• A SHIFT (shift-key)

• A CTRL (control-key)

• A ALT (alt-key)

• A DOUBLE (double click)

616 CHAPTER 15. GRAPHICS

• A DRAG (button not released)

• A IMMEDIATE (do it immediatly without dragging or double click check)

• A OBJECT (editable object at mouse position).

and can be combined with OR ().

void GW .set action(long mask , geo action f = 0)

set action on condition mask to f . geo action is a
function of type void (∗)(GeoWin&, const point&).
For f == 0 the corresponding action is deleted.

geo action GW .get action(long mask)

get action defined for condition mask.

void GW .reset actions() set all actions to their default values.

Default values are defined as follows :

• A LEFT or A LEFT A OBJECT
read a new object at mouse position.

• A LEFT A DRAG
scrolling the window.

• A LEFT A DRAG A OBJECT
move the object.

• A LEFT A CTRL
pin current scene at mouse position or delete the pin point if it is currently there.

• A MIDDLE A OBJECT
toggle the selection state of the object at mouse position.

• A MIDDLE A DRAG
toggle the selection state of the objects in the dragging area.

• A RIGHT A IMMEDIATE
set the options of the currently active scene.

• A RIGHT A IMMEDIATE A OBJECT
opens a menu for the object at mouse position.

void GW .clear actions() clears all actions.

Scene events

The following event handling functions can be set for edit scenes:

15.8. GEOMETRY WINDOWS (GEOWIN) 617

• Pre add handler

• Pre add change handler

• Post add handler

• Pre delete handler

• Post delete handler

• Start, Pre, Post and End change handler

The add handlers will be called when a user tries to add an object to an edit scene in
GeoWin, the delete handlers will be called when the user tries to delete an object and the
change handlers will be called when the user tries to change an object (for instance by
moving it). The templated set operations for setting handlers uses member templates. If
your compiler does not support member templates, you should use instead the templated
functions geowin set HANDLER, where HANDLER is one the following handlers. All
handling functions get as the first parameter a reference to the GeoWin, where the scene
belongs to.

template <class T, class F>

bool GW .set pre add handler(GeoEditScene<T> ∗ sc, F handler)

sets the handler that is called before an ob-
ject is added to (∗sc). handler must have type
bool (∗handler)(GeoWin&, const T :: value type &).
handler gets a reference to the added object. If
handler returns false, the object will not be added
to the scene.

template <class T, class F>

bool GW .set post add handler(GeoEditScene<T> ∗ sc, F handler)

sets the handler that is called after an object
is added to (∗sc). handler must have type
void (∗handler)(GeoWin&, const T :: value type &).
handler gets a reference to the added object.

template <class T, class F>

bool GW .set pre del handler(GeoEditScene<T> ∗ sc, F handler)

sets the handler that is called before an object
is deleted from (∗sc). handler must have type
bool (∗handler)(GeoWin&, const T :: value type &).
handler gets a reference to the added object. If
handler returns true, the object will be deleted, if
handler returns false, the object will not be deleted.

618 CHAPTER 15. GRAPHICS

template <class T, class F>

bool GW .set post del handler(GeoEditScene<T> ∗ sc, F handler)

sets the handler that is called after an object
is deleted from (∗sc). handler must have type
void (∗handler)(GeoWin&, const T ::value type &).

template <class T, class F>

bool GW .set start change handler(GeoEditScene<T> ∗ sc, F handler)

sets the handler that is called when a geometric ob-
ject from (∗sc) starts changing (for instance when
you move it or rotate it). handler must have type
bool (∗handler)(GeoWin&, const T :: value type &).
The handler function gets a reference to the object.

template <class T, class F>

bool GW .set pre move handler(GeoEditScene<T> ∗ sc, F handler)

sets the handler that is called before ev-
ery move operation. handler must have type
bool (∗handler)(GeoWin&, const T :: value type &,
double x, double y). The handler gets as the second
parameter a reference to the object, as the third
parameter and fourth parameter the move vector. If
the handler returns true, the change operation will
be executed, if the handler returns false, it will not
be executed.

template <class T, class F>

bool GW .set post move handler(GeoEditScene<T> ∗ sc, F handler)

sets the handler that is called after every
move operation. handler must have type
void (∗handler)(GeoWin&, const T :: value type &,
double x, double y). The handler gets as the second
parameter a reference to the object, as the third
parameter and fourth parameter the move vector.

template <class T, class F>

bool GW .set pre rotate handler(GeoEditScene<T> ∗ sc, F handler)

sets the handler that is called before every
rotate operation. handler must have type
bool (∗handler)(GeoWin&, const T :: value type &,
double x, double y, double a). If the handler returns
true, the rotate operation will be executed, if the han-
dler returns false, it will not be executed.

template <class T, class F>

15.8. GEOMETRY WINDOWS (GEOWIN) 619

bool GW .set post rotate handler(GeoEditScene<T> ∗ sc, F handler)

sets the handler that is called after every
rotate operation. handler must have type
void (∗handler)(GeoWin&, const T :: value type&,
double x, double x, double a).

template <class T, class F>

bool GW .set end change handler(GeoEditScene<T> ∗ sc, F handler)

sets the handler that is called when a geometric object
from (∗sc) ends changing. handler gets the object
as the second parameter. handler must have type
void (∗handler)(GeoWin&, const T ::value type &).

Generator functions: The following operation can be used to set a generator function
for an edit scene. The operation uses member templates. If your compiler does not support
member templates, you should use instead the templated function geowin set generate fcn.

template <class T>
bool GW .set generate fcn(GeoEditScene<T> ∗ sc, void (∗f)(GeoWin& gw ,

T& L))

sets the generator function for edit scene (∗sc). The
function gets the GeoWin where (∗sc) belongs to and
a reference to the container L of (∗sc). The function
should write the generated objects to L.

Editing of objects in a scene: It is possible to edit single objects in an editable scene.
For this purpose an edit object - function can be set for editable scenes. This function has
type

void (∗f)(GeoWin& gw , T& obj , int nr)

where gw is the GeoWin-object where the scene belongs to, obj is a reference to the
object that will be edited and nr is the edit mode of the scene.

template <class T, class T2>
bool GW .set edit object fcn(GeoEditScene<T> ∗ sc, T2 f)

sets the edit object - function of scene sc to f .

template <class T>
void∗ GW .get edit object fcn(GeoEditScene<T> ∗ sc)

returns the edit object - function of scene sc .

Transformation objects:

GeoWin supports affine transformations of selected objects in editable scenes for the
LEDA rat- and float-kernel classes. The used transformation classes are rat transform
and transform respectively. The following class templates can be used to instantiate
transformation objects. They are derived from type geowin transform.

620 CHAPTER 15. GRAPHICS

geowin_gui_rat_transform<KERNEL_CLASS>

geowin_gui_transform<KERNEL_CLASS>

where KERNEL CLASS is a class of the LEDA rat- or float-kernel. The default is that
no transformation objects are associated with editable scenes.

template <class S, class GeoObj>
void GW .set transform(GeoEditScene<S> ∗ sc,

geowin transform<GeoObj>& trans)

makes trans the transformation object of edit scene
sc.

Input objects: The following operation can be used to set an input object for an edit
scene. The operation uses member templates. If your compiler does not support mem-
ber templates, you should use instead the templated functions prefixed with geowin. A
GeoInputObject<GeoObj> has the following virtual functions:

void operator()(GeoWin& gw , list<GeoObj>& L);

This virtual function is called for the input of objects. The new objects have to be
returned in L.

void options(GeoWin& gw);

This function is called for setting options for the input object.

template <class T>
bool GW .set input object(GeoEditScene<T> ∗ sc,

const GeoInputObject<typename T ::value type>& obj ,
string name)

sets the input object obj for edit scene (∗sc). The
function gets the GeoWin where (∗sc) belongs to and
a reference to a list L. The function must write the
new objects to L.

template <class T>
bool GW .add input object(GeoEditScene<T> ∗ sc,

const GeoInputObject<typename T ::value type>& obj ,
string name)

adds the input object obj to the list of available input
objects of edit scene (∗sc) without setting obj as input
object.

template <class T>

15.8. GEOMETRY WINDOWS (GEOWIN) 621

void GW .set draw object fcn(GeoBaseScene<T> ∗ sc,
window& (∗fcn)(window& ,
const typename T ::value type& , int w))

sets a function fcn for scene (∗sc) that will be called
for drawing the objects of scene (∗sc). If no such
function is set (the default), the output operator is
used.

void GW .set activate handler(geo scene sc, void (∗f)(geo scene))

sets a handler function f that is called with sc as
parameter when the user activates sc.

void GW .set edit loop handler(bool (∗f)(const GeoWin& gw))

sets a handler function f that is called periodically in
the interactive mode. If this handler returns true, we
will leave the interactive mode.

void GW .set quit handler(bool (∗f)(const GeoWin& gw))

sets a handler function f that is called when the user
clicks the quit menu button. f should return true for
allowing quiting, false otherwise.

void GW .set done handler(bool (∗f)(const GeoWin& gw))

sets a handler function f that is called when the user
clicks the done menu button. f should return true for
allowing quiting, false otherwise.

int GW .set edit mode(geo scene sc, int emode)

sets the edit mode of scene sc to emode.

int GW .get edit mode(geo scene sc)

return the edit mode of scene sc.

h) Scene group Operations
GeoWin can manage scenes in groups. It is possible to add and remove scenes to/from
groups. Various parameters and dependences can be set for whole groups. Note that
geo scenegroup is a pointer to a scene group.

geo scenegroup GW .new scenegroup(string name)

Creates a new scene group with name name and re-
turns a pointer to it.

geo scenegroup GW .new scenegroup(string name, const list<geo scene>& LS)

Creates a new scene group name and adds the scenes
in LS to this group.

void GW .insert(geo scenegroup gs , geo scene sc)

adds sc to scene group gs .

622 CHAPTER 15. GRAPHICS

bool GW .del(geo scenegroup gs , geo scene sc)

removes sc from scene group gs and returns true, if
the operation was succesful (false: sc was not in gs).

i) Further Operations

int GW .set button width(int w)

sets the width of the scene visibility buttons in GW
and returns the previous value.

int GW .set button height(int h)

sets the height of the scene visibility buttons in GW
and returns the previous value.

You can associate a) buttons with labels or b) bitmap buttons with the visibility of a
scene in GeoWin. You cannot use a) and b) at the same time. The following operations
allow you to use add such visibility buttons to GeoWin. Note that before setting bitmap
buttons with the set bitmap operation you have to set the button width and height.

void GW .set label(geo scene sc, string label)

associates a button with label label with the visibility
of scene sc.

void GW .set bitmap(geo scene sc, unsigned char ∗ bitmap)

associates a button with bitmap bitmap with the vis-
ibility of scene sc.

void GW .add scene buttons(const list<geo scene>& Ls , const list<string>& Ln)

add a multiple choice panel for visibility of the scenes
in Ls to GW . The button for the n-th scene in Ls
gets the n-th label in Ln.

void GW .add scene buttons(const list<geo scene>& Ls , int w, int h,
unsigned char ∗ ∗bm)

add a multiple choice panel for visibility of the scenes
in Ls to GW . The button for the n-th scene in Ls
gets the n-th bitmap in bm. The bitmaps have width
w and height h.

list<geo scene> GW .get scenes() returns the scenes of GW .

list<geo scenegroup> GW .get scenegroups()

returns the scene groups of GW .

list<geo scene> GW .get scenes(geo scenegroup gs)

returns the scenes of group gs .

list<geo scene> GW .get visible scenes()

returns the visible scenes of GW .

15.8. GEOMETRY WINDOWS (GEOWIN) 623

void GW .add dependence(geo scene sc1 , geo scene sc2)

makes sc2 dependent from sc1 . That means that sc2
will be updated when the contents of sc1 changes.

void GW .del dependence(geo scene sc1 , geo scene sc2)

deletes the dependence of scene sc2 from sc1 .

void GW .set frame label(const char ∗ label)
makes label the frame label of GW .

int GW .open panel(panel& P)

displays panel P centered on the drawing area of GW ,
disabels the menu bar of GW and returns the result
of P.open().

void GW .add text(const geowin text& gt)

adds a text gt to GW .

void GW .remove texts() removes all texts from GW (but not from the scenes
of GW).

void GW .add text(geo scene sc, const geowin text& gt)

adds a text gt to scene sc.

void GW .remove texts(geo scene sc)

removes all texts from scene sc.

void GW .enable menus() enables the menus of GW .

void GW .disable menus() disables the menus of GW , but not the User menu.

double GW .version() returns the GeoWin version number.

void GW .message(string msg)

displays message msg on top of the drawing area. If
msg is the empty string, a previously written message
is deleted.

void GW .msg open(string msg)

displays message msg in the message window of GW .
If the message window is not open, it will be opened.

void GW .msg close() closes the message window.

void GW .msg clear() clears the message window.

624 CHAPTER 15. GRAPHICS

void GW .set d3 fcn(geo scene sc, void (∗f)(geo scene gs , d3 window& W,
GRAPH <d3 point , int>& H))

sets a function for computing 3d output. The param-
eters of the function are the geo scene for that it will
be set and a function pointer. The function f will get
the scene for that it was set and the reference to a
d3 window that will be the output window.

D3 FCN GW .get d3 fcn(geo scene sc)

returns the function for computing 3d output
that is set for scene sc. The returned function
has pointer type void (∗)(geo scene, d3 window&,
GRAPH <d3 point , int>&).

GeoWin can be pined at a point in the plane. As standard behavior it is defined that
moves of geometric objects will be rotations around the pin point.

bool GW .get pin point(point& p)

returns the pin point in p if it is set.

void GW .set pin point(point p)

sets the pin point to p.

void GW .del pin point() deletes the pin point.

void GW .add help text(string name)

adds the help text contained in name.hlp with label
name to the help menu of the main window. The
file name.hlp must exist either in the current working
directory or in $LEDAROOT/incl/Help. Note that
this operation must be called before gw.display().

void GW .add special help text(string name, bool auto display = false)

adds one help text contained in name.hlp to the
menu of the main window. The file name.hlp must
exist either in the current working directory or in
$LEDAROOT/incl/Help. Note that this operation
must be called before gw.display(). If auto display is
true, this help text will be displayed, when the main
window is displayed.

template <class T>
int GW .get limit(GeoEditScene<T> ∗ es)

returns the limit of edit scene es (a negative number
will be returned, if there is no limit).

template <class T>

15.8. GEOMETRY WINDOWS (GEOWIN) 625

int GW .set limit(GeoEditScene<T> ∗ es , int limit)

sets the limit of edit scene es to limit and returns the
previous value.

The templated add user call operation uses member templates. If your compiler
does not support member templates, you should use instead the templated function
geowin add user call with GW as an additional first parameter.

template <class F>

void GW .add user call(string label , F f)

adds a menu item label to the ”User” menu of GW .
The user defined function void geo call(GeoWin&,
F, string) is called whenever this menu button was
pressed with parameters GW , f and label . This menu
definition has to be finished before GW is opened.

Import- and export objects can be used to import and export the contents of scenes in
various formats.
The classes geowin import and geowin export are used for implementing import- and ex-
port objects. The classes geowin import and geowin export have virtual () - operators:

virtual void operator()(geo scene sc, string filename)

This virtual operator can be overwritten in derived classes to provide import and export
functionality for own formats. The first parameter is the scene sc that will be used as
source for the output or target for the input. The second parameter filename is the name
of the input (import objects) or output (export objects) file.

void GW .add import object(geo scene sc, geowin import& io, string name,
string desc)

Adds an import object io to scene sc. The import
object gets the name name and the description desc.

void GW .add export object(geo scene sc, geowin export& eo, string name,
string desc)

Adds an export object eo to scene sc. The export
object gets the name name and the description desc.

4. Non-Member Functions

GeoWin∗ get geowin(geo scene sc)

returns a pointer to the GeoWin of sc.

template <class CONTAINER>
bool get objects(geo scene sc, CONTAINER& c)

If the contents of scene sc matches type
CONTAINER, then the contents of scene sc is
copied to c.

626 CHAPTER 15. GRAPHICS

15.9 Windows for 3d visualization (d3 window)

1. Definition

The data type d3 window supports three-dimensional visualization. It uses a LEDA

window to visualize and animate three-dimensional drawings of graph. For this purpose

we need to assign positions in 3d space to all nodes of the graph (see init-operations

and set position-operation). The edges of the visualized graph are drawn as straight-line-

segments between the 3d positions of their source and target nodes . Note all edges of the

graph must have a reversal edge.

If the graph to be shown is a planar map the faces can be shaded in different grey scales

(if the solid flag is true).

The graph can be drawn with the draw -operation and animated with the move-operation.

The draw -operation draws a frontal projection of the graph on the output window. The

move-operation starts a simple animation mode. First it draws the graph, then it rotates

it (the rotation depends on the x rotation and y rotation flags and the mouse position)

and finally returns the pressed mouse button.

Every object of type d3 window maintains a set of parameters:

• x rotation (type bool); if true, rotation about the x-axis is enabled during a move

operation

• y rotation (type bool); if true, rotation about the y-axis is enabled during a move

operation

• elim (type bool); if true, hidden lines will be eliminated

• solid (type bool); if true, faces have to be drawn in different grey scales

• draw edges (type bool) enables/disables the redraw of edges

• message (type string) is the message that will be displayed on top of the drawing

area of the output window

In addition, a d3 window stores information assigned to the nodes and edges of the visu-

alized graph.

• color (type color) information for nodes and edges

• position (three-dimensional vectors) information for the nodes

• arrow (type bool) information for the edges (define whether or not edges have to be

drawn as arrows)

15.9. WINDOWS FOR 3D VISUALIZATION (D3 WINDOW) 627

#include < LEDA/graphics/d3 window.h >

2. Creation

d3 window D(window& W, const graph& G, double rot1 = 0, double rot2 = 0);

creates an instance D of the data type d3 window . The output
window of D is W . The visualized graph is G.

d3 window D(window& W, const graph& G, const node array<vector>& pos);

creates an instance D of the data type d3 window . The output
window of D is W . The visualized graph is G. The positions of
the nodes are given in pos . Precondition: the vectors in pos are
three-dimensional.

d3 window D(window& W, const graph& G, const node array<rat vector>& pos);

creates an instance D of the data type d3 window . The output
window of D is W . The visualized graph is G. The positions of
the nodes are given in pos . Precondition: the vectors in pos are
three-dimensional.

3. Operations

void D.init(const node array<vector>& pos)

initializes D by setting the node positions of
the visualized graph to the positions given in
pos . Precondition: the vectors in pos are three-
dimensional.

void D.init(const node array<rat vector>& pos)

initializes D by setting the node positions of
the visualized graph to the positions given in
pos . Precondition: the vectors in pos are three-
dimensional.

void D.init(const graph& G, const node array<vector>& pos)

initializes D by setting the visualized graph to G
and the node positions of the visualized graph to
the positions given in pos . Precondition: the vec-
tors in pos are three-dimensional.

void D.draw() draws the contents of D (see also Definition).

628 CHAPTER 15. GRAPHICS

int D.move() animates the contents of D until a button is
pressed and returns the pressed mouse button. If
the movement is stopped or no mouse button is
pressed, NO BUTTON will be returned, else the
number of the pressed mouse button will be re-
turned (see also Definition and the get mouse op-
eration of the window data type).

int D.get mouse() does the same as move.

int D.read mouse() calls move as long as move returns NO BUTTON .
Else the movement is stopped, and the number of
the pressed mouse button is returned.

void D.set position(node v, double x, double y, double z)

sets the position of node v in the visualized graph
D to (x, y, z).

Get- and set-operations

The following operations can be used to get and set the parameters of D. The set-

operations return the previous value of the parameter.

bool D.get x rotation() returns true, if D has rotation about the x-axis
enabled, false otherwise.

bool D.get y rotation() returns true, if D has rotation about the y-axis
enabled, false otherwise.

bool D.set x rotation(bool b) enables (disables) rotation about the x-axis.

bool D.set y rotation(bool b) enables (disables) rotation about the y-axis.

bool D.get elim() returns the hidden line elimination flag.

bool D.set elim(bool b) sets the hidden line elimination flag to b. If b is
true, hidden lines will be eliminated, if b is false,
hidden lines will be shown.

bool D.get solid() returns the solid flag of D.

bool D.set solid(bool b) sets the solid flag of D to b. If b is true and the
current graph of D is a planar map, its faces will
be painted in different grey scales, otherwise the
faces will be painted white.

bool D.get draw edges() return true, if edges will be drawn, false otherwise.

bool D.set draw edges(bool b) enables (disables) the redraw of the edges of D.

string D.get message() returns the message that will be displayed on top
of the drawing area of the window.

15.9. WINDOWS FOR 3D VISUALIZATION (D3 WINDOW) 629

string D.set message(string msg) sets the message that will be displayed on top of
the drawing area of the window to msg .

void D.set node color(color c) sets the color of all nodes of D to c.

void D.set edge color(color c) sets the color of all edges of D to c.

color D.get color(node v) returns the color of node v.

color D.set color(node v, color c)

sets the color of node v to c.

color D.get color(edge e) returns the color of edge e.

color D.set color(edge e, color c) sets the color of edge e to c.

bool D.get arrow(edge e) returns true, if e will be painted with an arrow,
false otherwise.

bool D.set arrow(edge e, bool ar)

if ar is true, e will be painted with an arrow, oth-
erwise without an arrow.

void D.get d2 position(node array<point>& d2pos)

returns the two-dimensional positions of the nodes
of the graph of D in d2pos .

630 CHAPTER 15. GRAPHICS

Chapter 16

Implementations

16.1 User Implementations

User-defined data structures can be used as actual implementation parameters provided
they fulfill certain requirements.

16.1.1 Dictionaries

Any class dic impl that provides the following operations can be used as actual imple-
mentation parameter for the dictionary< K,I,dic impl> and the d array< I,E,dic impl>
data types (cf. sections Dictionaries and Dictionary Arrays).

class dic_impl {

virtual int cmp(GenPtr, GenPtr) const = 0;

virtual int int_type() const = 0;

virtual void clear_key(GenPtr&) const = 0;

virtual void clear_inf(GenPtr&) const = 0;

virtual void copy_key(GenPtr&) const = 0;

virtual void copy_inf(GenPtr&) const = 0;

public:

typedef ... item;

dic_impl();

dic_impl(const dic_impl&);

virtual ~dic_impl();

dic_impl& operator=(const dic_impl&);

GenPtr key(dic_impl_item) const;

631

632 CHAPTER 16. IMPLEMENTATIONS

GenPtr inf(dic_impl_item) const;

dic_impl_item insert(GenPtr,GenPtr);

dic_impl_item lookup(GenPtr) const;

dic_impl_item first_item() const;

dic_impl_item next_item(dic_impl_item) const;

dic_impl_item item(void* p) const

{ return dic_impl_item(p); }

void change_inf(dic_impl_item,GenPtr);

void del_item(dic_impl_item);

void del(GenPtr);

void clear();

int size() const;

};

16.1. USER IMPLEMENTATIONS 633

16.1.2 Priority Queues

Any class prio impl that provides the following operations can be used as actual im-
plementation parameter for the priority queue< K,I,prio impl> data type (cf. section
Priority Queues).

class prio_impl $\{$

virtual int cmp(GenPtr, GenPtr) const = 0;

virtual int int_type() const = 0;

virtual void clear_key(GenPtr&) const = 0;

virtual void clear_inf(GenPtr&) const = 0;

virtual void copy_key(GenPtr&) const = 0;

virtual void copy_inf(GenPtr&) const = 0;

public:

typedef ... item;

prio_impl();

prio_impl(int);

prio_impl(int,int);

prio_impl(const prio_impl&);

virtual ~prio_impl();

prio_impl& operator=(const prio_impl&);

prio_impl_item insert(GenPtr,GenPtr);

prio_impl_item find_min() \ const;

prio_impl_item first_item() const;

prio_impl_item next_item(prio_impl_item) const;

prio_impl_item item(void* p) const

{ return prio_impl_item(p); }

GenPtr key(prio_impl_item) const;

GenPtr inf(prio_impl_item) const;

void del_min();

void del_item(prio_impl_item);

void decrease_key(prio_impl_item,GenPtr);

void change_inf(prio_impl_item,GenPtr);

void clear();

int size() const;

};

634 CHAPTER 16. IMPLEMENTATIONS

16.1.3 Sorted Sequences

Any class seq impl that provides the following operations can be used as actual implemen-
tation parameter for the sortseq< K,I,seq impl> data type (cf. section Sorted Sequences).

class seq_impl {

virtual int cmp(GenPtr, GenPtr) const = 0;

virtual int int_type() const = 0;

virtual void clear_key(GenPtr&) const = 0;

virtual void clear_inf(GenPtr&) const = 0;

virtual void copy_key(GenPtr&) const = 0;

virtual void copy_inf(GenPtr&) const = 0;

public:

typedef ... item;

seq_impl();

seq_impl(const seq_impl&);

virtual ~seq_impl();

seq_impl& operator=(const seq_impl&);

seq_impl& conc(seq_impl&);

seq_impl_item insert(GenPtr,GenPtr);

seq_impl_item insert_at_item(seq_impl_item,GenPtr,GenPtr);

seq_impl_item lookup(GenPtr) const;

seq_impl_item locate(GenPtr) const;

seq_impl_item locate_pred(GenPtr) const;

seq_impl_item succ(seq_impl_item) const;

seq_impl_item pred(seq_impl_item) const;

seq_impl_item item(void* p) const

{ return seq_impl_item(p); }

GenPtr key(seq_impl_item) const;

GenPtr inf(seq_impl_item) const;

void del(GenPtr);

void del_item(seq_impl_item);

void change_inf(seq_impl_item,GenPtr);

void split_at_item(seq_impl_item,seq_impl&,seq_impl&);

void reverse_items(seq_impl_item,seq_impl_item);

void clear();

int size() const;

};

Appendix A

Technical Information

This chapter provides information about installation and usage of LEDA, the interaction
with other software packages, and an overview of all currently supported system platforms.

A.1 LEDA Library and Packages

The implementations of most LEDA data types and algorithms are precompiled and
contained in one library libleda that can be linked with C++ application programs.

LEDA is available either as source code package or as object code package for the plat-
forms listed in Section Platforms. Information on how to obtain LEDA can be found at
http://www.algorithmic-solutions.com/index.php/products/leda-for-c

Sections Source Contents ff. describe how to compile the LEDA libraries in the source
code package for Unix (including Linux and CygWin) and Microsoft Windows. Sec-
tion http://www.algorithmic-solutions.info/leda manual/Object Code on.html and Sec-
tion http://www.algorithmic-solutions.info/leda manual/DLL s MS Visual.html describe
the installation and usage of the object code packages for Unix and Windows, respectively.

A.2 Contents of a LEDA Source Code Package

The main directory of the GUI source code package should contain at least the following
files and subdirectories:

Readme.txt Readme File
CHANGES (please read !) most recent changes
FIXES bug fixes since last release
license.txt license text
lconfig configuration command for unix
lconfig.bat configuration command for windows
Makefile make script
confdir/ configuration directory
incl/ include directory
src/ source files compiled into the LEDA Free Edition
src1/ other source files
test/ example and test programs
demo/ demo programs

635

636 APPENDIX A. TECHNICAL INFORMATION

A.3 Source Code on UNIX Platforms

Source Code Configuration on UNIX

Important remark: When compiling the sources on Unix- or Linuxsystems the develop-
ment packages for X11 and Xft should be installed. On Ubuntu, for instance, you should
call

sudo apt-get install libx11-dev
sudo apt-get install libxft-dev

1. Go to the LEDA main directory.

2. Type: lconfig <cc> [static | shared]

where <cc> is the name (or command) of your C++ compiler and the op-
tional second parameter defines the kind of libraries to be generated. Please
note that as far as Unix systems go, we currently only support several Linux
distributions. LEDA might work on other Unix systems, too - it was originally
developed, for instance, on SunOS - but there is no guarantee for that.

Examples: lconfig CC, lconfig g++, lconfig sunpro shared

lconfig without arguments prints a list of known compilers.
If your compiler is not in the list you might have to edit the <LEDA/sys/unix.h>

header file.

LEDA Compilation on UNIX

Type make for building the object code library libleda.a (libleda.so if shared libraries are
used). The make command will also have another library created named libGeoW.a; it
only deals with the data type GeoWin. There is no shared version of the this library
available.

Now follow the instructions given in Section UnixObjectCodePackage.

A.4 Source Code on Windows with MS Visual C++

Source Code Configuration for MS Visual C++

1. Setting the Environment Variables for Visual C++:
The compiler CL.EXE and the linker LINK.EXE require that the environment variables
PATH, INCLUDE, and LIB have been set properly.
Therefore, when compiling LEDA, simply open the proper command prompt that

A.4. SOURCE CODE ON WINDOWS WITH MS VISUAL C++ 637

comes with the Visual Studio. The environment variables are then set as required.
Just start the x86 (when compiling for a 32 bit platform) or the x64 (when compiling
for a 64 bit platform) Native Tools Command Prompt.

2. Go to the LEDA main directory.

3. Type: lconfig [msc | msc-mt | msc-mt | msc64-mt | msc-mt-15 |

msc64-mt-15] [dll] [md | mt | mdd | mtd]

Remark: When using MS Visual C++to compile LEDA you have to choose msc for 32
bit single-threaded compilation, msc-mt for 32 bit multi-threaded compilation, msc64 for
64 bit single-threaded compilation, and msc64-mt for 64 bit multi-threaded compilation.
When using MS Visual Studio 2015 or later Visual Studio versions, you should use msc-
mt-15 and msc64-mt-15 respectively. When building an application with LEDA and MS
Visual Studio C++the LEDA library you use depends on the Microsoft C runtime library
you intend to link with. Your application code and LEDA both must be linked to the
same Microsoft C runtime library; otherwise serious linker or runtime errors may occur.
The Microsoft C runtime libraries are related to the compiler options as follows

C Runtime Library Option
LIBCMT.LIB -MT
LIBCMTD.LIB -MTd
MSVCRT.LIB -MD
MSVCRTD.LIB -MDd

In order to get the suitable Libs or DLL please choose the corresponding option in the
call of lconfig.

LEDA Compilation with MS Visual C++

Type make lib for building the object code libraries

static: libleda.lib LEDA library without GeoWin
libGeoW.lib GeoWin library

dynamic: leda.dll, leda.lib
libgeow.lib

Remarks: The current LEDA package supports only the dynamic version; therefore
setting dll in the lconfig call is mandatory at the moment. GeoWin is currently not
available as a DLL and will always be build as a static library.

Now follow the instructions given in the corresponding section for the Windows object
code package (Section WinObjectCodePackage ff.).

638 APPENDIX A. TECHNICAL INFORMATION

A.5 Usage of Header Files

LEDA data types and algorithms can be used in any C++ program as described in this
manual (for the general layout of a manual page please see Chapter LEDA Manual Page).
The specifications (class declarations) are contained in header files. To use a specific data
type its header file has to be included into the program. In general the header file for
data type xyz is <LEDA/group/xyz.h>. The correct choice for group and xyz is specified
on the type’s manual page.

A.6 Object Code on UNIX

Files and Directories

To compile and link your programs with LEDA, the LEDA main directory should contain
at least the following files and subdirectories:

Readme.txt Readme File
Install/unix.txt txt–version of this section
incl/ the LEDA include directory
libleda.a (libleda.so) the LEDA library

The static library has the extension .a. If a shared library is provided it has extension
.so.

Preparations

Unpacking the LEDA distribution file LEDA-<ver>-<sys>-<cc>.tar.gz will create the
LEDA root directory ”LEDA-<ver>-<sys>-<cc>”. You might want to rename it or move
it to some different place. Let <LEDA> denote the final complete path name of the LEDA
root directory.

To install and use the Unix object code of LEDA you have to modify your environment
as follows:

• Set the environment variable LEDAROOT to the LEDA root directory:

csh/tcsh: setenv LEDAROOT <LEDA>

sh/bash: LEDAROOT=<LEDA>

export LEDAROOT

• Shared Library: (for solaris, linux, irix, osf1)
If you planning to use the shared library include $LEDAROOT into the
LD LIBRARY PATH search path.

• Make sure that the development packages for X11 and Xft have been installed. On
Ubuntu, for instance, you should have called
sudo apt-get install libx11-dev
sudo apt-get install libxft-dev

A.7. STATIC LIBRARIES FOR MS VISUAL C++ .NET 639

Compiling and Linking Application Programs

1. Use the -I compiler flag to tell the compiler where to find the LEDA header files.

CC (g++) -I$LEDAROOT/incl -c file.cpp

2. Use the -L compiler flag to tell the compiler where to find the library.

CC (g++) -L$LEDAROOT file.o -lleda -lX11 -lXft -lm

When using graphics on Solaris systems you might have to link with the system
socket library and the network services library as well:

CC (g++) ... -lleda -lX11 -lXft -lsocket -lnsl -lm

Remark: The libraries must be given in the above order.

3. Compile and link simultaneously with

CC (g++) -I$LEDAROOT/incl -L$LEDAROOT file.c -lleda -lX11 -lXft -lm

When using the multi-threaded version of LEDA you also have to set the flags
LEDA MULTI THREAD and pthread during compilation (-DLEDA MULTI THREAD -pthread)
and you have to additionally link against the pthread library (-pthread). You may want
to ask your system administrator to install the header files and libraries in the system’s
default directories. Then you no longer have to specify header and library search paths
on the compiler command line.

Example programs and demos

The source code of all example and demo programs can be found in $LEDAROOT/test
and $LEDAROOT/demo. Goto $LEDAROOT/test or $LEDAROOT/demo and type
make to compile and link all test or demo programs, respectively.

Important Remark: When using g++ version 4.x.x with optimization level 2 (-O2)
or higher, you should always compile your sources setting the following flag: -fno-strict-

aliasing

A.7 Static Libraries for MS Visual C++ .NET

This section describes the installation and usage of static libraries of LEDA with Microsoft
Visual C++ .NET.

Remark: The current LEDA package is delivered with dynamic libraries. So this section
is only relevant to you if you created static libraries from the source code.

640 APPENDIX A. TECHNICAL INFORMATION

Preparations

To install LEDA you only need to execute the LEDA distribution file
LEDA-<ver>-<package>-win32-<compiler>.exe. During setup you can choose
the name of the LEDA root directory and the parts of LEDA you want to install.

Then you have to set the environment variable LEDAROOT. On MS Windows 10 this can
be done as follows:

MS Windows 10:

1. Open the Start Search, type in env, and choose Edit the system environment
variables. A window titled ”System Properties” should open.

2. Click the button ”Environment variables...” in the lower right corner of
the ”System Properties” window. A new window opens that allows to
add/change/delete the user variables for your account as well as the system
variables, provided you have admin rights. If not, change the environment
variables of your account.

Add a new user variable LEDAROOT with value <LEDA>.

In case you are working on a different version of MS Windows, please consult the docu-
mentation of your version in order to learn how to perform the corresponding steps. You
might have to restart your computer for the changes to take effect.

Files and Directories

To compile and link your programs with LEDA, the LEDA main directory should contain
the following files and subdirectories:

Readme.txt Readme File
incl\ the LEDA include directory

and at least one of the following library sets

• libleda md.lib, libgeow md.lib

• libleda mdd.lib, libgeow mdd.lib

• libleda mt.lib, libgeow mt.lib

• libleda mtd.lib, libgeow mtd.lib

Compiling and Linking in Microsoft Visual C++ .NET

We now explain how to proceed in order to compile and link an application program using
LEDA with MS Visual Studio 2017. If you are using a different version of MS Visual
Studio, please read and understand the guidelines below and consult the documentation
of your version of the Studio in order to learn how to perform the corresponding steps.

A.7. STATIC LIBRARIES FOR MS VISUAL C++ .NET 641

(1) In the ”File” menu of Visual C++ .NET click on ”New–¿Project”.

(2) Choose ”Visual C++” as project type and choose ”Empty Project”.

(3) Enter a project name, choose a directory for the project, and click ”OK”.

(4) After clicking ”OK” you have an empty project space. Choose, for instance,
”Debug” and ”x64” (or ”x86” in case you are working on a 32-bit system) in the
corresponding pick lists.

If you already have a source file prog.cpp:

(5) Activate the file browser and add prog.cpp to the main folder of your project

(6) In the Solution Explorer of your project click on ”Source Files” with the right
mouse button, then click on ”Add–¿ Add Existing Item” with the left mouse button

(7) Double click on prog.cpp

If you want to enter a new source file:

(5’) In the Solution Explorer of your project click on ”Source Files” with the right
mouse button, then click on ”Add–¿ Add New Item” with the left mouse button.

(6’) Choose ”C++ File” in Templates, enter a name, and click ”Add”.

(7’) Enter your code.

(8) In the Solution Explorer right click on your project and left click on ”Properties”

(9) Click on ”C/C++” and ”Code Generation” and choose the ”Run Time Library”
(=compiler flag) you want to use.

If you chose ”Debug” in step 4, the default value is now ”/MDd”, alternatives
are ”/MD”, ”/MT”, and ”/MTd”. Notice that you have to use the LEDA li-
braries that correspond to the chosen flag, e.g., with option ”/MDd” you must
use libleda mdd.lib and libgeow mdd.lib. Using another set of libraries with
”/MDd” could lead to serious linker errors.

(10) Click on ”Linker” and ”Command Line” and add the name of the LEDA libraries
you want to use in ”Additional Options” as follows. We use <opt> to indicate the
compiler option chosen in Step (9) (e.g., <opt> is mdd for ”/MDd”).

• libleda <opt>.lib
for programs using data types of LEDA but not GeoWin.

• libgeow <opt>.lib libleda <opt>.lib
for programs using GeoWin

(11) Click on ”VC++ Directories” of the ”Properties” window.

642 APPENDIX A. TECHNICAL INFORMATION

(12) Choose ”Include Files” and add the directory <LEDA>\incl containing the LEDA
include files (Click on the line starting with ”Include Files”, then click on ”Edit...”
in the pick list at the right end of that line. Push the ”New line” button and
then enter <LEDA>\incl, or click on the small grey rectangle on the right and
choose the correct directory.) Alternatively you can click C/C++–¿ General in the
Configuration Properties and then edit the line ”Additional Include Directories”.

(13) Choose ”Library Directories” and add the directory <LEDA> containing the LEDA
libraries.

(14) Click ”OK” to leave the ”Properties”.

(15) In the ”Build” menu click on "<Build Project>" or "Rebuild <Project>" to
compile your program.

(16) In order to execute your program, click the green play button in the tool bar.

Remark: If your C++ source code files has extension .c, you need to add the option ”/TP”
in ”Project Options” (similar to Step (9)), otherwise you will get a number of compiler
errors. (Click on ”C/C++” and ”Command Line”. Add /TP in ”Additional Options” and
click ”Apply”.)

To add LEDA to an existing Project in Microsoft Visual C++ .NET, start the Microsoft
Visual Studio with your project and follow Steps (8)–(14) above.

Compiling and Linking Application Programs in a DOS-Box

(a) Setting the Environment Variables for Visual C++:
The compiler CL.EXE and the linker LINK.EXE require that the environment
variables PATH, INCLUDE, and LIB have been set properly. This can easily be
ensured by using the command prompts that are installed on your computer with
your Visual Studio installation.

To compile programs together with LEDA, the environment variables PATH, LIB,
and INCLUDE must additionally contain the corresponding LEDA directories. We
now explain how to do that with MS Windows 10. If you are using a different
version of MSWindows, please read and understand the guidelines below and consult
the documentation of your operating system in order to learn how to perform the
corresponding steps.

(b) Setting Environment Variables for LEDA:

MS Windows 10:

1. Open the Start Search, type in env, and choose Edit the system environ-
ment variables. A window titled ”System Properties” should open.

A.8. DLL’S FOR MS VISUAL C++ .NET 643

2. Click the button ”Environment variables...” in the lower right corner of
the ”System Properties” window. A new window opens that allows to
add/change/delete the user variables for your account as well as the system
variables, provided you have admin rights. If not, change the environment
variables of your account.
If a user variable PATH, LIB, or INCLUDE already exists, extend the current
value as follows:

• extend PATH by <LEDA>

• extend INCLUDE by <LEDA>\incl
• extend LIB by <LEDA>

Otherwise add a new user variable PATH, INCLUDE, or LIB with value
<LEDA>, respectively <LEDA>\incl.

You might have to restart your computer for the changes to take effect.

(c) Compiling and Linking Application Programs:

After setting the environment variables, you can use the LEDA libraries as follows
to compile and link programs.

Programs that do not use GeoWin:

cl <option> prog.cpp libleda.lib

Programs using GeoWin:

cl <option> prog.cpp libGeoW.lib libleda.lib

Possible values for <option> are ”-MD”, ”-MDd”, ”-MT”, and ”-MTd”. You have
to use the LEDA libraries that correspond to the chosen <option>, e.g., with option
”-MD” you must use libleda md.lib. Using another set of libraries with ”-MD”
could lead to serious linker errors.

Example programs and demos

The source code of all example and demo programs can be found in the directory
<LEDA>\test and <LEDA>\demo. Goto <LEDA> and type make test or make demo to com-
pile and link all test or demo programs, respectively.

A.8 DLL’s for MS Visual C++ .NET

This section describes the installation and usage of LEDA Dynamic Link Libraries (DLL’s)
with Microsoft Visual C++ .NET.

644 APPENDIX A. TECHNICAL INFORMATION

Preparations

To install LEDA you only need to execute the LEDA distribution file
LEDA-<ver>-<package>-win32-<compiler>.exe. During setup you can choose
the name of the LEDA root directory and the parts of LEDA you want to install.

Then you have to set the environment variable LEDAROOT. On MS Windows 10 this can
be done as follows:

MS Windows 10:

1. Open the Start Search, type in env, and choose Edit the system environment
variables. A window titled ”System Properties” should open.

2. Click the button ”Environment variables...” in the lower right corner of
the ”System Properties” window. A new window opens that allows to
add/change/delete the user variables for your account as well as the system
variables, provided you have admin rights. If not, change the environment
variables of your account.

Add a new user variable LEDAROOT with value <LEDA>.

In case you are working on a different version of MS Windows, please consult the docu-
mentation of your version in order to learn how to perform the corresponding steps. You
might have to restart your computer for the changes to take effect.

Files and Directories

To compile and link your programs with LEDA, the LEDA main directory should contain
the following files and subdirectories:

Readme.txt Readme File
incl\ the LEDA include directory

and at least one of the following dll/library sets

• leda md.dll, leda md.lib, libGeoW md.lib

• leda mdd.dll, leda mdd.lib, libGeoW mdd.lib

• leda mt.dll, leda mt.lib, libGeoW mt.lib

• leda mtd.dll, leda mtd.lib, libGeoW mtd.lib

Note: A DLL of GeoWin is currently not available.

A.8. DLL’S FOR MS VISUAL C++ .NET 645

Compiling and Linking in Microsoft Visual C++ .NET

We now explain how to proceed in order to compile and link an application program using
LEDA with MS Visual Studio 2017. If you are using a different version of MS Visual
Studio, please read and understand the guidelines below and consult the documentation
of your version of the Studio in order to learn how to perform the corresponding steps.

(1) In the ”File” menu of Visual C++ .NET click on ”New–¿Project”.

(2) Choose ”Visual C++” as project type and choose ”Empty Project”.

(3) Enter a project name, choose a directory for the project, and click ”OK”.

(4) After clicking ”OK” you have an empty project space. Choose, for instance,
”Debug” and ”x64” (or ”x86” in case you are working on a 32-bit system) in the
corresponding pick lists.

If you already have a source file prog.cpp:

(5) Activate the file browser and add prog.cpp to the main folder of your project

(6) In the Solution Explorer of your project click on ”Source Files” with the right
mouse button, then click on ”Add–¿ Add Existing Item” with the left mouse button

(7) Double click on prog.cpp

If you want to enter a new source file:

(5’) In the Solution Explorer of your project click on ”Source Files” with the right
mouse button, then click on ”Add–¿ Add New Item” with the left mouse button.

(6’) Choose ”C++ File” in Templates, enter a name, and click ”Add”.

(7’) Enter your code.

(8) In the Solution Explorer right click on your project and left click on ”Properties”

(9a) Click on ”C/C++” and ”Code Generation” and choose the ”Run Time Library”
(=compiler flag) you want to use.

If you chose ”Debug” in step 4, the default value is now ”/MDd”, alternatives
are ”/MD”, ”/MT”, and ”/MTd”. Notice that you have to use the LEDA li-
braries that correspond to the chosen flag, e.g., with option ”/MDd” you must
use libleda mdd.lib and libgeow mdd.lib. Using another set of libraries with
”/MDd” could lead to serious linker errors.

(9b) Click on ”C/C++” and ”Preprocessor” and add /D "LEDA DLL" in ”Preprocessor
Definitions”.

646 APPENDIX A. TECHNICAL INFORMATION

(10) Click on ”Linker” and ”Command Line” and add the name of the LEDA libraries
you want to use in ”Additional Options” as follows. We use <opt> to indicate the
compiler option chosen in Step (9) (e.g., <opt> is mdd for ”/MDd”).

• leda <opt>.lib
for programs that do not use GeoWin

• libGeoW <opt>.lib leda <opt>.lib
for programs using GeoWin

Alternatively, you can include <LEDA/msc/autolink dll.h> in your program and
the correct LEDA libraries are linked to your program automatically. If GeoWin is
used you need to add " LINK GeoW" to the ”Preprocessor definitions” in Step (9).

(11) Click on ”VC++ Directories” of the ”Properties” window.

(12) Choose ”Include Files” and add the directory <LEDA>\incl containing the LEDA
include files (Click on the line starting with ”Include Files”, then click on ”Edit...”
in the pick list at the right end of that line. Push the ”New line” button and
then enter <LEDA>\incl, or click on the small grey rectangle on the right and
choose the correct directory.) Alternatively you can click C/C++–¿ General in the
Configuration Properties and then edit the line ”Additional Include Directories”.

(13) Choose ”Library Directories” and add the directory <LEDA> containing the LEDA
libraries.

(14) Click ”OK” to leave the ”Properties”

(15) In the ”Build” menu click on "<Build Project>" or "Rebuild <Project>" to
compile your program.

(16) To execute the program ”prog.exe” Windows needs to have leda <opt>.dll in its
search path for DLL’s. Therefore, you need to do one of the following.

• Copy leda <opt>.dll to the bin\ subdirectory of your compiler or the direc-
tory containing ”prog.exe”.

• Alternatively, you can set the environment variable PATH to the directory con-
taining leda <opt>.dll as described below.

(17) In order to execute your program, click the green play button in the tool bar.

Remark: If your C++ source code files has extension .c, you need to add the option ”/TP”
in ”Project Options” (similar to Step (9)), otherwise you will get a number of compiler
errors. (Click on ”C/C++” and ”Command Line”. Add /TP in ”Additional Options” and
click ”Apply”.)

If you chose ”Debug” for your project type, the default value is ”/MDd”, alternatives
are ”/MD”, ”/MT”, and ”/MTd”. Notice that you have to use the LEDA libraries that
correspond to the chosen flag, e.g., with option ”/MDd” you must use leda mdd.lib and
libGeoW mdd.lib. Using another set of libraries with ”/MDd” could lead to serious linker
errors.

To add LEDA to an existing Project in Microsoft Visual C++ .NET, start the Microsoft
Visual Studio with your project and follow Steps (8)–(14) above.

A.8. DLL’S FOR MS VISUAL C++ .NET 647

Compiling and Linking Application Programs in a DOS-Box

(a) Setting the Environment Variables for Visual C++ .NET:
The compiler CL.EXE and the linker LINK.EXE require that the environment
variables PATH, INCLUDE, and LIB have been set properly. This can easily be
ensured by using the command prompts that are installed on your computer with
your Visual Studio installation.

To compile programs together with LEDA, the environment variables PATH, LIB,
and INCLUDE must additionally contain the corresponding LEDA directories. We
now explain how to do that with MS Windows 10. If you are using a different
version of MSWindows, please read and understand the guidelines below and consult
the documentation of your operating system in order to learn how to perform the
corresponding steps.

(b) Setting Environment Variables for LEDA:

MS Windows 10:

1. Open the Start Search, type in env, and choose Edit the system environ-
ment variables. A window titled ”System Properties” should open.

2. Click the button ”Environment variables...” in the lower right corner of
the ”System Properties” window. A new window opens that allows to
add/change/delete the user variables for your account as well as the system
variables, provided you have admin rights. If not, change the environment
variables of your account.
If a user variable PATH, LIB, or INCLUDE already exists, extend the current
value as follows:

• extend PATH by <LEDA>

• extend INCLUDE by <LEDA>\incl
• extend LIB by <LEDA>

Otherwise add a new user variable PATH, INCLUDE, or LIB with value
<LEDA>, respectively <LEDA>\incl.

You might have to restart your computer for the changes to take effect.

(c) Compiling and Linking Application Programs:
After setting the environment variables, you can use the LEDA libraries as follows
to compile and link programs.

Programs that do not use GeoWin:

cl <option> -DLEDA_DLL prog.cpp <libleda.lib>

Programs using GeoWin:

cl <option> -DLEDA_DLL prog.cpp <libGeoW.lib> <libleda.lib>

648 APPENDIX A. TECHNICAL INFORMATION

Possible values for <option> are ”-MD”, ”-MDd”, ”-MT”, and ”-MTd”. You have to
use the LEDA libraries that correspond to the chosen <option>, e.g., with option ”-
MD” you must use leda md.lib and libGeoW md.lib. Using another set of libraries
with ”-MD” could lead to serious linker errors.

Example programs and demos

The source code of all example and demo programs can be found in the directory
<LEDA>\test and <LEDA>\demo. Goto <LEDA> and type make test or make demo to com-
pile and link all test or demo programs, respectively.

A.9 Namespaces and Interaction with other Li-

braries

If users want to use other software packages like STL together with LEDA in one project
avoiding naming conflicts is an issue.

LEDA defines all names (types, functions, constants, ...) in the namespace leda. This
makes the former macro–based prefixing scheme obsolete. Note, however, that the prefixed
names leda ... still can be used for backward compatibility. Application programs have to
use namespace leda globally (by saying "using namespace leda;") or must prefix every
LEDA symbol with "leda::".

The second issue of interaction concerns the data type bool which is part of the new C++
standard. However not all compilers currently support a bool type. LEDA offers bool

either compiler provided or defined within LEDA if the compiler lacks the support. Some
STL packages follow a similar scheme. To solve the existance conflict of two different bool
type definitions we suggest to use LEDA’s bool as STL is a pure template library only
provided by header files and its defined bool type can be easily replaced.

A.10 Platforms

Please visit our web pages for information about the supported platforms.

Appendix B

The golden LEDA rules

The following rules must be adhered to when programming with LEDA in order to write
syntactically and semantically correct and efficient LEDA programs. The comprehension
of most of the rules is eased by the categorization of the LEDA types given in section
rules-exp.

Every rule is illustrated in section rules-exp by one or more code examples.

B.1 The LEDA rules in detail

1. (Definition with initialization by copying) Definition with initialization by copying
is possible for every LEDA type. It initializes the defined variable with a copy of
the argument of the definition. The next rule states precisely what a copy of a value
is.

2. (Copy of a value) Assignment operator and copy constructor of LEDA types create
copies of values. This rule defines recursively what is meant by the notion “copy of
a value”.

(a) A copy of a value of a primitive type (built-in type, pointer type, item type)
is a bitwise copy of this value.

(b) A value x of a simple-structured type is a set or a sequence of values, respec-
tively.

A copy of x is a componentwise copy of all constituent values of this set or this
sequence, respectively.

(c) A value x of an item-based, structured type is a structured collection of values.

A copy of x is a collection of new values, each one of which is the copy of a
value of x, the original . The combinatorical structure imposed to the new
values is isomorphic to the structure of x, the original.

3. (Equality and identity) This rule defines when two objects x and y are considered
as equal and identical, respectively.

(a) For objects x and y of a dependent item type, the equality predicate x==y

means equality between the values of these objects.

649

650 APPENDIX B. THE GOLDEN LEDA RULES

(b) For objects x and y of an independent item type T, the equality predicate x==y
is defined individually for each such item type. In the majority of cases it
means equality between the values of x and y, but this is not guaranteed for
every type.

Provided that the identity predicate

bool identical(const T&, const T&);

is defined on type T, it means equality between the values of these objects.

(c) For objects x and y of a structured type the equality predicate x==y means
equality between the values of these objects.

4. (Illegal access via an item) It is illegal to access a container which has been destroyed
via an item, or to access a container via the item nil.

5. (Initialization of attributes of an independent item type) The attributes of an in-
dependent item type are always defined. In particular, a definition with default
initialization initializes all attributes. Such a type may specify the initial values,
but it need not.

6. (Specification of the structure to be traversed in forall-macros)

The argument in a forall-macro which specifies the structure to be traversed should
not be a function call which returns this structure, but rather an object by itself
which represents this structure.

7. (Modification of objects of an item-based container type while iterating over them)

An iteration over an object x of an item-based container type must not add new
elements to x. It may delete the element which the iterator item points to, but no
other element. The values of the elements may be modified without any restrictions.

8. (Requirements for type parameters)

Every type parameter T must implement the following functions:

a default constructor T::T()

a copy constructor T::T(const T&)

an assigment operator T& T::operator = (const T&)

an input operator istream& operator >> (istream&, T&)

an output operator ostream& operator << (ostream&, const T&)

9. (Requirements for linearly ordered types)

In addition to the Requirements for type parameters a linearly ordered type must
implement

a compare function int compare(const T&, const T&)

Here, for the function compare() the following must hold:

(a) It must be put in the namespace leda.

(b) It must realize a linear order on T.

B.2. CODE EXAMPLES FOR THE LEDA RULES 651

(c) If y is the copy of a value x of type T, then compare(x,y) == 0 must hold.

10. (Requirements for hashed types) In addition to the Requirements for type parame-
ters a hashed type must implement

a hash function int Hash(const T&)

an equality operator bool operator == (const T&, const T&)

Here, for the function Hash() the following must hold:

(a) It must be put in the namespace leda.

(b) For all objects x and y of type T: If x == y holds, then so does
Hash(x) == Hash(y).

For the equality operator operator==() the following must hold:

(a) It defines an equivalence relation on T.

(b) If y is a copy of a value x of type T, then x == y must hold.

11. (Requests for numerical types) In addition to the Requirements for type pa-
rameters a numerical type must offer the arithmetical operators operator+(),
operator-(), and operator*(), as well as the comparison operators operator<(),
operator<=(), operator>(), operator>=(), operator==(), and operator!=().

B.2 Code examples for the LEDA rules

1. string s("Jumping Jack Flash");

string t(s); // definition with initialization by copying

string u = s; // definition with initialization by copying

stack<int> S;

// ... fill S with some elements

stack<int> T(S); // definition with initialization by copying

2. (a) list_item it1, it2;

// ...

it2 = it1; // it2 now references the same container as it1

(b) array<int> A, B;

// ...fill A with some elements...

B = A;

Now B contains the same number of integers as A, in the same order, with the
same values.

However, A and B do not contain the same objects:

int* p = A[0];

int* q = B[0];

p == q; // false

652 APPENDIX B. THE GOLDEN LEDA RULES

A and B are different objects:

A == B; // false

(c) list<int> L, M;

list_item it1, it2;

L.push(42);

L.push(666);

M = L;

L and M now both contain the numbers 666 and 42. These numbers are not the
same objects:

it1 = L.first();

it2 = M.first();

it1 == it2; // false

L and M are different objects as well:

L == M; // false

In the following assignment the rules c, b, and a are applied recursivley (in this
order):

list< array<int> > L, M;

// ...fill L with some array<int>s

// each of them filled with some elements...

M = L;

3. (a) list_item it1, it2;

// ...

it2 = it1; // it2 now references the same container as it1

it1 == it2; // true

(b) point p(2.0, 3.0);

point q(2.0, 3.0);

p == q; // true (as defined for class point)

identical(p, q); // false

point r;

r = p;

identical(p, r); // true

(c) list<int> L, M;

// ...fill L with some elements...

M = L;

L == M; // false

B.2. CODE EXAMPLES FOR THE LEDA RULES 653

4. list_item it = L.first();

L.del_item(it);

L.contents(it); // illegal access

it = nil;

L.contents(it); // illegal access

5. point p(2.0, 3.0); // p has coordinates (2.0, 3.0)

point q; // q has coordinates but it is not known which

6. edge e;

forall(e, G.all_edges()) // dangerous!

{ ... }

// do it like this

list<edge> E = G.all_edges();

forall(e, E)

{ ... }

7. list_item it;

forall(it, L) {

L.append(1); // illegal; results in infinite loop

if(L[it] == 5) L.del(it); // legal

if(L[it] == 6) L.del(L.succ(it)); // illegal

L[it]++; // legal

}

8. class pair {

public:

int x, y;

pair() { x = y = 0; }

pair(const pair& p) { x = p.x; y = p.y; }

pair& operator=(const pair& p) {

if(this != &p) { x = p.x; y = p.y; }

return *this;

}

};

std::istream& operator>> (std::istream& is, pair& p)

{ is >> p.x >> p.y; return is; }

std::ostream& operator<< (std::ostream& os, const pair& p)

{ os << p.x << " " << p.y; return os; }

9. namespace leda {

int compare(const pair& p, const pair& q)

{

if (p.x < q.x) return -1;

if (p.x > q.x) return 1;

if (p.y < q.y) return -1;

654 APPENDIX B. THE GOLDEN LEDA RULES

if (p.y > q.y) return 1;

return 0;

}

};

10. namespace leda {

int Hash(const pair& p)

{

return p.x ^ p.y;

}

};

bool operator == (const pair& p, const pair& q)

{

return (p.x == q.x && p.y == q.y) ? true : false;

}

Bibliography

[1] H. Alt, N. Blum, K. Mehlhorn, M. Paul: “Computing a maximum cardinality match-

ing in a bipartite graph in time O(n1.5
√

m/ log n)”. Information Processing Letters,
Vol. 37, No. 4, 237-240, 1991

[2] M. Ansaripour, A. Danaei, K. Mehlhorn: “Gabow’s Cardinality Match-
ing Algorithm in General Graphs Implementation and Experiments”.
https://arxiv.org/pdf/2409.14849, 2024

[3] C. Aragon, R. Seidel: “Randomized Search Trees”. Proc. 30th IEEE Symposium on
Foundations of Computer Science, 540-545, 1989

[4] A.V. Aho, J.E. Hopcroft, J.D. Ullman: “Data Structures and Algorithms”. Addison-
Wesley Publishing Company, 1983

[5] R.K. Ahuja, T.L. Magnanti, J.B. Orlin: “Network Flows”, Section 10.2. Prentice
Hall, 1993

[6] G.M. Adelson-Veslkii, Y.M. Landis: “An Algorithm for the Organization of Infor-
mation”. Doklady Akademi Nauk, Vol. 146, 263-266, 1962

[7] I.J. Balaban: “An Optimal Algorithm for Finding Segment Intersections”. Proc. of
the 11th ACM Symposium on Computational Geometry, 211-219, 1995

[8] B. Balkenhol, Yu.M. Shtarkov: “One attempt of a compression algorithm using the
BWT”. Preprint 99-133, SFB343, Fac. of Mathematics, University of Bielefeld, 1999

[9] J.L. Bentley: “Decomposable Searching Problems”. Information Processing Letters,
Vol. 8, 244-252, 1979

[10] J.L. Bentley: “Multi-dimensional Divide and Conquer”. CACM Vol 23, 214-229, 1980

[11] R.E. Bellman: “On a Routing Problem”. Quart. Appl. Math. 16, 87-90, 1958

[12] J.L. Bentley, T. Ottmann: “Algorithms for Reporting and Counting Geometric In-
tersections”. IEEE Trans. on Computers C 28, 643-647, 1979

[13] R. Bayer, E. McCreight: “Organization and Maintenance of Large Ordered Indizes”,
Acta Informatica, Vol. 1, 173-189, 1972

[14] N. Blum, K. Mehlhorn: “On the Average Number of Rebalancing Operations in
Weight-Balanced Trees”. Theoretical Computer Science 11, 303-320, 1980

655

656 BIBLIOGRAPHY

[15] C. Burnikel, K. Mehlhorn, and S. Schirra: “How to compute the Voronoi diagram of
line segments: Theoretical and experimental results”. In LNCS, volume 855, pages
227–239. Springer-Verlag Berlin/New York, 1994. Proceedings of ESA’94.

[16] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra: “A strong and easily com-
putable separation bound for arithmetic expressions involving square roots”. Pro-
ceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms, 1997.

[17] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra: “A strong and easily com-
putable separation bound for arithmetic expressions involving radicals. Algorithmica,
Vol.27, 87-99, 2000.

[18] C. Burnikel. “Exact Computation of Voronoi Diagrams and Line Segment Intersec-
tions”. PhD thesis, Universität des Saarlandes, 1996.

[19] M. Burrows, D.J. Wheeler. “A Block-sorting Lossless Data Compression Algorithm”.
Digital Systems Research Center Research Report 124, 1994.

[20] T.H. Cormen, C.E. Leiserson, R.L. Rivest: “Introduction to Algorithms”. MIT
Press/McGraw-Hill Book Company, 1990

[21] D. Cheriton, R.E. Tarjan: “Finding Minimum Spanning Trees”. SIAM Journal of
Computing, Vol. 5, 724-742, 1976

[22] J. Cheriyan and K. Mehlhorn: “Algorithms for Dense Graphs and Networks on the
Random Access Computer”. Algorithmica, Vol. 15, No. 6, 521-549, 1996

[23] O. Devillers: “Robust and Efficient Implementation of the Delaunay Tree”. Technical
Report, INRIA, 1992

[24] E.W. Dijkstra: “A Note on Two Problems in Connection With Graphs”. Num. Math.,
Vol. 1, 269-271, 1959

[25] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert,
R. Tarjan: “Upper and Lower Bounds for the Dictionary Problem”. Proc. of the
29th Annual IEEE Symposium on Foundations of Computer Science, 1988

[26] J.R. Driscoll, N. Sarnak, D. Sleator, R.E. Tarjan: “Making Data Structures Persis-
tent”. Proc. of the 18th Annual ACM Symposium on Theory of Computing, 109-121,
1986

[27] J. Edmonds: “Paths, Trees, and Flowers”. Canad. J. Math., Vol. 17, 449-467, 1965

[28] H. Edelsbrunner: “Intersection Problems in Computational Geometry”. Ph.D. thesis,
TU Graz, 1982

[29] J. Edmonds and R.M. Karp: “Theoretical Improvements in Algorithmic Efficiency
for Network Flow Problems”. Journal of the ACM, Vol. 19, No. 2, 1972

[30] P.v. Emde Boas, R. Kaas, E. Zijlstra: “Design and Implementation of an Efficient
Priority Queue”. Math. Systems Theory, Vol. 10, 99-127, 1977

BIBLIOGRAPHY 657

[31] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr: “The CGAL
kernel: A basis for geometric computation”. First ACM Workshop on Applied Com-
putational Geometry, 1996.

[32] I. Fary: “On Straight Line Representing of Planar Graphs”. Acta. Sci. Math. Vol.
11, 229-233, 1948

[33] P. Fenwick: “Block Sorting Text Compression - Final Report”. Tech. Rep. 130,
Dep. of Comp. Science, University of Auckland, 1996

[34] R.W. Floyd: “Algorithm 97: Shortest Paths”. Communcication of the ACM, Vol. 5,
p. 345, 1962

[35] L.R. Ford, D.R. Fulkerson: “Flows in Networks”. Princeton Univ. Press, 1963

[36] S. Fortune and C. van Wyk: “Efficient exact arithmetic for computational geometry”.
Proc. of the 9th Symp. on Computational Geometry, 163–171, 1993.

[37] M.L. Fredman, and R.E. Tarjan: “Fibonacci Heaps and Their Uses in Improved
Network Optimization Algorithms”. Journal of the ACM, Vol. 34, 596-615, 1987

[38] H.N. Gabow: “Implementation of algorithms for maximum matching on nonbipartite
graphs”. Ph.D. thesis, Stanford Univ., Stanford, CA, 1974

[39] H.N. Gabow: “An efficient implementation of Edmond’s algorithm for maximum
matching on graphs”. Journal of the ACM, Vol. 23, 221-234, 1976

[40] H.N. Gabow: “The wighted matching approach to maximum cardinality matching.”.
Fundamenta Informaticae, Vol. 154, 109-130, 2017

[41] E. Gamma, R. Helm, R. Johnson, and J. Vlissides: Design patterns. Addison-Wesley
Publishing Company, 1995

[42] A. Goralcikova, V. Konbek: “A Reduct and Closure Algorithm for Graphs”. Math-
ematical Foundations of Computer Science, LNCS 74, 301-307, 1979

[43] K.E. Gorlen, S.M. Orlow, P.S. Plexico: “Data Abstraction and Object-Oriented
Programming in C++”. John Wiley & Sons, 1990

[44] L.J. Guibas, R. Sedgewick: “ A Dichromatic Framework for Balanced Trees”. Pro-
ceedings of the 19th IEEE Symposium on Foundations of Computer Science, 8-21,
1978

[45] Goldberg, R.E. Tarjan: “A New Approach to the Maximum Flow Problem”. Journal
of the ACM, Vol. 35, 921-940, 1988

[46] J.E. Hopcroft, R.M. Karp: “AnO(n2.5) Algorithm for Matching in Bipartite Graphs”.
SIAM Journal of Computing, Vol. 4, 225-231, 1973

[47] J.E. Hopcroft, R.E. Tarjan: “Efficient Planarity Testing”. Journal of the ACM, Vol.
21, 549-568, 1974

658 BIBLIOGRAPHY

[48] M. Himsolt: “GML: A portable Graph File Format”. Technical Report, Universität
Passau, 1997, cf. http://www.fmi.uni-passau.de/~himsolt/Graphlet/GML

[49] T. Hagerup, C. Uhrig: “Triangulating a Planar Map Without Introducing multiple
Arcs”, unpublished, 1989

[50] D.A. Huffman: “A Method for the Construction of Minimum Redundancy Codes”.
Proc. IRE 40, 1098-1101, 1952

[51] T. Iwata, K. Kurosawa: “OMAC: One-Key CBC MAC”. Proc. Fast Software En-
cryption (FSE), LNCS 2887, 129-153, 2003

[52] A.B. Kahn: “Topological Sorting of Large Networks”. Communications of the ACM,
Vol. 5, 558-562, 1962

[53] D. Knuth and S. Levy: The CWEB System of Structured Documentation, Version
3.0. Addison-Wesley, 1993.

[54] J.B. Kruskal: “On the Shortest Spanning Subtree of a Graph and the Travelling
Salesman Problem”. Proc. American Math. Society 7, 48-50, 1956

[55] D. Kühl, M. Nissen, K. Weihe: “Efficient, adaptable implementations of graph algo-
rithms”. Workshop on Algorithm Engineering, Venice, Italy, September 15-17, 1997.
http://www.dsi.unive.it/~wae97/proceedings/ONLY PAPERS/pap4.ps.gz

[56] D. Kühl and K. Weihe: “Data access templates”. C++ Report, 9/7, 15 and 18-21,
1997

[57] E.L. Lawler: “Combinatorial Optimization: Networks and Matroids”. Holt, Rinehart
and Winston, New York, 1976

[58] S.B. Lippman: “C++Primer”. Addison-Wesley, Publishing Company, 1989

[59] G.S. Luecker: “A Data Structure for Orthogonal Range Queries”. Proc. 19th IEEE
Symposium on Foundations of Computer Science, 28-34, 1978

[60] K. Mehlhorn: “Data Structures and Algorithms”. Vol. 1–3, Springer Publishing Com-
pany, 1984

[61] D.M. McCreight: “Efficient Algorithms for Enumerating Intersecting Intervals”. Xe-
rox Parc Report, CSL-80-09, 1980

[62] D.M. McCreight: “Priority Search Trees”. Xerox Parc Report, CSL-81-05, 1981

[63] M. Mignotte: “Mathematics for Computer Algebra”. Springer Verlag, 1992.

[64] K. Mehlhorn, S. Näher: “LEDA, a Library of Efficient Data Types and Algorithms”.
TR A 04/89, FB10, Universität des Saarlandes, Saarbrücken, 1989

[65] K. Mehlhorn, S. Näher: “ LEDA, a Platform for Combinatorial and Geometric Com-
puting”. Communications of the ACM, Vol. 38, No. 1, 96-102, 1995

BIBLIOGRAPHY 659

[66] K. Mehlhorn, S. Näher: “LEDA, a Platform for Combinatorial and Geometric Com-
puting”. book, in preparation. For sample chapters see the LEDA www-pages.

[67] K. Mehlhorn and S. Näher: “Implementation of a sweep line algorithm for the straight
line segment intersection problem”. Technical Report MPI-I-94-160, Max-Planck-
Institut für Informatik, Saarbrücken, 1994.

[68] K. Mehlhorn and S. Näher: “The implementation of geometric algorithms”. In 13th
World Computer Congress IFIP94, volume 1, pages 223–231. Elsevier Science B.V.
North-Holland, Amsterdam, 1994.

[69] M. Mignotte: Mathematics for Computer Algebra. Springer Verlag, 1992

[70] K. Mulmuley: Computational Geometry: An Introduction Through Randomized
Algorithms. Prentice Hall, 1994

[71] D.R. Musser and Atul Saini. STL Tutorial and Reference Guide. Addison-Wesley
Publishing Company, 1995

[72] S. Näher: “LEDA2.0 User Manual”. Technischer Bericht A 17/90, Fachbereich In-
formatik. Universität des Saarlandes, Saarbrücken, 1990

[73] M. Nissen: “Design Pattern Data Accessor”. Proceedings of the EuroPLoP 1999.

[74] M. Nissen. Graph Iterators: “Decoupling Graph Structures from Algorithms” (mas-
ters thesis). http://www.mpi-sb.mpg.de/~marco/diplom.ps.gz

[75] M. Nissen, K. Weihe: “Combining LEDA with customizable imple-
mentations of graph algorithms”. Konstanzer Schriften in Mathematik
und Informatik (no. 17), Universität Konstanz, 1996. Available at
ftp://ftp.informatik.uni-konstanz.de/pub/preprints/

[76] M. Nissen, K. Weihe: “Attribute classes in Java and language extensions”. Kon-
stanzer Schriften in Mathematik und Informatik (no. 66), Universität Konstanz, 1998.
Available at ftp://ftp.informatik.uni-konstanz.de/pub/preprints/

[77] M. H. Overmars: Designing the computational geometry algorithms library CGAL.
In Proceedings First ACM Workshop on Applied Computational Geometry, 1996

[78] F.P. Preparata, M.I. Shamos: “Computational Geometry: An Introduction”.
Springer Publishing Company, 1985

[79] W. Pugh: “Skip Lists: A Probabilistic Alternative to Balanced Trees”. Communica-
tions of the ACM, Vol. 33, No. 6, 668-676, 1990

[80] N. Ramsey: “Literate programming simplified”. IEEE Software, pages 97–105, 1994

[81] S. Schmitt: “Improved separation bounds for the diamond operator”. Technical Re-
port ECG-TR-36-31-08-01, 2004

[82] B. Schneier: “Applied Cryptography, Second Edition”. John Wiley and Sons, 1996

660 BIBLIOGRAPHY

[83] D. Shkarin: “PPM: one step to praticality”. Proc. IEEE Data Compression Conf.
(DCC’2002), 202-211, 2002

[84] M. Stoer and F. Wagner: “A Simple Min Cut Algorithm”. Algorithms – ESA ’94,
LNCS 855, 141-147, 1994

[85] B. Stroustrup: “The C++Programming Language, Second Edition”. Addison-Wesley
Publishing Company, 1991

[86] J.T. Stasko, J.S. Vitter: “Pairing Heaps: Experiments and Analysis”. Communica-
tions of the ACM, Vol. 30, 234-249, 1987

[87] R.E. Tarjan: “Depth First Search an Linear Graph Algorithms”. SIAM Journal of
Computing, Vol. 1, 146-160, 1972

[88] R.E. Tarjan: “Data Structures and Network Algorithms”. CBMS-NSF Regional Con-
ference Series in Applied Mathematics, Vol. 44, 1983

[89] J.S. Vitter: “Dynamic Huffman Coding”. ACM Transactions on Mathematical Soft-
ware, Vol. 15, No. 2, 158-167, 1989

[90] M. Wenzel: “Wörterbücher für ein beschränktes Universum”. Diplomarbeit, Fach-
bereich Informatik, Universität des Saarlandes, 1992

[91] A.G. White: “Graphs,Groups, and Surfaces”. North Holland, 1973

[92] D.E. Willard: “New Data Structures for Orthogonal Queries”. SIAM Journal of
Computing, 232-253, 1985

[93] J.W.J. Williams: “Algorithm 232 (heapsort). Communications of the ACM, Vol. 7,
347-348, 1964

[94] I.H. Witten, M. Radford and J.G. Cleary: “Arithmetic Coding for Data Compres-
sion”. Communications of the ACM, Vol. 30, 520-540, 1987

[95] J. Ziv and A. Lempel: “A universal algorithm for sequential data compression”.
IEEE Transactions on Information Theory, Vol. 30(3), 337-343, 1977

[96] J. Ziv and A. Lempel: “Compression of individual sequences via variable-rate coding”
IEEE Transactions on Information Theory, Vol. 24(5), 530-536, 1978

[97] S. Näher, O. Zlotowski: “Design and Implementation of Data Types for Static
Graphs”. ESA, 2002

Index

Symbols
()

list<E> . 125

Apr
date . 50

Aug
date . 50

colons
date . 51

Dec
date . 50

english
date . 50

Feb
date . 50

french
date . 50

FULL
r circle gen polygon 456
r circle polygon . 450

german
date . 50

german standard
date . 51

hyphens
date . 51

Jul
date . 50

Jun
date . 50

local
date . 50

Mar
date . 50

May
date . 50

NON TRIVIAL
r circle gen polygon 456

r circle polygon . 450
NOTWEAKLY SIMPLE

r circle gen polygon 456
r circle polygon . 450

Nov
date . 50

Oct
date . 50

RESPECT ORIENTATION
r circle gen polygon 457
r circle polygon . 451

second
r circle point . 443

Sep
date . 50

SIMPLE
r circle gen polygon 456
r circle polygon . 450

US standard
date . 51

WEAKLY SIMPLE
r circle gen polygon 456
r circle polygon . 450

A
A()

d3 plane . 489
d3 rat plane . 513

abs(...) 59, 61, 65, 71, 80
absolute(...)

residual .80
accept()

leda socket . 36
access(...)

dictionary<K, I>144
acknowledge(...)

GraphWin . 580
window . 548

activate(...)
GeoWin . 604

661

662 INDEX

ACYCLIC SHORTEST ...(...) 248
add(...)

residual . 78, 81
add dependence(...)

GeoWin . 623
add edge done rule(...)

gml graph . 241
add edge menu(...)

GraphWin . 576
add edge rule(...)

gml graph . 240
add edge rule for...(...)

gml graph . 240
add export object(...)

GeoWin . 625
add graph done rule(...)

gml graph . 240
add graph rule(...)

gml graph . 240
add graph rule fo...(...)

gml graph . 240
add help text(...)

GeoWin . 624
GraphWin . 578

add import object(...)
GeoWin . 625

add input object(...)
GeoWin . 620

add member call(...)
GraphWin . 578

add menu(...)
GraphWin . 577

add new edge rule(...)
gml graph . 240

add new graph rule(...)
gml graph . 240

add new node rule(...)
gml graph . 240

add node done rule(...)
gml graph . 241

add node menu(...)
GraphWin . 576

add node rule(...)
gml graph . 240

add node rule for...(...)
gml graph . 240

add scene buttons(...)

GeoWin . 622
add separator(...)

GraphWin . 578
add simple call(...)

GraphWin . 578
add special help ...(...)

GeoWin . 624
add text(...)

GeoWin . 623
add to day(...)

date . 54
add to month(...)

date . 54
add to year(...)

date . 54
add user call(...)

GeoWin . 625
add user layer ci...(...)

GeoWin . 604
add user layer point(...)

GeoWin . 604
add user layer re...(...)

GeoWin . 604
add user layer se...(...)

GeoWin . 604
address(...)

leda allocator<T> 29
adj edges(...)

graph . 172, 180
adj face(...)

graph . 179
adj faces(...)

graph . 180
adj nodes(...)

graph . 172, 180
adj pred(...)

graph . 172, 181
adj succ(...)

graph . 172, 181
AdjIt . 303
adjust coords to box(...)

GraphWin . 574
adjust coords to win(...)

GraphWin . 574, 575
affine rank(...)481, 482, 500
affinely independent(...) . 335, 375, 402, 482,

501

INDEX 663

all edges()
graph . 172

ALL EMPTY CIRCLES(...) 431
ALL ENCLOSING CIR...(...) 431
all faces()

graph . 180
all nodes()

graph . 171
ALL PAIRS SHORTES...(...).250
allocate(...)

leda allocator<T> 29
alt key down()

window . 547
angle()

line .345
segment . 338

angle(...)
line .345
point . 333
ray . 342
segment . 338
vector . 84

animate(...)
GeoWin . 602

append(...)
b queue<E> .118
gml graph . 240
list<E> . 121
node list . 219
queue<E> . 116
slist<E> . 129

append directory ...(...).33
apply(...)

list<E> . 123
approximate(...)

r circle segment .448
approximate area()

r circle gen polygon 462
r circle polygon . 455
r circle segment .448

approximate by ra...()
r circle point . 444

approximate by ra...(...)
r circle gen polygon 461
r circle polygon . 454
r circle segment 448, 449

area()

GEN POLYGON363
POLYGON .357
rat rectangle . 397
rat triangle . 392
real rectangle . 424
real triangle . 419
rectangle . 370
triangle .365

area(...) . 334, 374, 401
point . 333
rat point .373
real point . 399

array2<E> . 114
array<E> .109
ask edge()

GraphWin . 580
ask node()

GraphWin . 580
assign(...)

GRAPH <vtype, e...> 186
list<E> . 122
PLANAR MAP<vtype, e...> 199, 200

B
B()

d3 plane . 489
d3 rat plane . 513

b node pq<N> . 224
b priority queue<I> . 166
b queue<E> . 118
b stack<E> . 117
back()

b queue<E> .118
list<E> . 121
slist<E> . 129

basic graph alg . 244
begin()

STLNodeIt<DataAcc...> 314
begins with(...)

string .19
BELLMAN FORD B T(...)249
BELLMAN FORD T(...) 250
BF GEN(...) . 249
BFS(...) . 245
BICONNECTED COMPO...(...) 246
bigfloat . 62
binary entropy(...) . 108

664 INDEX

binary locate(...)
array<E> .112

binary search(...)
array<E> . 111, 112

bool item(...)
window . 551

Bounding Box(...). .434
bounding box(...)

POLYGON .357
r circle gen polygon 461
r circle polygon . 454

break into words(...)
string .19

bucket sort(...)
list<E> . 124

bucket sort edges(...)
graph . 177

bucket sort nodes(...)
graph . 177

buffer(...) . 455
GEN POLYGON363
POLYGON .355
r circle gen polygon 463

button(...)
menu . 561
window . 555–557

button press time()
window . 547

button release time()
window . 547

buttons per line(...)
window . 550

C
C()

d3 plane . 489
d3 rat plane . 513

C style()
array<E> .111

callback
graph morphism algorithm< graph t >

280
canonical rep()

GEN POLYGON360
cardinality iso(...)

graph morphism algorithm< graph t >

282

cardinality mono(...)
graph morphism algorithm< graph t >

284
cardinality sub(...)

graph morphism algorithm< graph t >

283
cardinality t

graph morphism algorithm< graph t >

280
cartesian to polar()

d3 point . 479
catch system errors(...) 31
ceil(...) . 61, 65, 71
center()

circle . 349
d3 rat sphere . 516
d3 sphere . 492
r circle segment .446
rat circle . 389
rat rectangle . 394
real circle .415
real rectangle . 421
rectangle . 368

center(...) . 334, 400, 480
center pixrect(...)

window . 542
CGAL . 289, 298
change inf(...)

dictionary<K, I>144
interval set<I> . 474
p queue<P, I> .164
Partition<E> . 141
sortseq<K, I> . 159

char at(...)
string .18

Check Euler Tour(...) 272
CHECK HULL(...) . 520
CHECK KURATOWSKI(...) 273
check locate(...)

POINT LOCATOR472
CHECKMAX CARDMA...(...) 262
CHECKMAX FLOWT(...).252
CHECKMAXWEIGHT ...(...) . . . 260, 265,

266
CHECKMCB(...) . 256
CHECKMINWEIGHT ...(...) 261, 267
CHECKMWBMT(...) 259

INDEX 665

check representation()
GEN POLYGON360
r circle gen polygon 459

check representation(...)
GEN POLYGON360
r circle gen polygon 458

check simplicity()
POLYGON .353
r circle polygon . 452

CHECK SP T(...) . 248
CHECK TYPE

r circle gen polygon 456
r circle polygon . 450

CHECKWEIGHTS T(...) 268
CheckStableMatching(...) 269
chmod file(...) .34
choice item(...)

window . 554
choice mult item(...)

window . 554, 555
choose()

d int set . 135
edge set . 218
node set . 217
set<E> . 130

choose edge()
graph . 172

choose face()
graph . 179

choose node()
graph . 172

circle . 348
circle()

r circle segment .446
circulators . 298
circumscribing sp...()

d3 rat simplex . 518
d3 simplex .494

clear()
b priority queue<I> 167
b queue<E> .118
b stack<E> . 117
d array<I, E> .146
d int set . 135
dictionary<K, I>144
edge set . 218
graph . 178

h array<I, E> .149
int set . 133
interval set<I> . 474
list<E> . 123
map2<I1 , I2 , E> 154
map<I, E> .151
node list . 220
node pq<P> .222
node set . 217
p queue<P, I> .164
POINT SET . 467
queue<E> . 116
set<E> . 131
slist<E> . 129
sortseq<K, I> . 158
stack<E> . 115
window . 529

clear(...)
h array<I, E> .149
map<I, E> .151
window . 529

clear actions()
GeoWin . 616
GraphWin . 576

clear graph()
GraphWin . 568

client ip()
leda socket . 36

clip(...)
line .346
rat line . 386
rat rectangle . 396
real line . 412
real rectangle . 423
rectangle . 370

close()
GeoWin . 602
GraphWin . 567
window . 529

CLOSEST PAIR(...) 433
cmdline graph(...) .227
cmp dist(...)

point . 333
rat point .373
real point . 399

cmp distances(...) . . .334, 374, 400, 480, 499
d3 plane . 490

666 INDEX

cmp segments at x...(...) 340, 380, 406
cmp signed dist(...) 334, 374, 400
cmp slope(...)

rat segment . 378
cmp slopes(...) 340, 343, 347, 380, 383, 387,

406, 409, 413
cocircular(...) 335, 375, 402
col(...)

integer matrix . 93
matrix . 87
real matrix . 105

collinear(...) 335, 374, 401, 481, 499
color . 523
color item(...)

window . 551, 552
compare(...) . 45, 47, 48

real . 69
compare(. . .) . . see User defined parameter

types
compare all(...) . 69
compare by angle(...) 86, 100, 104, 335, 375,

402
compare files(...) . 34
compare tangent s...(...) 449
complement()

GEN POLYGON362
int set . 133
POLYGON .355
r circle gen polygon 460
r circle polygon . 453

complete bigraph(...)227
complete graph(...) . 226
complete ugraph(...) 226
compnumb()

GIT SCC<Out , In,...> 327
COMPONENTS(...) 245
CompPred<Iter ,DA...> 309
compute bounding box(...)

r circle segment .448
compute faces()

graph . 179
COMPUTE SHORTEST ...(...) 248
compute voronoi(...)

POINT SET . 470
compute with prec...(...)

real . 69
conc(...)

list<E> . 122
slist<E> . 129
sortseq<K, I> . 159

confirm(...)
window . 547

connect()
leda socket . 36

connect(...)
leda socket . 36

constant da<T> .316
construct(...)

leda allocator<T> 29
contained in affi...(...) . . . 336, 375, 402, 481,

500
contained in line...(...)101
contained in simplex(...) 336, 375, 402, 481,

500
contains(...)

circle . 349
d3 line . 487
d3 plane . 491
d3 rat line . 507
d3 rat plane . 515
d3 rat ray . 505
d3 rat segment .510
d3 rat sphere . 516
d3 ray . 483
d3 segment . 485
d3 sphere . 492
GEN POLYGON363
interval . 75
line .346
POLYGON .356
r circle gen polygon 461
r circle polygon . 455
r circle segment .447
rat circle . 390
rat line . 386
rat ray . 383
rat rectangle . 395
rat segment . 379
rat triangle . 392
ray . 343
real circle .415
real line . 412
real ray . 408, 409
real rectangle . 422

INDEX 667

real segment . 404
real triangle . 419
rectangle . 369
segment . 339
string .19
triangle .366
window . 533

contents(...)
integer . 58
list<E> . 121
slist<E> . 129

contour()
r circle gen polygon 460

CONVEX COMPONENTS(...) 428
CONVEX HULL(...) 425, 520
CONVEX HULL IC(...) 425
CONVEX HULL POLY(...) 425
CONVEX HULL RIC(...) 425
CONVEX HULL S(...) 425
coord(...)

rat vector . 99
real vector . 102
vector . 84

coord type
circle . 348
d3 rat simplex . 518
d3 simplex .494
GEN POLYGON358
line .344
point . 332
POLYGON .352
r circle gen polygon 456
r circle polygon . 450
rat circle . 388
rat line . 384
rat point .371
rat ray . 381
rat segment . 376
rat triangle . 391
ray . 341
real circle .414
real line . 410
real point . 398
real ray . 407
real segment . 403
real triangle . 418
segment . 337

triangle .365
coplanar(...) . 481, 500
copy(...)

array<E> .110
copy file(...) .34
copy rect(...)

window . 543
CopyGraph(...) . 231
count words(...)

string .19
counter . 43
cpu time() . 38
cpu time(...) . 38
create bitmap(...)

window . 541
create directory(...) . 33
create link(...) . 34
create pixrect(...)

window . 541
create pixrect fr...(...)

window . 541
CreateInputGraph(...) 270
cross product(...) 86, 100, 104
CRUST(...) .431
cs code(...)

rat rectangle . 395
real rectangle . 422
rectangle . 369

ctrl key down()
window . 547

curr adj()
AdjIt . 306
GIT DIJKSTRA<OutAdjI...> 329
InAdjIt . 303
OutAdjIt . 300

current()
GIT BFS<OutAdjI...>321
GIT DFS<OutAdjI...> 323
GIT DIJKSTRA<OutAdjI...> 328
GIT TOPOSORT<OutAdjI...> 325

current node()
dynamic markov chain 236
GIT SCC<Out , In,...> 327
markov chain . 235

current outdeg()
dynamic markov chain 236
markov chain . 235

668 INDEX

CUT VALUE(...) . 255
cycle found()

GIT TOPOSORT<OutAdjI...> 325
cyclic adj pred(...)

graph . 172, 181
cyclic adj succ(...)

graph . 172, 181
cyclic in pred(...)

graph . 173
cyclic in succ(...)

graph . 173
cyclic pred(...)

list<E> . 121
node list . 220

cyclic succ(...)
list<E> . 121
node list . 219
slist<E> . 129

D
D()

d3 plane . 489
d3 rat plane . 513

d2(...)
rat vector . 98

d3(...)
rat vector . 99

D3 DELAUNAY(...) 521
d3 grid graph(...) . 227
D3 SPRING EMBEDDING(...) 277
D3 TRIANG(...) . 521
D3 VORONOI(...) . 521
d3 delaunay . 521
d3 hull . 520
d3 line . 487
d3 plane .489
d3 point . 478
d3 rat line . 507
d3 rat plane . 513
d3 rat point . 496
d3 rat ray . 505
d3 rat segment . 510
d3 rat simplex . 518
d3 rat sphere . 516
d3 ray . 483
d3 segment . 485
d3 simplex . 494

d3 sphere .492
d3 window . 626
d face cycle pred(...)

POINT SET . 467
d face cycle succ(...)

POINT SET . 467
d array<I, E> . 146
d int set . 135
data accessor . 289
date . 50
days until(...)

date . 55
deallocate(...)

leda allocator<T> 29
decrease key(...)

b priority queue<I> 166
decrease p(...)

node pq<P> .222
p queue<P, I> .164

define area(...)
GraphWin . 580

defined(...)
d array<I, E> .146
dictionary<K, I>144
h array<I, E> .149
map2<I1 , I2 , E> 154
map<I, E> .151
node map2<E> . 215

degree(...)
graph . 171

del()
AdjIt . 305
EdgeIt .296
InAdjIt . 302
NodeIt . 294
OutAdjIt . 299

del(...)
b node pq<N> .224
d int set . 135
dictionary<K, I>144
edge set . 218
GeoWin . 622
int set . 133
interval set<I> . 473
list<E> . 122
node list . 219
node pq<P> .222

INDEX 669

node set . 217
POINT SET . 468
set<E> . 130
sortseq<K, I> . 159
string .20

del all(...)
string .20

del all edges()
graph . 175

del all faces()
graph . 175

del all nodes()
graph . 175

del bitmap(...)
window . 543

del dependence(...)
GeoWin . 623

del edge(...)
graph . 175
GraphWin . 568
planar map . 197

del edges(...)
graph . 175

del item(...)
b priority queue<I> 166
dictionary<K, I>144
interval set<I> . 473
list<E> . 122
p queue<P, I> .164
sortseq<K, I> . 159

del menu(...)
GraphWin . 577

del message()
GraphWin . 567
window . 540

del min()
b node pq<N> .224
b priority queue<I> 166
node pq<P> .222
p queue<P, I> .164

del min(...)
node pq<P> .222

del node(...)
graph . 175
GraphWin . 568

del nodes(...)
graph . 175

del pin point()
GeoWin . 624

del pixrect(...)
window . 543

del succ item(...)
slist<E> . 129

del tooltip(...)
window . 559

DELAUNAY DIAGRAM(...)426
DELAUNAY TRIANG(...) 426, 427
delete file(...) . 34
Delete Loops(...) . 234
delete prepared g...(...)

graph morphism algorithm< graph t >

281
delete subsequence(...)

sortseq<K, I> . 159
denominator()

rational .60
deselect(...)

GraphWin . 571, 572
deselect all()

GraphWin . 572
deselect all edges()

GraphWin . 572
deselect all nodes()

GraphWin . 571
design pattern . 287
destroy(...)

leda allocator<T> 29
det()

matrix . 87
real matrix . 105

det2x2(...) . 81
residual .81

detach()
leda socket . 36

determinant(...) .94
DFS(...) . 244
DFS NUM(...) . 244
diamond(...) . 70
diamond short(...) . 70
dictionary<K, I> . 143
diff(...)

d int set . 135
GEN POLYGON364
int set . 133

670 INDEX

r circle gen polygon 462
set<E> . 130

diff approximate(...)
r circle gen polygon 462

difference(...)
rat rectangle . 396
real rectangle . 423
rectangle . 370

DIJKSTRA T(...) 248, 249
dim()

integer vector . 90
POINT SET . 467
rat vector . 99
real vector . 102
vector . 84

dim1()
integer matrix . 92
matrix . 87
real matrix . 105

dim2()
integer matrix . 92
matrix . 87
real matrix . 105

direction()
line .345
ray . 342
segment . 338

disable button(...)
window . 558

disable buttons()
window . 558

disable call(...)
GraphWin . 578

disable calls()
GraphWin . 578

disable item(...)
window . 558

disable menus()
GeoWin . 623

disable panel(...)
window . 558

disconnect()
leda socket . 36

display()
GraphWin . 567
window . 528

display(...)

GeoWin . 602
GraphWin . 567
window . 529

display help text(...)
GraphWin . 578
window . 559

DISREGARD ORIENTATION
r circle gen polygon 457
r circle polygon . 451

dist(...) . 71
r circle gen polygon 460
r circle polygon . 453
r circle segment .448

distance()
d3 point . 479
point . 333
real point . 399
real segment . 405
segment . 339

distance(...)
circle . 351
d3 line . 488
d3 plane . 490
d3 point . 479
GEN POLYGON364
line .345
point . 333
POLYGON .356
real circle . 416, 417
real line . 411
real point . 399
real segment . 405
segment . 339

div(...)
residual . 78, 81

do intersect(...)
rat rectangle . 397
real rectangle . 424
rectangle . 370

double item(...)
window . 551

double quotient(...) . 59
draw()

d3 window .627
draw arc(...)

window . 535
draw arc arrow(...)

INDEX 671

window . 536
draw arrow(...)

window . 535
draw arrow head(...)

window . 536
draw bezier(...)

window . 535
draw bezier arrow(...)

window . 536
draw box(...)

window . 538
draw circle(...)

window . 536
draw closed spline(...)

window . 535
draw ctext(...)

window . 539
draw disc(...)

window . 536
draw edge(...)

POINT SET . 470
window . 541

draw edge arrow(...)
window . 541

draw edges(...)
POINT SET . 470

draw ellipse(...)
window . 536

draw filled circle(...)
window . 537

draw filled ellipse(...)
window . 537

draw filled node(...)
window . 540

draw filled polygon(...)
window . 537, 538

draw filled recta...(...)
window . 538

draw filled triangle(...)
window . 539

draw hline(...)
window . 534

draw hull(...)
POINT SET . 471

draw int node(...)
window . 540

draw line(...)

window . 534
draw node(...)

window . 540
draw nodes(...)

POINT SET . 470
draw oriented pol...(...)

window . 537, 538
draw pixel(...)

window . 533
draw pixels(...)

window . 533, 534
draw point(...)

window . 533
draw polygon(...)

window . 537
draw polyline(...)

window . 537
draw polyline arrow(...)

window . 536
draw ray(...)

window . 535
draw rectangle(...)

window . 538
draw roundbox(...)

window . 539
draw roundrect(...)

window . 538, 539
draw segment(...)

window . 534
draw segments(...)

window . 534
draw spline(...)

window . 535
draw spline arrow(...)

window . 536
draw text(...)

window . 539
draw text node(...)

window . 540
draw triangle(...)

window . 539
draw vline(...)

window . 534
draw voro(...)

POINT SET . 471
draw voro edges(...)

POINT SET . 470

672 INDEX

dual()
line .346
rat line . 386
real line . 412

dual map(...)
graph . 179

dx()
d3 rat segment .510
d3 segment . 485
rat segment . 378
real segment . 404
segment . 338

dxD()
rat segment . 378

dy()
d3 rat segment .511
d3 segment . 485
rat segment . 378
real segment . 404
segment . 338

dyD()
rat segment . 378

dynamic markov chain 236
dynamic random variate 26
dz()

d3 rat segment .511
d3 segment . 486

E
edge

graph morphism algorithm< graph t >

280
static graph . 191

edge compat
graph morphism algorithm< graph t >

280
edge data()

GRAPH <vtype, e...> 186
edge morphism

graph morphism algorithm< graph t >

280
edge value type

GRAPH <vtype, e...> 185
edge array<E> .203
edge map<E> . 209
edge set . 218
EdgeIt .294

edges()
GEN POLYGON361
r circle gen polygon 459

edit()
GeoWin . 601
GraphWin . 567

edit(...)
GeoWin . 601

elapsed time() . 38
timer . 41

elapsed time(...) . 38
element type

d array<I, E> .146
map2<I1 , I2 , E> 153
map<I, E> .151

eliminate cocircu...()
r circle gen polygon 460
r circle polygon . 453

eliminate colinea...()
GEN POLYGON362
POLYGON .355

EMPTY
r circle gen polygon 456
r circle polygon . 450

empty()
b priority queue<I> 167
b queue<E> .118
b stack<E> . 117
d int set . 135
dictionary<K, I>145
edge set . 218
GEN POLYGON360
graph . 173
h array<I, E> .150
interval set<I> . 474
list<E> . 120
node list . 220
node pq<P> .223
node set . 217
p queue<P, I> .164
POINT SET . 467
POLYGON .354
queue<E> . 116
set<E> . 131
slist<E> . 128
sortseq<K, I> . 158
stack<E> . 115

INDEX 673

string .18
enable button(...)

window . 558
enable buttons()

window . 558
enable call(...)

GraphWin . 578
enable calls()

GraphWin . 578
enable item(...)

window . 558
enable label box(...)

GraphWin . 571
enable menus()

GeoWin . 623
enable panel()

window . 558
end()

rat segment . 377
real segment . 404
segment . 338
STLNodeIt<DataAcc...> 314

ends with(...)
string .20

enumerate iso(...)
graph morphism algorithm< graph t >

282
enumerate mono(...)

graph morphism algorithm< graph t >

285
enumerate sub(...)

graph morphism algorithm< graph t >

284
eol()

AdjIt . 305
EdgeIt .296
FaceCirc .307
FaceIt . 298
InAdjIt . 303
NodeIt . 294
OutAdjIt . 300

equal as sets(...) 380, 387, 390, 449
erase(...)

list<E> . 122
error . 31
error handler(...) . 31
Euler Tour(...) . 272

euler tour . 272
expand tabs(...)

string .19
extract(...)

list<E> . 123

F
F DELAUNAY DIAGRAM(...)427
F DELAUNAY TRIANG(...) 427
F VORONOI(...) . 430
face cycle pred(...)

graph . 178
face cycle succ(...)

graph . 178
face of(...) . 183

graph . 179
face array<E> . 205
face map<E> . 211
FaceCirc . 306
FaceIt . 296
factorial(...) . 59
fbutton(...)

window . 555, 556
FEASIBLE FLOW(...)253
file . 33
file istream . 22
file ostream . 22
fill win params(...)

GraphWin . 573, 574
fill window()

GeoWin . 613
FilterNodeIt<Predica...> 307
find(...)

node partition . 221
partition .138
Partition<E> . 140

find all iso(...)
graph morphism algorithm< graph t >

282
find all mono(...)

graph morphism algorithm< graph t >

285
find all sub(...)

graph morphism algorithm< graph t >

283
find iso(...)

674 INDEX

graph morphism algorithm< graph t >

281
find min()

b priority queue<I> 166
node pq<P> .222
p queue<P, I> .164

find mono(...)
graph morphism algorithm< graph t >

284
find sub(...)

graph morphism algorithm< graph t >

283
finger locate(...)

sortseq<K, I> 156, 157
finger locate fro...(...)

sortseq<K, I> . 156
finger locate pre...(...)

sortseq<K, I> . 157
finger locate pred(...)

sortseq<K, I> . 157
finger locate suc...(...)

sortseq<K, I> . 157
finger locate succ(...)

sortseq<K, I> . 157
finger lookup(...)

sortseq<K, I> 156, 157
finger lookup fro...(...)

sortseq<K, I> . 156
finish algo()

GIT BFS<OutAdjI...>321
GIT DFS<OutAdjI...> 324
GIT DIJKSTRA<OutAdjI...> 329
GIT SCC<Out , In,...> 327
GIT TOPOSORT<OutAdjI...> 325

finish construction()
static graph . 192

finish menu bar()
GraphWin . 568

finished()
GIT BFS<OutAdjI...>321
GIT DFS<OutAdjI...> 324
GIT DIJKSTRA<OutAdjI...> 328
GIT SCC<Out , In,...> 327
GIT TOPOSORT<OutAdjI...> 325

first
r circle point . 443

first()

four tuple<A,B,C,D> 48
list<E> . 120
slist<E> . 128
three tuple<A,B,C> 46
two tuple<A,B> . 45

first adj edge(...)
graph . 172

first edge()
graph . 172

first face()
graph . 179

first face edge(...)
graph . 180

first file in path(...) . 34
first in edge(...)

graph . 173
first node()

graph . 172
first type

four tuple<A,B,C,D> 47
three tuple<A,B,C> 46
two tuple<A,B> . 45

fit pixrect(...)
window . 542

FIVE COLOR(...) . 274
flip items(...)

sortseq<K, I> . 158
float type

GEN POLYGON358
POLYGON .352
rat circle . 388
rat line . 384
rat point .371
rat ray . 381
rat segment . 376
real point . 398

floatf . 82
floor(...) . 61, 65, 71
flush buffer()

window . 543
flush buffer(...)

window . 543
forall edges(...). .192
forall in edges(...) . 193
forall nodes(...) . 192
forall out edges(...) 192, 193
format

INDEX 675

date . 51
four tuple<A,B,C,D> 47
fourth()

four tuple<A,B,C,D> 48
fourth type

four tuple<A,B,C,D> 47
frac(...)

residual .79
from string(...)

bigfloat . 65
integer . 58

front()
b queue<E> .118
list<E> . 121
slist<E> . 129

full()
GEN POLYGON360

G
garner sign()

residual .80
gcd(...) . 59
GEN POLYGON .358
generate()

dynamic random variate 26
random variate . 26

Genus(...) . 232
geo alg . 425
GeoWin . 590
get()

random source . 24
get(...) . 315, 317–319

array<E> .110
get action(...)

GeoWin . 616
GraphWin . 576

get active line w...(...)
GeoWin . 606

get active scene()
GeoWin . 604

get arrow(...)
d3 window .629

get bg color()
GeoWin . 614

get bg pixmap()
GeoWin . 614

get bigfloat error()

real . 68
get bounding box(...)

GraphWin . 581, 582
POINT SET . 467

get button(...)
window . 558

get button label(...)
window . 558

get call button()
window . 557

get call item()
window . 557

get call window()
window . 557

get client data(...)
GeoWin . 607
window . 532

get color(...)
d3 window .629
GeoWin . 605

get convex hull()
POINT SET . 467

get cursor()
window . 532

get cyclic colors(...)
GeoWin . 607

get d2 position(...)
d3 window .629

get d3 elimination()
GeoWin . 615

get d3 fcn(...)
GeoWin . 624

get d3 show edges()
GeoWin . 615

get d3 solid()
GeoWin . 615

get date()
date . 53

get day()
date . 53

get day in year()
date . 54

get day of week()
date . 54

get default value()
map<I, E> .151

get description(...)

676 INDEX

GeoWin . 607
get directories(...) . 33
get directory() . 33
get directory del...() . 33
get disk drives() .34
get double error()

interval . 75
real . 68

get double lower ...()
real . 68

get double upper ...()
real . 68

get dow name()
date . 54

get draw edges()
d3 window .628

get edge()
AdjIt . 305
EdgeIt .296
FaceCirc .307
InAdjIt . 303
OutAdjIt . 300

get edge param()
GraphWin . 569

get edges in area(...)
GraphWin . 581

get edit edge()
GraphWin . 581

get edit mode(...)
GeoWin . 621

get edit node()
GraphWin . 581

get edit object fcn(...)
GeoWin . 619

get edit slider()
GraphWin . 581

get effective sig...(...)
bigfloat . 63

get element list(...)
d int set . 136

get elim()
d3 window .628

get entries(...) .33
get environment(...) . 38
get error handler() . 31
get event(...)

window . 547

get exponent(...)
bigfloat . 63

get face()
FaceIt . 297

get files(...) . 33
get fill color(...)

GeoWin . 606
get garnertable()

residual .81
get geowin()

window . 533
get geowin(...) . 625
get graph()

AdjIt . 305
edge array<E> . 203
edge map<E> . 209
EdgeIt .296
face array<E> . 205
face map<E> . 211
FaceCirc .307
FaceIt . 297
GraphWin . 568
InAdjIt . 303
node array<E> . 201
node map<E> .207
NodeIt . 294
OutAdjIt . 300

get graphwin()
window . 533

get grid dist()
GeoWin . 614
window . 532

get grid mode()
window . 532

get grid style()
GeoWin . 614
window . 532

get handle defini...(...)
GeoWin . 608

get home directory() . 33
get host()

leda socket . 36
get hull dart()

POINT SET . 467
get hull edge()

POINT SET . 467
get in stack()

INDEX 677

GIT SCC<Out , In,...> 327
get incremental u...(...)

GeoWin . 608
get input format()

date . 53
get input format str()

date . 53
get item(...)

list<E> . 120
window . 558

get language()
date . 52

get limit()
leda socket . 35

get limit(...)
GeoWin . 624

get line style()
window . 532

get line style(...)
GeoWin . 606

get line width()
window . 532

get line width(...)
GeoWin . 606

get lower bound()
real . 68

get maximal bit l...()
residual .79

get menu(...)
GraphWin . 578

get message()
d3 window .629
GraphWin . 567

get mode()
window . 532

get month()
date . 53

get month name()
date . 54

get mouse()
d3 window .628
window . 546

get mouse(...) . 550
window . 546

get name()
counter . 43
timer . 41

get name(...)
GeoWin . 605

get node()
AdjIt . 305
InAdjIt . 303
NodeIt . 294
OutAdjIt . 300

get node param()
GraphWin . 569

get node width()
window . 532

get nodes in area(...)
GraphWin . 581

get num calls()
graph morphism algorithm< graph t >

281
get obj color(...)

GeoWin . 609, 610
get obj fill color(...)

GeoWin . 610
get obj label(...)

GeoWin . 611
get obj line style(...)

GeoWin . 610, 611
get obj line width(...)

GeoWin . 611
get obj text(...)

GeoWin . 612, 613
get objects(...) . 625

GeoWin . 600
get observer()

ObserverNodeIt<Obs , Iter>311
get out stack()

GIT SCC<Out , In,...> 327
get output format()

date . 53
get output format...()

date . 53
get param(...)

GraphWin . 568, 569
get pin point(...)

GeoWin . 624
get pixrect(...)

window . 542
get pixrect height(...)

window . 542
get pixrect width(...)

678 INDEX

window . 542
get point style(...)

GeoWin . 607
get port()

leda socket . 36
get position(...)

GraphWin . 572
get precision()

bigfloat . 63
random source . 25

get primetable()
residual .81

get qlength()
leda socket . 36

get queue()
GIT BFS<OutAdjI...>321
GIT DIJKSTRA<OutAdjI...> 328
GIT TOPOSORT<OutAdjI...> 325

get representation() . 81
get rgb(...)

color . 524
get rounding mode()

bigfloat . 64
get scene with name(...)

GeoWin . 604
get scenegroups()

GeoWin . 622
get scenes()

GeoWin . 622
get scenes(...)

GeoWin . 622
get selected edges()

GraphWin . 572
get selected nodes()

GraphWin . 571
get selected objects(...)

GeoWin . 600
get selection color(...)

GeoWin . 605
get selection fil...(...)

GeoWin . 605
get selection lin...(...)

GeoWin . 605
get show grid()

GeoWin . 614
get show orientation()

window . 532

get show orientation(...)
GeoWin . 607

get show position()
GeoWin . 614

get show status()
GeoWin . 603

get significant(...)
bigfloat . 63

get significant l...(...)
bigfloat . 63

get solid()
d3 window .628

get stack()
GIT DFS<OutAdjI...> 324

get state()
window . 533

get string()
color . 524

get text color(...)
GeoWin . 606

get text mode()
window . 532

get timeout()
leda socket . 36

get upper bound()
real . 68

get user layer color()
GeoWin . 614

get user layer li...()
GeoWin . 614

get value()
counter . 43

get visible(...)
GeoWin . 606

get visible scenes()
GeoWin . 623

get week()
date . 54

get window()
GeoWin . 602
GraphWin . 568

get window(...)
window . 558

get window pixrect()
window . 542

get x rotation()
d3 window .628

INDEX 679

get xmax()
GeoWin . 602
GraphWin . 567

get xmin()
GeoWin . 602
GraphWin . 567

get y rotation()
d3 window .628

get year()
date . 54

get ymax()
GeoWin . 602
GraphWin . 567

get ymin()
GeoWin . 602
GraphWin . 567

get z order(...)
GeoWin . 604

GIT BFS<OutAdjI...> 319
GIT DFS<OutAdjI...> 322
GIT DIJKSTRA<OutAdjI...> 327
GIT SCC<Out , In,...> 326
GIT TOPOSORT<OutAdjI...> 324
gml graph . 237
goback()

gml graph . 240
graph .169
GRAPH <vtype, e...> .184
graph of(...) . 183
graph draw . 276
graph gen .226
graph misc . 231
graph morphism<graph t...> 279
graph morphism algorithm< graph t > . . 280
GraphWin .564
grid graph(...) . 227
guarantee relativ...(...)

real . 69

H
h array<I, E> . 149
HALFPLANE INTERSE...(...)426
halt()

timer . 41
has edge()

FaceCirc .307
has node()

AdjIt . 305
InAdjIt . 302
OutAdjIt . 300

Hash(...) . 46–48
Hash(. . .)see User defined parameter types
Hashed Types see h array,

see map2, see map, see User defined
parameter types

hcoord(...)
d3 rat point . 497
rat vector . 99
real vector . 102
vector . 84

head()
list<E> . 121
node list . 219
slist<E> . 129

head(...)
string .18

height()
rat rectangle . 395
real rectangle . 422
rectangle . 369
window . 533

hex print(...)
integer . 58

hidden edges()
graph . 174

hidden nodes()
graph . 175

hide edge(...)
graph . 174

hide edges(...)
graph . 174

hide node(...)
graph . 175

high()
array<E> .110
real . 68

high1()
array2<E> . 114

high2()
array2<E> . 114

highword()
integer . 58

hilbert(...) . 357
homogeneous linea...(...) 95

680 INDEX

I
identity(...)

integer matrix . 92
ilog2(...) . 65
improve approxima...(...)

real . 69
in current()

GIT SCC<Out , In,...> 327
in edges(...)

graph . 172
in pred(...)

graph . 173
in simplex(...)

d3 rat simplex . 519
d3 simplex .495

in succ(...)
graph . 173

InAdjIt . 301
incircle(...) . 375
include(...)

rat rectangle 395, 396
real rectangle . 422
rectangle . 369

increment()
counter . 43

indeg(...)
graph . 171
static graph . 193

independent columns(...) 95
INDEPENDENT SET(...) 274
index(...)

d3 rat simplex . 518
d3 simplex .494
string . 18, 19

index type
d array<I, E> .146
map<I, E> .151

index type1
map2<I1 , I2 , E> 153

index type2
map2<I1 , I2 , E> 153

inf(...)
b priority queue<I> 166
dictionary<K, I>144
GRAPH <vtype, e...> 185
interval set<I> . 473
list<E> . 121

node pq<P> .223
p queue<P, I> .164
Partition<E> . 141
PLANAR MAP<vtype, e...>199
slist<E> . 129
sortseq<K, I> . 156
subdivision<I> . 475

inf type
dictionary<K, I>143
p queue<P, I> .163
sortseq<K, I> . 155

init()
edge map<E> . 209
face map<E> . 211
node map2<E> . 215
node map<E> .207

init(...)
AdjIt . 304
array2<E> . 114
array<E> .111
d3 window .627
edge array<E> 203, 204
edge map<E> . 209
EdgeIt .295
face array<E> 205, 206
face map<E> . 211
FaceCirc .307
FaceIt . 297
FilterNodeIt<Predica...> 308
GeoWin . 602
GIT DFS<OutAdjI...> 324
GIT DIJKSTRA<OutAdjI...> 328
graph . 171
InAdjIt . 302
node array<E>201, 202
node map2<E> . 215
node map<E> .207
node matrix<E> 213
NodeIt . 293
ObserverNodeIt<Obs , Iter>311
OutAdjIt . 299
POINT SET . 466
window . 528

init menu(...)
GeoWin . 603

insert()
NodeIt . 294

INDEX 681

insert(...)
AdjIt . 305
b node pq<N> .224
b priority queue<I> 166
d int set . 135
dictionary<K, I>144
edge set . 218
EdgeIt .295
GeoWin . 621
InAdjIt . 302
int set . 133
interval set<I> . 473
list<E> . 122
node list . 219
node pq<P> .222
node set . 217
OutAdjIt . 299
p queue<P, I> .164
POINT SET . 468
set<E> . 130
slist<E> . 129
sortseq<K, I> . 158
string .20

insert at(...)
sortseq<K, I> . 158

insert reverse edges()
graph . 177

inside(...)
circle . 349
d3 rat sphere . 516
d3 sphere . 492
GEN POLYGON362
POLYGON .356
r circle gen polygon 461
r circle polygon . 454
rat circle . 389
rat rectangle . 395
rat triangle . 392
real circle .415
real rectangle . 422
real triangle . 419
rectangle . 369
triangle .366

inside circle(...) 335, 401
inside or contains(...)

rat rectangle . 395
real rectangle . 422

rectangle . 369
inside sphere(...) 482, 501
insphere(...)

d3 rat simplex . 519
d3 simplex .495

int item(...)
window . 551–553

int set . 133
integer . 57
integer matrix . 92
integer vector . 90
integrate function(...) 108
intersect(...)

d int set . 135
int set . 133
set<E> . 130

intersect halfplane(...)
POLYGON .354

intersection(...)
circle . 350
d3 line . 488
d3 plane . 490
d3 rat line . 508, 509
d3 rat plane . 514
d3 rat ray . 505
d3 rat segment .511
d3 ray . 483
d3 segment . 486
GEN POLYGON 361, 364
interval set<I> . 473
line .345
POLYGON .354
r circle gen polygon 459, 462
r circle point444, 445
r circle polygon . 452
r circle segment .448
rat line . 385
rat ray . 382
rat rectangle 396, 397
rat segment . 379
rat triangle . 392
ray . 342
real circle .416
real line . 411
real ray . 408
real rectangle 423, 424
real segment 404, 405

682 INDEX

real triangle . 419
rectangle . 370
segment . 339
triangle .366

intersection appr...(...)
r circle gen polygon 462

intersection half...(...)
r circle polygon . 452

intersection of l...(...)
d3 rat segment .511
d3 segment . 486
rat segment . 379
real segment . 405
segment . 339

interval .74
interval set<I> . 473
inv()

matrix . 87
real matrix . 105

inverse()
rational .60

inverse(...) . 94
residual . 78, 81

invert()
rational .60

ipow2(...) . 65
is a point()

interval . 75
is active(...)

GeoWin . 604
Is Acyclic(...) . 232
Is Biconnected(...) . 232
is bidirected()

graph . 178
Is Bidirected(...) . 232
Is Bipartite(...) . 233
is call enabled(...)

GraphWin . 578
Is CCWConvex Fac...(...) 435
Is CCWOrdered(...) 274, 275, 434
Is CCWOrdered Pl...(...) 435
Is CCWWeakly Con...(...) 435
Is CCWWeakly Ord...(...) 435
is closed chain()

r circle polygon . 452
Is Connected(...) . 232
is convex()

GEN POLYGON360
POLYGON .353
r circle gen polygon 459
r circle polygon . 452

Is Convex Subdivi...(...) 430
Is CW Convex Face...(...)435
Is CWWeakly Conv...(...) 435
is degenerate()

circle . 349
d3 rat simplex . 518
d3 rat sphere . 516
d3 simplex .494
d3 sphere . 492
r circle segment .446
rat circle . 389
rat rectangle . 395
rat triangle . 392
real circle .415
real rectangle . 422
real triangle . 419
rectangle . 369
triangle .365

Is Delaunay Diagram(...) 430
Is Delaunay Trian...(...) 430
is diagram dart(...)

POINT SET . 467
is diagram edge(...)

POINT SET . 467
is directed()

graph . 173
is directory(...) . 33
is empty()

r circle gen polygon 458
r circle polygon . 452

is enabled(...)
window . 558

is file(...) . 34
is finite()

interval . 75
is full()

r circle gen polygon 458
r circle polygon . 452

is full circle()
r circle segment .446

is general()
real . 68

is graph isomorphism(...)

INDEX 683

graph morphism algorithm< graph t >

285
is graph monomorp...(...)

graph morphism algorithm< graph t >

286
is hidden(...)

graph . 174, 175
is horizontal()

line .345
rat line . 385
rat ray . 382
rat segment . 378
ray . 342
real line . 411
real ray . 408
real segment . 404
segment . 338

is hull dart(...)
POINT SET . 467

is hull edge(...)
POINT SET . 467

is invertible()
residual .80

is last day in month()
date . 55

is leap year(...)
date . 55

is line()
circle . 349
rat circle . 389
real circle .415

is link(...) . 34
is long()

integer . 58
residual .80

Is Loopfree(...) .231
is map()

graph . 178
Is Map(...) . 232
Is Planar(...) .233
Is Planar Map(...) .232
Is Plane Map(...) . 232
is point()

rat rectangle . 395
real rectangle . 422
rectangle . 369

is pred()

GIT DIJKSTRA<OutAdjI...> 329
is proper arc()

r circle segment .446
is r circle polygon()

r circle gen polygon 460
is rat circle()

r circle gen polygon 461
r circle polygon . 454

is rat gen polygon()
r circle gen polygon 460

is rat point()
r circle point . 444

is rat polygon()
r circle polygon . 453

is rat segment()
r circle segment .447

is rational()
real . 68

is running()
timer . 41

is segment()
rat rectangle . 395
real rectangle . 422
rectangle . 369

is selected(...)
GraphWin . 571, 572

Is Series Parallel(...) 233
is simple()

GEN POLYGON360
POLYGON .353
r circle gen polygon 458
r circle polygon . 452

Is Simple(...) .231
Is Simple Loopfree(...) 231
Is Simple Polygon(...) 434
is solvable(...) . 95
is space(...) . 38
is straight segment()

r circle segment .447
is subgraph isomo...(...)

graph morphism algorithm< graph t >

286
Is Triangulation(...) . 430
Is Triconnected(...)232, 233
is trivial()

circle . 349
d3 rat segment .511

684 INDEX

d3 segment . 486
r circle gen polygon 458
r circle polygon . 451
r circle segment .446
rat circle . 389
rat segment . 378
real circle .415
real segment . 404
segment . 338

is undirected()
graph . 173

Is Undirected Simple(...) 231
is valid(...)

date . 55
is vertical()

line .345
rat line . 385
rat ray . 382
rat segment . 378
ray . 342
real line . 411
real ray . 408
real segment . 404
segment . 338

is vertical segment()
r circle segment .447

Is Voronoi Diagram(...) 432
is weakly simple()

POLYGON .353
r circle gen polygon 458
r circle polygon . 452

is weakly simple(...)
POLYGON .353
r circle gen polygon 458
r circle polygon . 452

is zero()
residual .80

isInf(...) . 65
isNaN(...) .64
isnInf(...) . 64
isnZero(...) . 65
ispInf(...) . 65
ispZero(...) . 65
isSpecial(...) . 65
istream . 17
iszero()

integer . 59

isZero(...) . 65
item . 11

array<E> .109
d array<I, E> .146
dictionary<K, I>143
list<E> . 120
map2<I1 , I2 , E> 153
map<I, E> .151
p queue<P, I> .163
slist<E> . 128
sortseq<K, I> . 155

iteration
Graph iterator . 14
macros . 13
STL iterators . 13

iterator . 287

J
Jan

date . 50
join(...)

d int set . 135
graph . 178
int set . 133
set<E> . 130

join faces(...)
graph . 180

K
K SHORTEST PATHS(...) 250
key(...)

dictionary<K, I>144
sortseq<K, I> . 156

key type
dictionary<K, I>143
sortseq<K, I> . 155

KIND
r circle gen polygon 456
r circle polygon . 450

kind()
GEN POLYGON360
r circle gen polygon 458
r circle polygon . 451

KURATOWSKI(...) 274

L
lagrange sign()

residual .80

INDEX 685

language
date . 50

LARGEST EMPTY CIRCLE(...) 430
last()

list<E> . 120
slist<E> . 128
STLNodeIt<DataAcc...> 314

last adj edge(...)
graph . 172

last edge()
graph . 172

last face()
graph . 179

last in edge(...)
graph . 173

last index(...)
string .19

last node()
graph . 172

lattice d3 rat po...(...) 503
lattice points(...) . 442
leda assert(...) . 32
leda allocator<T> . 29
leda socket . 35
left(...)

interval set<I> . 473
left tangent(...)

circle . 350
real circle .416

left turn(...) 335, 374, 401
length()

b queue<E> .118
d3 segment . 486
integer . 58
list<E> . 120
queue<E> . 116
real segment . 404
real vector . 102
residual .80
segment . 338
slist<E> . 128
string .18
vector . 84

line . 344
Linear Orders . . see dictionary, see sortseq,

see User defined parameter types
linear base(...) . 101

linear rank(...) . 101
linear solver(...) . 94, 95
linearly independent(...) 101
list<E> . 120
listen()

leda socket . 36
load layout(...)

GraphWin . 575
locate(...)

POINT LOCATOR472
POINT SET . 468
sortseq<K, I> . 156

LOCATE IN TRIANGU...(...) 426
locate point(...)

subdivision<I> . 475
locate pred(...)

sortseq<K, I> . 157
locate succ(...)

sortseq<K, I> . 156
log(...) . 59
log2 abs(...) . 59
lookup(...)

dictionary<K, I>144
interval set<I> . 473
POINT SET . 468
sortseq<K, I> . 156

low()
array<E> .110
real . 68

low1()
array2<E> . 114

low2()
array2<E> . 114

lower bound()
b priority queue<I> 167
interval . 75

LOWER CONVEX HULL(...) 425
lower left()

rat rectangle . 394
real rectangle . 421
rectangle . 368

lower right()
rat rectangle . 394
real rectangle . 421
rectangle . 368

lstyle item(...)
window . 552

686 INDEX

lwidth item(...)
window . 552

M
Make Acyclic(...) . 233
Make Biconnected(...).233
make bidirected()

graph . 178
Make Bidirected(...) 233
make bidirected(...)

graph . 178
make block()

partition .138
make block(...)

Partition<E> . 140
Make Connected(...) 233
make directed()

graph . 177
make invalid()

AdjIt . 305
EdgeIt .295
FaceCirc .307
FaceIt . 297
InAdjIt . 302
NodeIt . 293
OutAdjIt . 300

make map()
graph . 178

make map(...)
graph . 178

make menu bar()
window . 557

make planar map()
graph . 180

make rep(...)
node partition . 221

Make Simple(...) . 233
MAKE TRANSITIVELY...(...).246
make undirected()

graph . 177
make weakly simple()

r circle gen polygon 460
r circle polygon . 453

make weakly simple(...)
GEN POLYGON362
POLYGON .355
r circle gen polygon 460

Manual Page . 4
map2<I1 , I2 , E> .153
map<I, E> . 151
markov chain .235
matrix .87
max()

d int set . 135
int set . 133
list<E> . 125

max(...) . 39
list<E> . 125

MAX CARD BIPARTIT...(...) 256
MAX CARDMATCHING(...) 262
MAX CARDMATCHING...(...) 262
max flow gen AMO(...) 253
max flow gen CG1(...) 253
max flow gen CG2(...) 253
max flow gen rand(...) 253
MAX FLOW SCALE CAPS(...) 252
MAX FLOWT(...)252, 253
max item()

sortseq<K, I> . 158
max size()

b queue<E> .118
b stack<E> . 117
leda allocator<T> 30

MAXWEIGHT ASSIGN...(...) 260
MAXWEIGHT BIPART...(...)259
MAXWEIGHTMATCHI...(...) 265
MAXWEIGHT PERFEC...(...) 266
max flow . 251
maximal planar graph(...) 228
maximal planar map(...) 228
mc matching . 261
mcb matching . 256
measure

timer . 40
member(...)

d int set . 135
edge set . 218
int set . 133
node list . 219
node pq<P> .222
node set . 217
set<E> . 130

menu .561
menu bar height()

INDEX 687

window . 533
merge(...)

list<E> . 125
sortseq<K, I> . 159

merge nodes(...)
graph . 174

merge sort()
list<E> . 124

merge sort(...)
list<E> . 124

message(...)
GeoWin . 623
GraphWin . 567
window . 540

middle()
r circle segment .446

midpoint(...) 334, 374, 400, 480, 499
min()

d int set . 135
int set . 133
list<E> . 125

min(...) . 39
list<E> . 125

MIN AREA ANNULUS(...) 431
MIN COST FLOW(...)254
MIN COSTMAX FLOW(...)254
MIN CUT(...) . 255
min item()

sortseq<K, I> . 158
MIN SPANNING TREE(...)271, 430
MINWEIGHT ASSIGN...(...)260
MINWEIGHT PERFEC...(...) 267
MINWIDTH ANNULUS(...) 431
min cost flow . 253
min cut . 254
min span . 271
minimize function(...) 107
MINIMUMRATIO CYCLE(...) 250
minimum spanning ...()

POINT SET . 470
MINKOWSKI DIFF(...) 429
MINKOWSKI SUM(...) 429
misc .38
month

date . 50
months until(...)

date . 55

morphism
graph morphism algorithm< graph t >

280
morphism list

graph morphism algorithm< graph t >

280
move()

d3 window .628
move edge(...)

graph . 175, 176
move file(...) . 34
move to back(...)

list<E> . 122
move to front(...)

list<E> . 122
move to rear(...)

list<E> . 122
msg clear()

GeoWin . 623
msg close()

GeoWin . 623
msg open(...)

GeoWin . 623
mul(...)

residual . 78, 81
MULMULEY SEGMENTS(...) 433
mw matching . 262
MWA SCALEWEIGHTS(...) 261
mwb matching . 257
MWBM SCALEWEIGHTS(...) 261
MWMCBMATCHING T(...) 261
my sortseq(...)

sortseq<K, I> . 160

N
n gon(...) . 357
nearest neighbor(...)

POINT SET . 469
nearest neighbors(...)

POINT SET . 469
negate()

rational .60
negate(...)

residual . 78, 81
Nesting Tree(...) . 434
new edge(...)

graph . 173, 174, 181

688 INDEX

GRAPH <vtype, e...> 186, 187
GraphWin . 568
planar map . 197
PLANAR MAP<vtype, e...>200
static graph . 192

new map edge(...)
graph . 179

new node()
graph . 173
static graph . 192

new node(...)
graph . 173
GRAPH <vtype, e...> 186
GraphWin . 568
planar map 197, 198
PLANAR MAP<vtype, e...>200

new scene(...)
GeoWin 595, 597–600

new scenegroup(...)
GeoWin . 621

next()
GIT BFS<OutAdjI...>321
GIT DFS<OutAdjI...> 323
GIT DIJKSTRA<OutAdjI...> 329
GIT SCC<Out , In,...> 327
GIT TOPOSORT<OutAdjI...> 325

next face edge(...)
graph . 179

next unseen()
GIT DFS<OutAdjI...> 323

next word(...)
string .19

NO CHECK
r circle gen polygon 456
r circle polygon . 450

node
graph morphism algorithm< graph t >

280
static graph . 191

node compat
graph morphism algorithm< graph t >

280
node data()

GRAPH <vtype, e...> 186
node morphism

graph morphism algorithm< graph t >

280

node value type
GRAPH <vtype, e...> 185

node array<E> . 201
node array da<T> . 315
node attribute da<T> 318
node list . 219
node map2<E> . 215
node map<E> . 207
node matrix<E> . 213
node member da<Str , T> 317
node partition . 221
node pq<P> . 222
node set . 217
NodeIt . 293
norm()

real vector . 103
TRANSFORM . 436
vector . 84

normal()
d3 plane . 489
d3 rat plane . 513

normal project(...)
d3 plane . 490
d3 rat plane . 514

normalize()
GEN POLYGON360
POLYGON .353
r circle gen polygon 458
r circle point . 443
r circle polygon . 452
r circle segment .446
rat circle . 389
rat line . 385
rat point .372
rat ray . 382
rat rectangle . 394
rat segment . 377
rat triangle . 391
rational .60

number of blocks()
node partition . 221
partition .138
Partition<E> . 140

number of edges()
graph . 171

number of faces()
graph . 179

INDEX 689

number of nodes()
graph . 171

number of steps()
dynamic markov chain 236
markov chain . 235

number of visits(...)
dynamic markov chain 236
markov chain . 235

numerator()
rational .60

numerical analysis .107

O
ObserverNodeIt<Obs , Iter> 311
on boundary(...)

GEN POLYGON363
POLYGON .356
r circle gen polygon 461
r circle polygon . 454
rat triangle . 392
real triangle . 419
triangle .366

on circle(...) 335, 375, 401
on sphere(...) . 482, 501
open()

GraphWin . 567
open(...)

GraphWin . 567
menu . 562
panel . 560

open file(...) . 34
open panel(...)

GeoWin . 623
GraphWin . 568

open url(...) .34
operator¡¡ see User defined parameter types
operator¿¿ see User defined parameter

types
opposite(...)

graph . 171
static graph . 193

orientation()
circle . 349
GEN POLYGON363
POLYGON .357
r circle gen polygon 461
r circle polygon . 454

r circle segment .446
rat circle . 389
rat triangle . 392
real circle .415
real triangle . 419
triangle .365

orientation(...) 334, 340, 343, 347, 374, 380,
383, 387, 400, 406, 409, 412, 480,
491, 499, 515

line .345
point . 332
POINT SET . 466
rat line . 386
rat point .373
rat segment . 378
real line . 411
real point . 399
real segment . 404
segment . 338

orientation xy(...) 480, 499
orientation xz(...) 480, 499
orientation yz(...) 480, 499
ORTHO DRAW(...) 278
ORTHO EMBEDDING(...) 277, 278
ostream . 17
out current()

GIT SCC<Out , In,...> 327
out edges(...)

graph . 172
OutAdjIt . 298
outcircle(...) . 375
outdeg(...)

graph . 171
static graph 192, 193

outer face()
subdivision<I> . 475

outside(...)
circle . 349
d3 rat sphere . 516
d3 sphere . 492
GEN POLYGON363
POLYGON .356
r circle gen polygon 461
r circle polygon . 455
rat circle . 389
rat rectangle . 395
rat triangle . 392

690 INDEX

real circle .415
real rectangle . 422
real triangle . 419
rectangle . 369
triangle .366

outside circle(...) 335, 401
outside sphere(...) 482, 501
overlaps(...)

r circle segment .447
rat segment . 379

P
p bisector(...) . 387
p queue<P, I> . 163
panel . 560
parallel(...) . 340, 406

d3 plane . 491
d3 rat plane . 515

parse(...)
gml graph . 239

parse string(...)
gml graph . 239

partition . 138
Partition<E> . 140
permute()

array<E> .111
list<E> . 123

permute(...)
array<E> .111
list<E> . 123

permute edges()
graph . 177

perpendicular(...)
line .346
rat line . 386
rat segment . 380
real line . 412
real segment . 405
segment . 339

place into box(...)
GraphWin . 574

place into win()
GraphWin . 574

PLANAR(...) . 273
planar map . 197
PLANAR MAP<vtype, e...> 199
plane graph alg . 273

plot xy(...)
window . 539

plot yx(...)
window . 539

point . 332
point generators . 439
point1()

circle . 349
d3 line . 487
d3 plane . 489
d3 rat line . 507
d3 rat plane . 513
d3 rat ray . 505
d3 rat simplex . 518
d3 rat sphere . 516
d3 ray . 483
d3 simplex .494
d3 sphere . 492
line .344
rat circle . 389
rat line . 385
rat ray . 382
rat triangle . 391
ray . 341
real circle .415
real line . 411
real ray . 407
real triangle . 418
triangle .365

point2()
circle . 349
d3 line . 487
d3 plane . 489
d3 rat line . 507
d3 rat plane . 513
d3 rat ray . 505
d3 rat simplex . 518
d3 rat sphere . 516
d3 ray . 483
d3 simplex .494
d3 sphere . 492
line .344
rat circle . 389
rat line . 385
rat ray . 382
rat triangle . 391
ray . 341

INDEX 691

real circle .415
real line . 411
real ray . 408
real triangle . 418
triangle .365

point3()
circle . 349
d3 plane . 489
d3 rat plane . 513
d3 rat simplex . 518
d3 rat sphere . 516
d3 simplex .494
d3 sphere . 492
rat circle . 389
rat triangle . 392
real circle .415
real triangle . 419
triangle .365

point4()
d3 rat simplex . 518
d3 rat sphere . 516
d3 simplex .494
d3 sphere . 492

point on circle(...)
circle . 349
rat circle . 389

point on positive...(...).482, 501
point type

circle . 348
d3 rat simplex . 518
d3 simplex .494
GEN POLYGON358
line .344
point . 332
POLYGON .352
r circle gen polygon 456
r circle polygon . 450
rat circle . 388
rat line . 384
rat point .371
rat ray . 381
rat segment . 376
rat triangle . 391
ray . 341
real circle .414
real line . 410
real point . 398

real ray . 407
real segment . 403
real triangle . 418
segment . 337
triangle .365

POINT LOCATOR 472
POINT SET . 465
points()

POINT SET . 467
points on segment(...) 442
polar to cartesian()

d3 point . 479
POLYGON . 352
polygon type

GEN POLYGON358
r circle gen polygon 456

polygons()
GEN POLYGON361
r circle gen polygon 459

Polynomial
real . 67

Pop()
list<E> . 122

pop()
b queue<E> .119
b stack<E> . 117
list<E> . 122
node list . 219
queue<E> . 116
slist<E> . 129
stack<E> . 115

pop back()
b queue<E> .118
list<E> . 122
node list . 219

pop front()
b queue<E> .118
list<E> . 122

pos(...)
POINT SET . 466

pos source(...)
POINT SET . 466

pos target(...)
POINT SET . 466

position(...)
subdivision<I> . 475

possible zero()

692 INDEX

real . 68
pow(...) .61
powi(...) . 71
pred(...)

list<E> . 121
node list . 219
sortseq<K, I> 157, 158

pred edge(...)
graph . 172

pred face(...)
graph . 180

pred face edge(...)
graph . 179

pred node(...)
graph . 172

prep graph
graph morphism algorithm< graph t >

281
prepare graph(...)

graph morphism algorithm< graph t >

281
print()

matrix . 88
real matrix . 106
real vector . 103
vector . 85

print(...)
array<E> .112
graph . 183
list<E> . 126
matrix . 88
real matrix . 106
real vector . 103
sortseq<K, I> . 159
vector . 85

print edge(...)
graph . 183

print face(...)
graph . 179

print node(...)
graph . 182

print separation ...()
real . 68

print statistics() . 38
prio(...)

b priority queue<I> 166
node pq<P> .222

p queue<P, I> .164
prio type

p queue<P, I> .163
project(...)

d3 line . 488
d3 rat line . 508
d3 rat ray . 506
d3 rat segment .511
d3 ray . 484
d3 segment . 486

project xy()
d3 point . 478
d3 rat point . 497
d3 rat segment .511
d3 segment . 486

project xy(...)
d3 line . 487
d3 rat line . 507
d3 rat ray . 506
d3 ray . 483

project xz()
d3 point . 478
d3 rat point . 497
d3 rat segment .511
d3 segment . 486

project xz(...)
d3 line . 487
d3 rat line . 507
d3 rat ray . 506
d3 ray . 484

project yz()
d3 point . 478
d3 rat point . 497
d3 rat segment .511
d3 segment . 486

project yz(...)
d3 line . 487
d3 rat line . 508
d3 rat ray . 506
d3 ray . 484

ps file . 563
pstyle item(...)

window . 552
push(...)

b queue<E> .119
b stack<E> . 117
list<E> . 121

INDEX 693

node list . 219
queue<E> . 116
slist<E> . 129
stack<E> . 115

push back(...)
b queue<E> .118
list<E> . 121

push front(...)
b queue<E> .118
list<E> . 121

put back event() . 550
put bitmap(...)

window . 542
put pixrect(...)

window . 542

Q
queue<E> . 116

R
r circle gen polygon . 456
r circle point . 443
r circle polygon . 450
r circle segment . 445
radical axis(...) 351, 390, 417
radius()

circle . 349
d3 sphere . 492
real circle .415

random(...)
integer . 59

random bigraph(...) . 227
random d3 rat poi...(...).501–504
random graph(...) . 226
random graph nonc...(...)226
random planar graph(...) 228–230
random planar map(...) 228, 229
random point in ball(...)440
random point in cube(...) 439
random point in disc(...) 440
random point in s...(...) 439
random point in u...(...) 439, 440
random point near...(...).441
random point on c...(...) 441
random point on p...(...)442
random point on s...(...) 442
random point on u...(...)442
random points in ...(...) 439, 440

random points nea...(...) 441
random points on ...(...) 441, 442
random simple graph(...) 226
random simple loo...(...) 226
random simple und...(...) 226
random sp graph(...) 230
random source . 24
random variate . 26
range search(...)

POINT SET 469, 470
range search para...(...)

POINT SET . 469
rank(...) . 95

list<E> . 121
rat circle . 388
rat line . 384
rat point . 371
rat ray . 381
rat rectangle . 394
rat segment .376
rat triangle . 391
rat vector .97
rational . 60
ray . 341
read()

array<E> .112
matrix . 88
real matrix . 106
real vector . 103
vector . 85

read(...)
array<E> .112
GeoWin . 613
graph . 182
GRAPH <vtype, e...> 187
list<E> . 126
matrix . 88
real matrix . 106
real vector . 103
string .20
vector . 85
wkb io . 464

read char(...) .38
read defaults(...)

GraphWin . 580
read event()

window . 547

694 INDEX

read event(...)
window . 547

read file()
string .21

read file(...)
string .20

read gml(...)
graph . 182
GraphWin . 579

read gml string(...)
GraphWin . 579

read gw(...)
GraphWin . 578, 579

read int(...) . 38
window . 548

read line()
string .20

read line(...)
string .20

read mouse()
d3 window .628
window . 544

read mouse(...) . 550
window . 544, 546

read mouse arc(...)
window . 546

read mouse circle(...)
window . 546

read mouse line(...)
window . 545

read mouse ray(...)
window . 545

read mouse rect(...)
window . 545

read mouse seg(...)
window . 545

read panel(...)
window . 548

read polygon()
window . 549

read real(...) . 38
window . 548

read string(...) . 38
window . 548

read vpanel(...)
window . 548

real .67

real middle()
r circle segment .446

real roots(...) . 70
real time() . 38
real time(...) . 38
real circle . 414
real line . 410
real matrix . 105
real point . 398
real ray .407
real rectangle . 421
real segment . 403
real triangle . 418
real vector . 102
rebind

leda allocator<T> 29
receive bytes(...)

leda socket . 37
receive file(...)

leda socket . 37
receive int(...)

leda socket . 37
receive string(...)

leda socket . 37
rectangle . 368
redraw()

GeoWin . 602
GraphWin . 568
window . 529

redraw panel()
window . 559

redraw panel(...)
window . 559

reduce(...)
residual .78

reduce of positive(...)
residual .78

reflect(...)
circle . 350
d3 line . 488
d3 plane . 490
d3 point . 479
d3 rat line . 508
d3 rat plane . 514
d3 rat point . 497
d3 rat ray . 506
d3 rat segment .511

INDEX 695

d3 rat simplex . 519
d3 ray . 484
d3 segment . 486
d3 simplex .495
GEN POLYGON361
line .346
point . 334
POLYGON .354
r circle gen polygon 459, 460
r circle point . 444
r circle polygon . 453
r circle segment .448
rat circle . 390
rat line . 386
rat point .373
rat ray . 382
rat rectangle . 396
rat segment . 380
rat triangle . 393
ray . 343
real circle .416
real line . 412
real point . 400
real ray . 408
real rectangle . 423
real segment 405, 406
real triangle . 420
rectangle . 370
segment . 340
triangle .367

reflect point(...)
d3 plane . 490
d3 rat plane . 514

reflection(...) . 438
reg n gon(...) .357
region of(...)

GEN POLYGON362
POLYGON .356
r circle gen polygon 461
r circle polygon . 454
rat rectangle . 395
rat triangle . 392
real rectangle . 422
real triangle . 419
rectangle . 369
triangle .366

region of sphere(...) 481, 500

regional decompos...()
GEN POLYGON363

register window(...)
GeoWin . 601

reinit seed()
random source . 24

rel freq of visit(...)
dynamic markov chain 236
markov chain . 235

relative neighbor...()
POINT SET . 470

remove(...)
list<E> . 122

remove bends()
GraphWin . 575

remove bends(...)
GraphWin . 575

remove texts()
GeoWin . 623

remove texts(...)
GeoWin . 623

remove trailing d...(...) 33
remove user layer...()

GeoWin . 604
replace(...)

string .20
replace all(...)

string .20
report on desctru...(...)

counter . 43
timer . 41

required primetab...(...)
residual .80

reset()
AdjIt . 304
counter . 43
EdgeIt .295
FaceIt . 297
GraphWin . 581
InAdjIt . 302
NodeIt . 293
OutAdjIt . 299
timer . 41

reset actions()
GeoWin . 616
GraphWin . 576

reset acyclic()

696 INDEX

GIT TOPOSORT<OutAdjI...> 325
reset clipping()

window . 544
reset defaults()

GraphWin . 581
reset edge anchors()

GraphWin . 575
reset edges(...)

GraphWin . 581
reset end()

AdjIt . 305
EdgeIt .295
FaceIt . 297
InAdjIt . 302
NodeIt . 293
OutAdjIt . 300

reset frame label()
window . 530

reset nodes(...)
GraphWin . 581

reset num calls()
graph morphism algorithm< graph t >

281
reset obj attributes(...)

GeoWin . 613
reset path()

gml graph . 239
reset window()

GeoWin . 613
residual . 77, 78
resize(...)

array<E> .110
RESPECT TYPE

r circle gen polygon 457
r circle polygon . 451

restart()
timer . 41

restore all attri...()
GraphWin . 581

restore all edges()
graph . 174

restore all nodes()
graph . 175

restore edge(...)
graph . 174

restore edge attr...()
GraphWin . 581

restore edges(...)
graph . 174

restore node(...)
graph . 175

restore node attr...()
GraphWin . 581

rev all edges()
graph . 176

rev edge(...)
graph . 176

reversal()
rat segment . 377

reversal(...)
graph . 178

reverse()
circle . 350
d3 line . 488
d3 rat line . 508
d3 rat ray . 506
d3 rat segment .511
d3 ray . 484
d3 segment . 486
line .346
list<E> . 123
r circle segment .447
rat circle . 390
rat line . 386
rat ray . 382
rat segment . 380
rat triangle . 393
ray . 343
real circle .416
real line . 412
real ray . 408
real segment . 406
real triangle . 420
segment . 340
triangle .367

reverse(...)
graph . 179
list<E> . 123

reverse items()
list<E> . 123

reverse items(...)
list<E> . 123
sortseq<K, I> . 158

right(...)

INDEX 697

interval set<I> . 473
right tangent(...)

circle . 350
real circle .416

right turn(...) 335, 374, 401
root(...). .70
rotate(...)

circle . 350
GEN POLYGON364
line .346
point . 333
POLYGON .356
ray . 342
segment . 339, 340
triangle . 366, 367
vector . 85

rotate90(...)
circle . 350
GEN POLYGON361
line .346
point . 333
POLYGON .354
r circle gen polygon 459
r circle point . 444
r circle polygon . 453
r circle segment .448
rat circle . 390
rat line . 386
rat point .372
rat ray . 382
rat rectangle . 396
rat segment 379, 380
rat triangle . 393
rat vector . 99
ray . 342
real circle .416
real line . 412
real point . 399
real ray . 408
real rectangle . 423
real segment . 405
real triangle . 420
real vector . 103
rectangle . 370
segment . 340
triangle .367
vector . 85

rotate around axis(...)
d3 point . 479

rotate around vector(...)
d3 point . 479

rotation(...). .437
rotation90(...) . 437
round(...) . 61

r circle gen polygon 460
r circle point . 444
r circle polygon . 453
r circle segment .447

row(...)
integer matrix . 92
matrix . 87
real matrix . 105

S
same block(...)

node partition . 221
partition .138
Partition<E> . 140

save all attributes()
GraphWin . 581

save defaults(...)
GraphWin . 579

save edge attributes()
GraphWin . 581

save gml(...)
GraphWin . 579

save gw(...)
GraphWin . 579

save latex(...)
GraphWin . 579

save layout(...)
GraphWin . 575

save node attributes()
GraphWin . 581

save ps(...)
GraphWin . 579

save svg(...)
GraphWin . 579

save wmf(...)
GraphWin . 579

scale()
window . 532

screenshot(...)
window . 543

698 INDEX

search(...)
list<E> . 125

second()
four tuple<A,B,C,D> 48
three tuple<A,B,C> 46
two tuple<A,B> . 45

second type
four tuple<A,B,C,D> 47
three tuple<A,B,C> 46
two tuple<A,B> . 45

seg()
d3 line . 487
d3 rat line . 507
d3 rat ray . 505
d3 ray . 483
line .344
rat line . 385
real line . 411

seg(...)
POINT SET . 466

segment . 337
SEGMENT INTERSECTION(...) . 432, 433
segment type

GEN POLYGON358
POLYGON .352
r circle gen polygon 456
r circle polygon . 450

segments()
POLYGON .354
r circle polygon . 452

select(...)
GraphWin . 571

select all edges()
GraphWin . 571

select all nodes()
GraphWin . 571

send bytes(...)
leda socket . 36

send file(...)
leda socket . 36

send int(...)
leda socket . 36

send string(...)
leda socket . 36

sep bfmss()
real . 68

sep degree measure()

real . 68
sep li yap()

real . 68
separation bound()

real . 68
separator()

menu . 562
set(...) . 315, 318, 319

array<E> .110
set<E> . 130
set action(...)

GeoWin . 616
GraphWin . 575

set activate handler(...)
GeoWin . 621

set active line w...(...)
GeoWin . 606

set all visible(...)
GeoWin . 607

set animation steps(...)
GraphWin . 571

set arrow(...)
d3 window .629

set bg color(...)
GeoWin . 614
GraphWin . 570
window . 529

set bg pixmap(...)
GeoWin . 614
GraphWin . 570
window . 530

set bg redraw(...)
GraphWin . 570
window . 531

set bg xpm(...)
GraphWin . 570

set bitmap(...)
GeoWin . 622

set bitmap colors(...)
window . 551

set blue(...)
color . 524

set button height(...)
GeoWin . 622

set button label(...)
window . 558

set button pixrects(...)

INDEX 699

window . 558
set button space(...)

window . 550
set button width(...)

GeoWin . 622
set client data(...)

GeoWin . 608
window . 532

set clip rectangle(...)
window . 544

set color(...)
d3 window .629
GeoWin . 605
window . 529

set cursor(...)
GeoWin . 602
window . 530

set cyclic colors(...)
GeoWin . 607

set d3 elimination(...)
GeoWin . 615

set d3 fcn(...)
GeoWin . 624

set d3 show edges(...)
GeoWin . 615

set d3 solid(...)
GeoWin . 615

set date(...)
date . 53

set day(...)
date . 54

set default menu(...)
GraphWin . 577

set default value(...)
d array<I, E> .147
h array<I, E> .150
map<I, E> .151

set del edge handler(...)
GraphWin . 576, 577

set del node handler(...)
GraphWin . 576

set description(...)
GeoWin . 607

set directory(...) . 33
set done handler(...)

GeoWin . 621
set dow names(...)

date . 52
set draw edges(...)

d3 window .628
set draw object fcn(...)

GeoWin . 621
set draw user lay...(...)

GeoWin . 604
set edge border(...)

GraphWin . 571
set edge color(...)

d3 window .629
set edge distance(...)

GraphWin . 570
set edge index fo...(...)

GraphWin . 571
set edge label font(...)

GraphWin . 570
set edge param(...)

GraphWin . 569
set edge position(...)

graph . 177
set edge slider h...(...)

GraphWin . 577
set edit loop han...(...)

GeoWin . 621
set edit mode(...)

GeoWin . 621
set edit object fcn(...)

GeoWin . 619
set elim(...)

d3 window .628
set end change ha...(...)

GeoWin . 619
set end edge slid...(...)

GraphWin . 577
set end move node...(...)

GraphWin . 576
set error handler(...). .31

leda socket . 36
set fill color(...)

GeoWin . 606
window . 529

set flush(...)
GraphWin . 571
window . 531

set frame label(...)
GeoWin . 623

700 INDEX

GraphWin . 568
window . 530

set frameless(...)
GraphWin . 580

set function(...)
window . 559

set gen edges(...)
GraphWin . 570

set gen nodes(...)
GraphWin . 569

set generate fcn(...)
GeoWin . 619

set graph(...)
GraphWin . 580

set green(...)
color . 524

set grid dist(...)
GeoWin . 614
GraphWin . 570
window . 528

set grid mode(...)
window . 528

set grid size(...)
GraphWin . 570

set grid style(...)
GeoWin . 614
GraphWin . 570
window . 528

set handle defini...(...)
GeoWin . 608

set host(...)
leda socket . 35

set icon label(...)
window . 530

set icon pixrect(...)
window . 531

set incremental u...(...)
GeoWin . 608

set init graph ha...(...)
GraphWin . 577

set input format(...)
date . 52

set input object(...)
GeoWin . 620

set input precision(...)
bigfloat . 63

set item height(...)

window . 550
set item width(...)

window . 551
set label(...)

GeoWin . 622
set language(...)

date . 52
set layout()

GraphWin . 573
set layout(...)

GraphWin . 572, 573
set limit(...)

GeoWin . 625
leda socket . 35

set line style(...)
GeoWin . 606
window . 530

set line width(...)
GeoWin . 606
window . 530

set maximal bit l...(...)
residual .79

set menu(...)
window . 553

set menu add fcn(...)
GeoWin . 603

set message(...)
d3 window .629

set midpoint(...)
interval . 76

set mode(...)
window . 530

set month(...)
date . 54

set month names(...)
date . 52

set move node han...(...)
GraphWin . 576

set name(...)
counter . 43
GeoWin . 605
timer . 41

set new edge handler(...)
GraphWin . 576

set new node handler(...)
GraphWin . 576

set node color(...)

INDEX 701

d3 window .629
set node index fo...(...)

GraphWin . 570
set node label font(...)

GraphWin . 570
set node param(...)

GraphWin . 569
set node position(...)

graph . 177
set node width(...)

window . 530
set obj color(...)

GeoWin . 610
set obj fill color(...)

GeoWin . 610
set obj label(...)

GeoWin . 612
set obj line style(...)

GeoWin . 611
set obj line width(...)

GeoWin . 611
set obj text(...)

GeoWin . 613
set object(...)

window . 559
set output format(...)

date . 53
set output mode(...)

bigfloat . 64
set output precision(...)

bigfloat . 63
set panel bg color(...)

window . 550
set param(...)

GraphWin . 569
set pin point(...)

GeoWin . 624
set pixrect(...)

window . 542
set point style(...)

GeoWin . 607
set port(...)

leda socket . 35
set position(...)

d3 window .628
GraphWin . 572

set post add handler(...)

GeoWin . 617
set post del handler(...)

GeoWin . 618
set post move han...(...)

GeoWin . 618
set post rotate h...(...)

GeoWin . 619
set postscript us...(...)

GeoWin . 604
set pre add handler(...)

GeoWin . 617
set pre del handler(...)

GeoWin . 617
set pre move handler(...)

GeoWin . 618
set pre rotate ha...(...)

GeoWin . 618
set precision(...)

bigfloat . 63
random source . 24
window . 528

set qlength(...)
leda socket . 35

set quit handler(...)
GeoWin . 621

set range(...)
interval . 75
random source . 24

set receive handler(...)
leda socket . 36

set red(...)
color . 524

set redraw(...)
window . 531

set redraw2(...)
window . 531

set reversal(...)
graph . 178

set rgb(...)
color . 524

set rounding mode(...)
bigfloat . 64

set seed(...)
random source . 24

set selected objects(...)
GeoWin . 601

set selection color(...)

702 INDEX

GeoWin . 605
set selection fil...(...)

GeoWin . 605
set selection lin...(...)

GeoWin . 605, 606
set send handler(...)

leda socket . 36
set show algorith...(...)

GeoWin . 603
set show coord ha...(...)

window . 531
set show coord ob...(...)

window . 531
set show coordinates(...)

window . 530
set show edit menu(...)

GeoWin . 603
set show file menu(...)

GeoWin . 603
set show grid(...)

GeoWin . 614
set show help menu(...)

GeoWin . 603
set show menu(...)

GeoWin . 603
set show options ...(...)

GeoWin . 603
set show orientation(...)

GeoWin . 607
window . 530

set show position(...)
GeoWin . 615

set show scenes menu(...)
GeoWin . 603

set show status(...)
GeoWin . 603
GraphWin . 570

set show window menu(...)
GeoWin . 603

set solid(...)
d3 window .628

set start change ...(...)
GeoWin . 618

set start edge sl...(...)
GraphWin . 577

set start move no...(...)
GraphWin . 576

set state(...)
window . 533

set text(...)
window . 558

set text color(...)
GeoWin . 606

set text mode(...)
window . 530

set timeout(...)
leda socket . 35

set to current date()
date . 53

set tooltip(...)
window . 559

set transform(...)
GeoWin . 620

set undo graph ha...(...)
GraphWin . 577

set update(...)
GeoWin . 599

set user layer color(...)
GeoWin . 614

set user layer li...(...)
GeoWin . 614

set value(...)
counter . 43

set visible(...)
GeoWin . 607

set weight(...)
dynamic markov chain 236
dynamic random variate 27

set window(...)
GraphWin . 580
window . 559

set window delete...(...)
window . 530, 531

set x rotation(...)
d3 window .628

set y rotation(...)
d3 window .628

set year(...)
date . 54

set z order(...)
GeoWin . 604

set zoom factor(...)
GraphWin . 571

set zoom labels(...)

INDEX 703

GraphWin . 571
set zoom objects(...)

GraphWin . 571
shift key down()

window . 547
SHORTEST PATH T(...) 248
shortest path . 247
side of(...)

circle . 349
d3 plane . 490
d3 rat plane . 514
GEN POLYGON362
line .346
POLYGON .356
r circle gen polygon 461
r circle polygon . 454
rat circle . 389
rat line . 386
rat triangle . 392
real circle .415
real line . 412
real triangle . 419
triangle .366

side of circle(...) 335, 375, 401
side of halfspace(...) 335, 375, 401
side of sphere(...) 481, 500
sign()

integer . 58
interval . 76
real . 69
residual .80

Sign(...) . 83
sign(...) . 59, 61, 65

real . 69
sign is known()

interval . 76
sign of determinant(...) 94
simple parts()

POLYGON .355
simplify()

TRANSFORM . 436
simplify(...)

rational .60
size()

array<E> .110
b priority queue<I> 167
b queue<E> .118

b stack<E> . 117
d array<I, E> .147
d int set . 135
dictionary<K, I>145
edge set . 218
GEN POLYGON361
h array<I, E> .150
interval set<I> . 474
list<E> . 120
node pq<P> .222
node set . 217
p queue<P, I> .164
POLYGON .354
queue<E> . 116
r circle gen polygon 459
r circle polygon . 452
set<E> . 131
slist<E> . 128
sortseq<K, I> . 158
stack<E> . 115

size(...)
graph . 180
node partition . 221
partition .138
Partition<E> . 140

size of file(...) . 34
size type

string .17
sleep(...) . 39
slist<E> . 128
slope()

line .345
rat line . 385
rat segment . 378
ray . 342
real line . 411
real ray . 408
real segment . 404
segment . 338

small rational be...(...) 61, 71
small rational near(...) 61, 71
SMALLEST ENCLOSIN...(...) 430
socket receive ob...(...).37
socket send object(...) 37
solve(...)

matrix . 87
real matrix . 105

704 INDEX

sort()
array<E> .111
list<E> . 124

sort(...)
array<E> .111
list<E> . 124

sort edges()
GRAPH <vtype, e...> 187

SORT EDGES(...) 274, 275, 435
sort edges(...)

graph . 176
GRAPH <vtype, e...> 187

sort nodes()
GRAPH <vtype, e...> 187

sort nodes(...)
graph . 176
GRAPH <vtype, e...> 187

sortseq<K, I> . 155
source()

d3 rat ray . 505
d3 rat segment .510
d3 ray . 483
d3 segment . 485
r circle segment .446
rat ray . 382
ray . 341
real ray . 407

source(...) . 183
graph . 171
static graph . 192

SP EMBEDDING(...)278
SPANNING TREE(...).271
SPANNING TREE1(...) 271
split(...)

list<E> . 123
node partition . 221
partition .138
Partition<E> . 140
sortseq<K, I> . 159
string .19

split edge(...)
graph . 174
planar map . 197
PLANAR MAP<vtype, e...>200

split face(...)
graph . 180

split into weakly...()

r circle polygon . 453
split into weakly...(...)

POLYGON .355
split map edge(...)

graph . 178
SPRING EMBEDDING(...)277
sqr(...) . 59, 61, 71, 80
sqr dist()

rat segment . 380
sqr dist(...)

circle . 351
d3 line . 488
d3 plane . 490
d3 point . 478
d3 rat line . 509
d3 rat plane . 514
d3 rat point . 498
GEN POLYGON362
line .345
point . 333
POLYGON .355
r circle gen polygon 460
r circle polygon . 453
r circle segment .448
rat line . 386
rat point .373
rat segment . 380
real circle .416
real line . 411
real point . 399
real segment . 405
segment . 339

sqr length()
d3 rat segment .511
d3 segment . 486
rat segment . 380
rat vector . 99
real segment . 404
real vector . 102
segment . 338
vector . 84

sqr radius()
circle . 349
d3 rat sphere . 516
d3 sphere . 492
rat circle . 389
real circle .415

INDEX 705

sqrt(...) . 59, 70
sqrt d(...) . 65
ST NUMBERING(...) 273
stable matching . 269
StableMatching(...) . 269
stack<E> . 115
start()

rat segment . 377
real segment . 404
segment . 338
timer . 41

start buffering()
window . 543

start construction(...)
static graph . 192

start timer(...)
window . 531

starts with(...)
string .19

state()
GIT SCC<Out , In,...> 327

static graph .189
step(...)

dynamic markov chain 236
markov chain . 235

STL . see iteration
STLNodeIt<DataAcc...> 313
stop()

timer . 41
stop buffering()

window . 543
stop buffering(...)

window . 543
stop timer()

window . 531
str()

string ostream . 23
STRAIGHT LINE EMB...(...)276
string . 17
string item(...)

window . 551, 553
string istream .22
string ostream . 22
STRONG COMPONENTS(...).245
sub(...)

residual . 78, 81
subdivision<I> . 475

substring(...)
string .18

succ(...)
list<E> . 121
node list . 219
slist<E> . 128
sortseq<K, I> 157, 158

succ edge(...)
graph . 172

succ face(...)
graph . 179

succ face edge(...)
graph . 179

succ node(...)
graph . 172

supporting circle()
r circle point . 443

supporting line()
r circle point . 444
r circle segment .446

supporting line(...)
POINT SET . 466

surface()
d3 sphere . 492

swap(...) . 39
array<E> .110
list<E> . 122

SWEEP SEGMENTS(...) 432, 449
sym diff(...)

GEN POLYGON364
r circle gen polygon 462

sym diff approximate(...)
r circle gen polygon 463

symdiff(...)
d int set . 135
int set . 133
set<E> . 130

T
Tmatrix()

TRANSFORM . 436
tag

r circle point . 443
tail()

list<E> . 121
node list . 219
slist<E> . 129

706 INDEX

tail(...)
string .18

tangent at(...)
r circle segment .448

target()
d3 rat segment .510
d3 segment . 485
r circle segment .446

target(...) .183
graph . 171
static graph . 192

test bigraph(...) . 227
test graph(...) .226
text box(...)

window . 540
text color()

color . 524
text item(...)

window . 551
third()

four tuple<A,B,C,D> 48
three tuple<A,B,C> 47

third type
four tuple<A,B,C,D> 47
three tuple<A,B,C> 46

three tuple<A,B,C> . 46
time of file(...) . 34
timer . 40
tmp dir name() . 34
tmp file name() . 34
to bigfloat()

real . 68
to d3 simplex()

d3 rat simplex . 518
to double()

bigfloat . 63
integer . 58
interval . 75
real . 67
residual .80

to double(...). .59
bigfloat . 63
integer . 58
real . 67

to float(). .61
d3 rat line . 507
d3 rat plane . 514

d3 rat point . 496
d3 rat segment .510
d3 rat sphere . 516
GEN POLYGON360
integer . 58
POLYGON .353
r circle gen polygon 461
r circle polygon . 454
rat circle . 389
rat line . 385
rat point .372
rat ray . 381
rat rectangle . 394
rat segment . 377
rat vector . 99
real vector . 103
residual .80

to integer()
residual .80

to integer(...) . 64
to line()

circle . 349
rat circle . 389
real circle .415

to long()
integer . 58
residual .80

to r circle polygon()
r circle gen polygon 460

to rat circle()
r circle gen polygon 461
r circle polygon . 454

to rat gen polygon()
r circle gen polygon 460

to rat point()
r circle point . 444

to rat polygon()
r circle polygon . 454

to rat segment()
r circle segment .447

to rational()
bigfloat . 63
real . 69

to rational(...)
GEN POLYGON364
POLYGON .356

to string()

INDEX 707

integer . 58
rational .61
residual .80

to string(...)
bigfloat . 65

to vector()
d3 line . 488
d3 point . 478
d3 rat line . 508
d3 rat point . 496
d3 rat ray . 506
d3 rat segment .511
d3 ray . 484
d3 segment . 486
point . 332
rat point .372
rat segment . 380
real segment . 404
segment . 338

top()
b queue<E> .119
b stack<E> . 117
queue<E> . 116
stack<E> . 115

TOPSORT(...) . 244
TOPSORT1(...) . 244
trans()

matrix . 87
real matrix . 105

TRANSFORM . 436
transform layout(...)

GraphWin . 573
TRANSITIVE CLOSURE(...) 246
TRANSITIVE REDUCTION(...) 246
translate(...)

circle . 350
d3 line . 488
d3 plane . 490
d3 point . 479
d3 rat line . 508
d3 rat plane . 514
d3 rat point 497, 498
d3 rat ray . 506
d3 rat segment 511, 512
d3 rat simplex . 519
d3 rat sphere 516, 517
d3 ray . 484

d3 segment . 486
d3 simplex .495
d3 sphere . 493
GEN POLYGON361
line . 345, 346
point . 333
POLYGON .354
r circle gen polygon 459
r circle point . 444
r circle polygon . 452
r circle segment .447
rat circle . 390
rat line . 385
rat point .373
rat ray . 382
rat rectangle . 396
rat segment . 379
rat triangle . 392
ray . 342
real circle .416
real line . 412
real point . 399
real ray . 408
real rectangle . 423
real segment . 405
real triangle . 419
rectangle . 369
segment . 339
triangle .366

translate by angle(...)
circle . 349
GEN POLYGON364
line .345
point . 333
POLYGON .356
ray . 342
segment . 339

translation(...) . 437
transpose(...) . 93
triangle . 365
TRIANGLE COMPONENTS(...) 428
triangulate()

planar map . 198
triangulate map()

graph . 179
triangulate plana...()

graph . 180

708 INDEX

TRIANGULATE PLANA...(...) 274
TRIANGULATE PLANE...(...) 427
TRIANGULATE POINTS(...) 426
TRIANGULATE POLYGON(...). .427, 428
TRIANGULATE SEGMENTS(...) 427
triangulated plan...(...) 229
triangulation graph(...) 229
triangulation map(...) 228, 229
trivial()

GEN POLYGON360
trunc(...) . 61
truncate(...) . 39
TUTTE EMBEDDING(...) 277
two tuple<A,B> . 45

U
ugraph . 195
UGRAPH <vtype, e...> 195
undefine(...)

d array<I, E> .146
dictionary<K, I>144
h array<I, E> .149

undo clear()
GraphWin . 580

union blocks(...)
node partition . 221
partition .138
Partition<E> . 140

unique()
array<E> .111
list<E> . 125

unique(...)
list<E> . 125

unit(...)
rat vector . 99

unite(...)
GEN POLYGON364
r circle gen polygon 462

unite approximate(...)
r circle gen polygon 462, 463

unsaved changes()
GraphWin . 579

unzoom()
GraphWin . 575

update(...)
AdjIt . 304, 305
EdgeIt .295

FaceCirc .307
FaceIt . 297
InAdjIt . 302
NodeIt . 294
OutAdjIt . 299, 300

update graph()
GraphWin . 568

upper bound()
b priority queue<I> 167
interval . 75

UPPER CONVEX HULL(...) 425
upper left()

rat rectangle . 394
real rectangle . 421
rectangle . 368

upper right()
rat rectangle . 394
real rectangle . 421
rectangle . 368

use edge data(...)
edge array<E> . 204
edge map<E> . 210

use face data(...)
face array<E> . 206

use node data(...)
node array<E> . 202
node map<E> .208

used words()
integer . 58

User defined parameter types
compare(. . .) . 6
copy constructor . 6
default constructor 6
Hash(. . .) . 6
operator¡¡ . 6
operator¿¿ . 6

user def fmt
date . 51

user def lang
date . 50

V
valid()

AdjIt . 305
EdgeIt .296
FaceCirc .307
FaceIt . 298

INDEX 709

InAdjIt . 303
NodeIt . 294
OutAdjIt . 300

value type
array<E> .109
list<E> . 120
queue<E> . 116
slist<E> . 128

vector . 84
verify determinant(...) 94
version()

GeoWin . 623
vertices()

GEN POLYGON360
POLYGON .353
r circle gen polygon 459
r circle polygon . 452
rat rectangle . 395
real rectangle . 422
rectangle . 368

VISIBILITY REPRES...(...) 276
vol()

d3 rat simplex . 519
d3 simplex .495

volume()
d3 sphere . 492

volume(...) .480, 499
VORONOI(...) . 430

W
W()

d3 rat point . 497
rat point .372
rat vector . 99

W1()
rat segment . 378

W2()
rat segment . 378

wait()
GraphWin . 580

wait(...) . 39
GraphWin . 580
leda socket . 37

WD()
d3 rat point . 497
rat point .372

WD1()

rat segment . 378
WD2()

rat segment . 378
wedge contains(...)

r circle segment .447
which intersection()

r circle point . 444
width()

rat rectangle . 395
real rectangle . 422
rectangle . 369
window . 533

WIDTH(...) . 426
will report on de...()

counter . 43
timer . 41

win init(...)
GraphWin . 567

window .525
wkb io . 464
write(...)

GeoWin . 613
graph . 182
GRAPH <vtype, e...> 187
wkb io . 464

write active scene(...)
GeoWin . 613

write gml(...)
graph . 182

X
X()

d3 rat point . 496
rat point .372
rat vector . 99

X1()
rat segment . 377

X2()
rat segment . 377

x proj(...)
line .345
rat line . 385
rat segment . 378
real line . 411
real segment . 404
segment . 338

xcoord()

710 INDEX

d3 point . 478
d3 rat point . 497
point . 332
rat point .372
rat vector . 99
real point . 398
real vector . 103
vector . 85

xcoord1()
d3 rat segment .510
d3 segment . 485
rat segment . 377
real segment . 404
segment . 338

xcoord1D()
rat segment . 377

xcoord2()
d3 rat segment .510
d3 segment . 485
rat segment . 377
real segment . 404
segment . 338

xcoord2D()
rat segment . 377

xcoordD()
d3 rat point . 497
rat point .372

XD()
d3 rat point . 497
rat point .372

XD1()
rat segment . 378

XD2()
rat segment . 378

xdist(...)
d3 point . 478
d3 rat point . 498
point . 333
rat point .373
real point . 399

xmax()
rat rectangle . 395
real rectangle . 422
rectangle . 368
window . 532

xmin()
rat rectangle . 395

real rectangle . 422
rectangle . 368
window . 532

xpos()
window . 533

Y
Y()

d3 rat point . 496
rat point .372
rat vector . 99

Y1()
rat segment . 377

Y2()
rat segment . 377

y abs()
line .345
rat line . 385
rat segment . 379
real line . 411
real segment . 404
segment . 339

y proj(...)
line .345
rat line . 385
rat segment . 378
real line . 411
real segment . 404
segment . 338

ycoord()
d3 point . 478
d3 rat point . 497
point . 332
rat point .372
rat vector . 99
real point . 398
real vector . 103
vector . 86

ycoord1()
d3 rat segment .510
d3 segment . 485
rat segment . 377
real segment . 404
segment . 338

ycoord1D()
rat segment . 377

ycoord2()

INDEX 711

d3 rat segment .510
d3 segment . 485
rat segment . 377
real segment . 404
segment . 338

ycoord2D()
rat segment . 377

ycoordD()
d3 rat point . 497
rat point .372

YD()
d3 rat point . 497
rat point .372

YD1()
rat segment . 378

YD2()
rat segment . 378

ydist(...)
d3 point . 479
d3 rat point . 498
point . 333
rat point .373
real point . 399

years until(...)
date . 55

Yes(...) . 38
ymax()

rat rectangle . 395
real rectangle . 422
rectangle . 368
window . 532

ymin()
rat rectangle . 395
real rectangle . 422
rectangle . 368
window . 532

ypos()
window . 533

Z
Z()

d3 rat point . 497
rat vector . 99

zcoord()
d3 point . 478
d3 rat point . 497
rat vector . 99

real vector . 104
vector . 86

zcoord1()
d3 rat segment .510
d3 segment . 485

zcoord2()
d3 rat segment .510
d3 segment . 485

zcoordD()
d3 rat point . 497

ZD()
d3 rat point . 497

zdist(...)
d3 point . 479
d3 rat point . 498

zero(...)
rat vector . 99

zero of function(...) . 108
zoom(...)

GraphWin . 575
zoom area(...)

GraphWin . 575
zoom down()

GeoWin . 613
zoom graph()

GraphWin . 575
zoom up()

GeoWin . 613

