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Foundations

We discuss the foundations of the LEDA system. We introduce some key concepts, such as
type, object, variable, value, item, and linear order, we relate these concepts to our imple-
mentation base C++, and we put forth our major design decisions. A superficial knowledge
of this chapter suffices for a first use of LEDA. We recommend that you read it quickly and
come back to it as needed.

The chapter is structured as follows. We first discuss the specification of data types. Then
we treat the concept “copy of an object” and its relation to assignment and parameter pass-
ing by value. The other kinds of parameter passing come next and sections on iteration
statements follow. We then tie data types to the class mechanism of C++. Type param-
eters, linear orders, equality, hashed types, and implementation parameters are the topics
of the next sections. Finally, we discuss some helpful smallfunctions, management, error
handling, header and implementation files, compilation flags, and program checking.

2.1 Data Types

The most important concept is that of adata typeor simply type. A type T consists of a
set ofvalues, which we denoteval(T), a set ofobjects, which we denoteobj(T), and a
set of functions that can be applied to the objects of the type. An object may or may not
have aname. A named object is also called avariable and an object without a name is
called ananonymous object. An object is a region of storage that can hold a value of the
corresponding type.

The set of objects of a type varies during execution of a program. It is initially empty,
it grows as new objects are created (either by variable definitions or by applications of the
newoperator), and it shrinks as objects are destroyed.
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The values of a type form a set that exists independently of any program execution. We
define it using standard mathematical concepts and notation. When we refer to the values
of a type without reference to an object, we also useelementor instance, e.g., we say that
the number 5 is a value, an element, or an instance of typeint.

An object always holds a value of the appropriate type. The object is initialized when
it is created and the value may be modified by functions operating on the object. For an
objectx we usex also to denote the value ofx. This is a misuse of notation to which every
programmer is accustomed to.

In LEDA the specification (also called definition) of a data type consists of four parts:
a definition of the instances of the type, a description of howto create an object of the
type, the definition of the operations available on the objects of the type, and information
about the implementation. In the LEDA manual the four parts appear under the headers
Definition, Creation, Operations, and Implementation, respectively. Sometimes, there is
also a fifth section illustrating the use of the data type by anexample. As an example we
give the complete specification of the parameterized data typestack<E> in Figure 2.1.

2.1.1 Definition
The first section of a specification defines the instances of the data type using standard
mathematical concepts and notation. It also introduces notation that is used in later sections
of the specification. We give some examples:

• An instance of typestring is a finite sequence of characters. The length of the
sequence is called thelengthof the string.

• An instance of typestack<E> is a sequence of elements of typeE. One end of the
sequence is designated as itstopand all insertions into and deletions from a stack take
place at its top end. The length of the sequence is called thesizeof the stack. A stack
of size zero is calledempty.

• An instance of typearray<E> is an injective mapping from an intervalI = [a .. b] of
integers into the set of variables of typeE. We call I the index set andE the element
type of the array. For an arrayA we useA(i ) to denote the variable indexed byi , a ≤ i
≤ b.

• An instance of typeset<E> is a set of elements of typeE. We callE the element type
of the set;E must be linearly ordered. The number of elements in the set iscalled the
sizeof the set and a set of size zero is calledempty.

• An instance of typelist<E> is a sequence of list items (predefined item typelist item).
Each item contains an element of typeE. We use〈x〉 to denote an item with contentx.

Most data types in LEDA areparameterized, e.g., stacks, arrays, lists, and sets can be used
for an arbitrary element typeE and we will later see that dictionaries are defined in terms
of a key type and an information type. A concrete type is obtained from a parameterized
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Stacks (stack)

1. Definition

An instanceS of the parameterized data typestack<E> is a sequence of elements of data
typeE, called the element type ofS. Insertions or deletions of elements take place only at
one end of the sequence, called the top ofS. The size ofS is the length of the sequence, a
stack of size zero is called the empty stack.

2. Creation

stack<E> S; declares a variableS of typestack<E>. S is initialized with the
empty stack.

3. Operations

E S.top( ) returns the top element ofS.
Precondition: S is not empty.

void S.push(E x) addsx as new top element toS.

E S.pop( ) deletes and returns the top element ofS.
Precondition: S is not empty.

int S.size( ) returns the size ofS.

bool S.empty( ) returns true ifS is empty, false otherwise.

void S.clear( ) makesS the empty stack.

4. Implementation

Stacks are implemented by singly linked linear lists. All operations take timeO(1), except
clear which takes timeO(n), wheren is the size of the stack.

Figure 2.1 The specification of the typestack<E>.

type by substituting concrete types for the type parameter(s); this process is calledinstan-
tiation of the parameterized type. Soarray<string> are arrays of strings,set<int> are sets
of integers, andstack<set<int> ∗ > are stacks of pointers to sets of integers. Frequently, the
actual type parameters have to fulfill certain conditions, e.g., the element type of sets must
be linearly ordered. We discuss type parameters in detail inSection 2.8.

2.1.2 Creation
We discuss how objects are created and how their initial value is defined. We will see that
an object either has a name or is anonymous. We will also learnhow the lifetime of an
object is determined.

A named object(also called variable) is introduced by a C++ variable definition. We give
some examples.



2.1 Data Types 5string s;
introduces a variables of typestringand initializes it to the empty string.stak<E> S;
introduces a variableSof typestack<E> and initializes it to the empty stack.b stak<E> S(int n);
introduces a variableS of typeb stack<E> and initializes it to the empty stack. The stack
can hold a maximum ofn elements.set<E> S;
introduces a variableSof typeset<E> and initializes it to the empty set.array<E> A(int l,int u);
introduces a variableA of typearray<E> and initializes it to an injective function
a : [l .. u] −→ obj(E). Each object in the array is initialized by the default initialization of
typeE; this concept is defined below.list<E> L;
introduces a variableL of type list<E> and initializes it to the empty list.int i;
introduces a variable of typeint and initializes it to some value of typeint.

We always give variable definitions in their generic form, i.e., we use formal type names
for the type parameters (E in the definitions above) and formal arguments for the arguments
of the definition (int a, int b, and int n in the definitions above). Let us also see some
concrete forms.string s("ab"); // initialized to "ab"set<int> S; // initialized to empty set of integersarray<string> A(2,5); // array with index set [2..5℄,// eah entry is set to the empty stringb stak<int> S(100); // a stak apable of holding up to 100// ints; initialized to the empty stak
The most general form of a variable definition in C++ isT<T1,...,Tk> y(x1,...,xl).
It introduces a variable with namey of typeT<T1,..., Tk> and uses argumentsx1, . . . ,xl to
determine the initial value ofy. HereT is a parameterized type withk type parameters and
T1, . . . , Tk are concrete types. If any of the parameter lists is empty thecorresponding pair
of brackets is to be omitted.

Two kinds of variable definitions are of particular importance: the definition with default
initialization and the definition with initialization by copying. A definition with default
initialization takes no argument and initializes the variable with thedefault valueof the
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type. The default value is typically the “simplest” value ofthe type, e.g., the empty string,
the empty set, the empty dictionary, . . . . We define the default value of a type in the section
with header Creation. Examples are:string s; // initialized to the empty stringstak<int> S; // initialized to the empty stakarray<string> A; // initialized to the array with empty index set
The built-in types such aschar, int, float, double, and all pointer types are somewhat an
exception as they have no default value, e.g., the definitionof an integer variable initializes
it with some integer value. This value may depend on the execution history. Some compilers
will initialize i to zero (more generally, 0 casted to the built-in type in question), but one
should not rely on this1.

We can now also explain the definition of an array. Each variable of the array is initialized
by the default initialization of the element type. If the element type has a default value (as
is true for all LEDA types), this value is taken and if it has nodefault value (as is true for
all built-in types), some value is taken. For example,array<list<E> > A(1, 2) definesA as
an array of lists of element typeE. Each entry of the array is initialized with the empty list.

A definition with initialization by copyingtakes a single argument of the same type and
initializes the variable with a copy of the argument. The syntactic form isT<T1,...,Tk> y(x)
wherex refers to a value of typeT<T1,..., Tk>, i.e., x is either a variable name or more
generally an expression of typeT<T1,..., Tk>. An alternative syntactic format isT<T1,...,Tk> y = x.
We give some examples.stak<int> P(S); // initialized to a opy of Sset<string> U(V); // initialized to a opy of Vstring s = t; // initialized to a opy of tint i = j; // initialized to a opy of jint h = 5; // initialized to a opy of 5
We have to postpone the general definition of what constitutes a copy to Section 2.3 and give
only some examples here. A copy of an integer is the integer itself and a copy of a string is
the string itself. A copy of an array is an array with the same index set but new variables.
The initial values of the new variables are copies of the values of the corresponding old
variables.

LEDA Rule 1 Definition with initialization by copying is available for every LEDA type. It
initializes the defined variable with a copy of the argument of the definition.

1 The C++ standard defines that variables specified static are automatically zero-initialized and that variables
specified automatic or register are not guaranteed to be initialized to a specified value.
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How long does a variable live? Thelifetimeof a named variable is either tied to the block
containing its definition (this is the default rule) or is theexecution of the entire program (if
the variable is explicitly defined to be static). The first kind of variable is calledautomatic
in C++ and the second kind is calledstatic. Automatic variables are created and initialized
each time the flow of control reaches their definition and destroyed on exit from their block.
Static variables are created and initialized when the program execution starts and destroyed
when the program execution ends.

We turn toanonymous objectsnext. They are created by the operatornew; the operator
returns a pointer to the newly created object. The general syntactic format isnew T<T1,...,Tk> (x1,...,xl);
whereT is a parameterized type,T1, . . . , Tk are concrete types, andx1, . . . , xl are the
arguments for the initialization. Again, if any of the argument lists is empty then the cor-
responding pair of brackets is omitted. The expression returns a pointer to a new object of
typeT<T1,..., Tk>. The object is initialized as determined by the argumentsx1, . . . , xl. We
give an example.stak<int> *sp = new stak<int>;
defines a pointer variablespand creates an anonymous object of typestack<int>. The stack
is initialized to the empty stack andsp is initialized to a pointer to this stack.

The lifetime of an object created bynew is not restricted to the scope in which it is
created. It extends till the end of the execution of the program unless the object is explicitly
destroyed by thedeleteoperator;deletecan only be applied to pointers returned bynewand
if it is applied to such a pointer, it destroys the object pointed to. We say more about the
destruction of objects in Section 2.3.

2.1.3 Operations
Every type comes with a set of operations that can be applied to the objects of the type. The
definition of an operation consists of two parts: the definition of its interface (= syntax) and
the definition of its effect (= semantics).

We specify theinterface of an operationessentially by means of the C++ function dec-
laration syntax. In this syntax the result type of the operation is followed by the operation
name which in turn is followed by the argument list specifying the type of each argument.
The result type of an operation returning no result isvoid. We extend this syntax by pre-
fixing the operation name by the name of an object to which the operation is being applied.
This facilitates the definition of the semantics. For examplevoid S.insert(E x);
defines the interface of the insert operation for typeset<E>; insert takes an argumentx of
typeE and returns no result. The operation is applied to the set (with name)S.E& A[int i℄;
defines the interface of the access operation for typearray<E>. Access takes an argument
i of type int and returns a variable of typeE. The operation is applied to arrayA.
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defines the interface of the pop operation for typestack<E>. It takes no argument and
returns an element of typeE. The operation is applied to stackS.int s.pos(string s1);
defines the interface of theposoperation for typestring. It takes an arguments1 of type
stringand returns an integer. The operation is applied to strings.

Thesemantics of an operationis defined using standard mathematical concepts and no-
tation. The complete definitions of our four example operations are:

void S.insert(E x) addsx to S.

E& A[int i ] returns the variableA(i ). Precondition: a ≤ i ≤ b.

E S.pop( ) removes and returns the top element ofS. Precondition: S is not
empty.

int s.pos(string s1) returns−1 if s1 is not a substring ofs and returns the minimal
i , 0 ≤ i ≤s.length( )−1, such thats1 occurs as a substring ofs
starting at positioni , otherwise.

In the definition of the semantics we make use of the notation introduced in sections
Definition and Creation. For example, in the case of arrays the section Definition introduces
A(i ) as the notation for the variable indexed byi and introducesa andb as the array bounds.

Frequently, an operation is only defined for a subset of all possible arguments, e.g., the
pop operation on stacks can only be applied to a non-empty stack.The preconditionof
an operation defines which conditions the arguments of an operation must satisfy. If the
precondition of an operation is violated then the effect of the operation is undefined. This
means thateverything can happen. The operation may terminate with an error message or
with an arbitrary result, it may not terminate at all, or it may result in abnormal termination
of the program. Does LEDA check preconditions? Sometimes itdoes and sometimes it does
not. For example, we check whether an array index is out of bounds or whether a pop from
an empty stack is attempted, but we do not check whether itemit belongs to dictionaryD
in D.inf (it). Checking the latter condition would increase the running time of the operation
form constant to logarithmic and is therefore not done. Moregenerally, we do not check
preconditions that would change the order of the running time of an operation. All checks
can be turned off by the compile-time flag-DLEDA CHECKING OFF.

All types offer the assignment operator. For typeT this is the operatorT& operator=(onst T&).
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The assignment operator is not listed under the operations of a type since all types have it
and since its semantics is defined in a uniform way as we will see in Section 2.3.

Our implementation base C++ allows overloading of operation and function names and
it allows optional arguments. We use both mechanisms. Anoverloaded function name
denotes different functions depending on the types of the arguments. For example, we have
two translate operations for points:point p.translate(vetor v);point p.translate(double alpha,double dist);
The first operation translatesp by vectorv and the second operation translatesp in direction
alphaby distancedist.

An optional argumentof an operation is given a default value in the specification of the
operation. C++ allows only trailing arguments to be optional, i.e., if an operation hask
arguments,k ≥ 1, then the lastl , l ≥ 0, may be specified to be optional. An example is the
insert operation into lists. IfL is a list<E> thenlist item L.insert(E x,list item it, int dir = after)
insertsx before (dir == before) or after (dir == after) item it into L. The default value of
dir is after, i.e., L.insert(x, it) is equivalent toL.insert(x, it, after).

2.1.4 Implementation
Under this header we give information about the implementation of the data type. We name
the data structure used, give a reference, list therunning timeof the operations, and state
thespace requirement. Here is an example.

The data type list is realized by doubly linked linear lists.All operations take constant
time except for the following operations:searchand rank take linear timeO(n), item(i )
takes timeO(i ), bucketsort takes timeO(n + j − i ) andsort takes timeO(n · c · logn)
wherec is the time complexity of the compare function.n is always the current length of
the list. The space requirement is 16+ 12n bytes.

It should be noted that the time bounds do not include the timeneeded for parameter
passing. The cost of passing a reference parameter is bounded by a constant and the cost
of passing a value parameter is the cost of copying the argument. We follow the custom to
account for parameter passing at the place of call.

Similarly, the space bound does not include the extra space needed for the elements con-
tained in the set, it only accounts for the space required by the data structure that realizes the
set. The extra space needed for an element is zero if the element fits into one machine word
and is the space requirement of the element otherwise. This reflects how parameterized data
types are implemented in LEDA. Values that fit exactly into one word are stored directly in
the data structure and values that do not fit exactly are stored indirectly through a pointer.
The details are given in Section 13.1.

The information about the space complexity allows us to compute the exact space require-
ment of a list of sizen. We give some examples. A set of typelist<int> andlist<list<int> ∗ >
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requires 16+ 12n bytes since integers and pointers fit exactly into a word. A list of type
list<list<int> > where thei -th list hasni elements, 1≤ i ≤ n, requires 16+ 12n +
∑

1≤i≤n(16+ 12ni ) bytes.
The information about time complexity is less specific than that for space. We only

give asymptotic bounds, i.e., bounds of the formO( f (n)) where f is a function ofn. A
bound of this form means that there are constantsc1 andc2 (independent ofn) such that the
running time on an instance of sizen is bounded byc1 + c2 · f (n). The constantsc1 and
c2 are not explicitely given. An asymptotic bound does predictthe actual running time on a
particular input (asc1 andc2 are not available), it gives however a feeling for the behavior
of an algorithm asn grows. In particular, if the running time isO(n) then an input of twice
the size requires at most twice the computing time, if the running time isO(n2) then the
computing time at most quadruples, and if it isO(logn) then the computing time grows
only by an additive constant asn doubles. Thus asymptotic bounds allow us to extrapolate
running times from smaller to larger problem instances.

Why do we not give explicit values for the constantsc1 andc2? The answer is simple, we
do not know them. They depend on the machine and compiler which you use (which we do
not know) and even for a fixed machine and compiler it is very difficult to determine them,
as machines and compilers are complex objects with complex behavior, e.g., machines have
pipelines, multilevel memories, and compilers use sophisticated optimization strategies. It
is conceivable that program analysis combined with a set of simple experiments allows
one to determine good approximations of the constants, see [FM97] for a first step in this
direction.

Our usual notion of running time is worst-case running time,i.e., if an operation is said
to have running timeO( f (n)) then it is guaranteed that the running time is bounded by
c1 + c2 · f (n) for every input of sizen and some constantsc1 andc2. Sometimes, running
times are classified as being expected (also called average)or amortized. We give some
examples.

The expected access time for maps is constant. This assumes that a random set is stored
in the map.

The expected time to construct the convex hull ofn points in 3-dimensional space is
O(n logn). The algorithm is randomized.

The amortized running time ofinsertanddecreaseprio in priority queues is constant and
the amortized running time ofdeletemin is O(logn).

In the remainder of this section we explain the terms expected and amortized. Anamor-
tized time bound is valid for a sequence of operations but not for anindividual operation.
More precisely, assume that we execute a sequenceop1, op2, . . . , opm of operations on an
object D, whereop1 constructsD. Let ni be the size ofD before thei -th operation and
assume that thei -th operation has amortized costO(Ti (ni )). Then the total running time
for the sequenceop1, op2, . . . ,opm is

O(m +
∑

1≤i≤m

Ti (ni )),
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i.e., a summation of the amortized time bounds for the individual operations yields a bound
for the sequence of the operations. Note that this does not preclude that thei -th operation
takes much longer thanTi (ni ) for somei , it only states that the entire sequence runs in the
bound stated. However, if thei -th operation takes longer thanTi (ni ) then the preceding
operations took less than their allowed time.

We give an example: in priority queues (with the Fibonacci heap implementation) the
amortized running time ofinsert and decreaseprio is constant and the amortized cost
of deletemin is O(logn). Thus an arbitrary sequence ofn insert, n deletemin, andm
decreaseprio operations takes timeO(m + n logn).

We turn toexpectedrunning times next. There are two ways to compute expected running
times. Either one postulates a probability distribution onthe inputs or the algorithm is
randomized, i.e., uses random choices internally.

Assume first that we have a probability distribution on the inputs, i.e., ifx is any conceiv-
able input of sizen then prob(x) is the probability thatx actually occurs as an input. The
expected running timēT(n) is computed as a weighted sum̄T(n) =

∑

x prob(x) · T(x),

wherex ranges over all inputs of sizen and T(x) denotes the running time on inputx.
We refer the reader to any of the textbooks [AHU83, CLR90, Meh84] for a more detailed
treatment. We usually assume theuniform distribution, i.e., if x andy are two inputs of the
same size thenprob(x) = prob(y). It is time for an example.

The expected access time for maps is constant. Amap<I , E> realizes a partial function
m from some typeI to some other typeE; the index typeI must be either the typeint or
a pointer or item type. LetD be the domain ofm, i.e., the set of arguments for whichm is
defined. The uniform distribution assumption is then that all subsetsD of I of sizen are
equally likely. The average running time is computed with respect to this distribution.

Two words of caution are in order at this point. Small averagerunning time does not
preclude the possibility of outliers, i.e., inputs for which the actual running time exceeds
the average running time by a large amount. Also, average running time is stated with
respect to a particular probability distribution on the inputs. This distribution is probably
not the distribution from which your inputs are drawn. So be careful.

A randomizedalgorithm uses random choices to control its execution. Forexample, one
of our convex hull algorithms takes as input a set of points inthe plane, permutes the points
randomly, and then computes the hull in an incremental fashion. The running time and
maybe also the output of a randomized algorithm depends on the random choices made.
Averaging over the random choices yields the expected running time of the algorithm. Note
that we are only averaging with respect to the random choicesmade by the algorithm, and
do not average with respect to inputs. In fact, time bound of randomized algorithms are
worst-case with respect to inputs. As of this writing all randomized algorithms in LEDA
are of the so-calledLas Vegasstyle, i.e., their output is independent of the random choices
made. For example, the convex hull algorithm always computes the convex hull. If the
output of a randomized algorithm depends on the random choices then the algorithm is
calledMonte Carlostyle. An example of a Monte Carlo style randomized algorithm is the
primality tests of Solovay and Strassen [SS77] and Rabin [Rab80]. They take two integersn
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ands and test the primality ofn. If the algorithms declaren non-prime thenn is non-prime.
If they declaren prime then this answer is correct with probability at least 1−2−s, i.e., there
is chance that the answer is incorrect. However, this chanceis miniscule (less than 2−100

for s = 100). The expected running time isO(s log3 n).

2.2 Item Types

Item types are ubiquitous in LEDA. We have dicitems (= items in dictionaries), pqitems
(= items in priority queues), nodes and edges (= items in graphs), points, segments, and
lines (= basic geometric items), and many others. What is an item?

Items are simply addresses of containers and item variablesare variables that can store
items. In other words, item types are essentially C++ pointer types. We say essentially,
because some item types are not implemented as pointer types. We come back to this point
below.

A (value of type)dic item is the address of a diccontainer and a (value of type)point
is the address of a pointcontainer. A diccontainer has a key and an information field
and additional fields that are needed for the data structure underlying the dictionary and a
point container has fields for thex- andy-coordinate and additional fields for internal use.
In C++ notation we have as a first approximation (the details are different):lass di ontainer{ K key;I inf;// additional fields required for the underlying data struture}typedef di ontainer* di item;lass point ontainer{ double x, y;// additional fields required for internal use}typedef point ontainer* point;// Warning: this is NOT the atual definition of point

We distinguish betweendependentand independentitem types. The containers corre-
sponding to a dependent item type can only live as part of a collection of containers, e.g.,
a dictionary-container can only exist as part of a dictionary, a priority-queue-container can
only exists as part of a priority queue, and a node-containercan only exists as part of a
graph. A container of an independent item type is self-sufficient and needs no “parent type”
to justify its existence. Points, segments, and lines are examples of independent item types.
We discuss the common properties of all item types now and treat the special properties of
dependent and independent item types afterwards. We call anitem of an independent or
dependent item type an independent or dependent item, respectively.

An item is the address of a container. We refer to the values stored in the container as
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attributesof the item, e.g., a point has anx- and ay-coordinate and a dicitem has a key
and an information. We have functions that allow us to read the attributes of an item. For a
point p, p.xcoord( ) returns thex-coordinate of the point, for a segments, s.start( ) returns
the start point of the segment, and for a dicitem it which is part of a dictionaryD, D.key(it)
returns the key of the item. Note the syntactic difference: for dependent items the parent
object is the main argument of the access function and for independent items the item itself
is the main argument.

We will systematically blur the distinction between items and containers. The previous
paragraph was the first step. We write “a point has anx-coordinate” instead of the more
verbose “a point refers to a container which stores anx-coordinate” and “a dicitem has a
key” instead of the more verbose “a dicitem refers to a container that stores a key”. We also
say “a dicitem which is part of a dictionaryD” instead of the more verbose “a dicitem that
refers to a container that is part of a dictionaryD”. We will see more examples below. For
example, we say that an insertD.insert(k, i ) into a dictionary “adds an item with keyk and
informationi to the dictionary and returns it” instead of the more verbose“adds a container
with key k and informationi to the dictionary and returns the address of the container”.
Our shorthand makes many statements shorter and easier to read but can sometimes cause
confusion. Going back to the longhand should always resolvethe confusion.

We said above that item types are essentially C++ pointer types. The actual implemen-
tation may be different and frequently is. In the current implementation of LEDA all de-
pendent item types are realized directly as pointer types, e.g., the typedic item is defined
asdic container∗, and all independent item types are realized as classes whose only data
member is a pointer to the corresponding container class.

The reason for the distinction is storage management which is harder for containers asso-
ciated with independent item types. For example, a dictionary-container can be returned to
free store precisely if it is either deleted from the dictionary containing it or if the lifetime of
the dictionary containing it ends. Both situations are easily recognized. On the other hand,
a point-container can be returned to free store if no point points to it anymore. In order to
recognize this situation we make every point-container know how many points point to it.
This is called a reference count. The count is updated by the operations on points, e.g., an
assignmentp = q increases the count of the container pointed to byq and decreases the
count of the container pointed to byp. When the count of a container reaches zero it can be
returned to free store. In order to make all of this transparent to the user of typepoint it is
necessary to encapsulate the pointer in a class and to redefine the pointer operations assign-
ment and access. This technique is known under the namehandle typesand is discussed in
detail in Section 13.7.

All item types offer the assignment operator and the equality predicate. Assume thatT
is an item type and thatit1 andit2 are variables of typeT . The assignmentit1 = it2;
assigns the value ofit2 to it1 and returns a reference toit1. This is simply the assignment
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between pointers. In the case of handle types the assignmenthas the side effect of updating
the reference counters of the objects pointed to byit1 andit2.

The equality predicate (operatorbool operator== (const T& , const T& )) is more sub-
tle. For dependent item types it is the equality between values (i.e., pointers) but for inde-
pendent item types it is usually defined differently. For example, two points in the Euclidean
plane are equal if they agree in their Euclidean coordinates.point p(2.0,3.0); // a point with oordinates 2.0 and 3.0point q(2.0,3.0); // another point with the same oordinatesp == q; // evaluates to true
Note thatp andq are not equal as pointers. They point to distinct point-containers. How-
ever, they agree in their Euclidean coordinates and therefore the two points are said to be
equal. For independent item types we also have theidentitypredicate (realized by function
bool identical(const T& , const T& )). It tests for equality of values (i.e., pointers). Thus
identical(p, q) evaluates to false. We summarize in:

LEDA Rule 2

(a) For independent item types the identity predicate is equality between values. The equal-
ity predicate is defined individually for each item type. It is usually equality between
attributes.

(b) For dependent item types the equality predicate is equalitybetween values.

2.2.1 Dependent Item Types
Many advanced data types in LEDA are defined as collections ofitems, e.g., a dictionary is
a collection of dicitems and a graph is defined in terms of nodes and edges. This collection
usually has some combinatorial structure imposed on it, e.g., it may be arranged in the form
of a sequence, or in the form of a tree, or in the form of a general graph. We give some
examples.

An instance of typedictionary<K , I > is a collection of dicitems, each of which has an
associated key of typeK and an associated information of typeI . The keys of distinct items
are distinct. We use〈k, i 〉 to denote an item with keyk and informationi .

An instance of typelist<E> is a sequence of listitems, each of which has an associated
information of typeE. We use〈e〉 to denote an item with informatione.

An instance of typesortseq<K , I > is a sequence of seqitems, each of which has an
associated key of typeK and an associated information of typeI . The key typeK must
be linearly ordered and the keys of the items in the sequence increase monotonically from
front to rear. We use〈k, i 〉 to denote an item with keyk and informationi .

An instance of typegraph is a list of nodes and a list of edges. Each edge has a source
node and a target node. We use(v, w) to denote an edge with sourcev and targetw.

An instance of typepartition is a collection of partitionitems and a partition of these
items into so-calledblocks.

In all examples above an instance of the complex data type is acollection of items. This
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collection has some combinatorial structure: lists and sorted sequences are sequences of
items, the items of a partition are arranged into disjoint blocks, and the nodes and edges of a
graph form a graph. The items have zero or more attributes: dic items and seqitems have a
key and an information, an edge has a source and a target node,whereas a partitionitem has
no attribute. An attribute either helps to define the combinatorial structure, as in the case
of graphs, or associates additional information with an item, as in the case of dictionaries,
lists, and sorted sequences. The combinatorial structure is either defined by referring to
standard mathematical concepts, such as set, sequence, or tree, or by using attributes, e.g.,
an edge has a source and a target. The values of the attributesbelong to certain types; these
types are usually type parameters. The type parameters and the attribute values may have to
fulfill certain constraints, e.g., sorted sequences require their key type to be linearly ordered,
dictionaries require the keys of distinct items to be distinct, and the keys of the items in a
sorted sequence must be monotonically increasing from front to rear.

Many operations on dictionaries (and similarly, for the other complex data types of
LEDA) have items in their interface, e.g., aninsert into a dictionary returns an item, and
a changeinf takes an item and a new value for its associated information.Why have we
chosen this design which deviates from the specifications usually made in data structure text
books? The main reason is efficiency.

Consider the following popular alternative. It defines a dictionary as a partial function
from some typeK to some other typeI , or alternatively, as a set of pairs fromK×I , i.e.,
as the graph of the function. In an implementation each pair(k, i ) in the dictionary is
stored in some location of memory. It is frequently useful that the pair(k, i ) cannot only
be accessed through the keyk but also through the location where it is stored, e.g., we may
want to lookup the informationi associated with keyk (this involves a search in the data
structure), then compute with the valuei a new valuei ′, and finally associate the new value
with k. This either involves another search in the data structure or, if the lookup returned
the location where the pair(k, i ) is stored, it can be done by direct access. Of course, the
second solution is more efficient and we therefore wanted to support it in LEDA.

We provide direct access through dicitems. A dicitem is the address of a dictionary
container and can be stored in a dicitem variable. The key and information stored in a
dictionary container can be accessed directly through a dicitem variable.

Doesn’t this introduce all the dangers of pointers, e.g., the potential to change information
which is essential to the correct functioning of the underlying data structure? The answer
is no, because the access to dictionary containers through dictionary items is restricted,
e.g., the access to a key of a dictionary container is read-only. In this way, items give the
efficiency of pointers but exclude most of their misuse, e.g., given a dicitem its associated
key and information can be accessed in constant time, i.e., we have the efficiency of pointer
access, but the key of a dicitem cannot be changed (as this would probably corrupt the
underlying data structure), i.e., one of the dangers of pointers is avoided. The wish to have
the efficiency of pointer access without its dangers was our main motivation for introducing
items into the signatures of operations on complex data types.
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Let us next see some operations involving items. We use dictionaries as a typical exam-
ple. The operationsdi item D.lookup(K k);I D.inf(di item it);void D.hange inf(di item it,I j);
have the following semantics:D.lookup(k) returns the item2, sayit, with keyk in dictionary
D, D.inf (it) extracts the information fromit, and a new informationj is associated with
it by D.changeinf (it, j ). Note that only the first operation involves a search in the data
structure realizingD and that the other two operations access the item directly.

Let us have a look at the insert operation for dictionaries next:di item D.insert(K k,I i);
There are two cases to consider. IfD contains an itemit whose key is equal tok then the
information associated withit is changed toi andit is returned. IfD contains no such item,
then anewcontainer, i.e., a container which is not part in any dictionary, is added toD,
this container is made to contain(k, i ), and its address is returned. In the specification of
dictionaries all of this is abbreviated to

dic item D.insert(K k, I i ) associates the informationi with the keyk. If there is an
item 〈k, j 〉 in D then j is replaced byi , else a new item
〈k, i 〉 is added toD. In both cases the item is returned.

For any dependent item type the set of values of the type contains the special valuenil3.
This value never belongs to any collection and no attributesare ever defined for it. We
use it frequently as the return value for function calls thatfail in some sense. For example
D.lookup(k) returnsnil if there is no item with keyk in D.

Containers corresponding to dependent item types cannot exist outside collections. As-
sume, for example, that the container referred to by dicitem it belongs to some dictionary
D and is deleted fromD by D.del item(it). This removes the container fromD and destroys
it. It is now illegal4 to access the fields of this container.

LEDA Rule 3 It is illegal to access the attributes of an item which refersto a container
that has been destroyed or to access the attributes of the item nil.

In the definition of operations involving items this axiom frequently appears in the form
of a precondition.

I D.inf (dic item it) returns the information of itemit.
Precondition: it must belong to dictionaryD.

2 The operation returnsnil if there is no item with keyk in D.
3 Recall that all dependent item types are pointer types internally.
4 Of course, as in ordinary life, illegal actions can be performed anyway. The outcome of an illegal action is hard to

predict. You may be lucky and read the values that existed before the container was destroyed, or you may be
unlucky and read some random value, or you might get caught and generate a segmentation fault.
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2.2.2 Independent Item Types
We now come to independent item types. Points, lines, segments, integers, rationals, and
reals are examples of independent item types. We discuss points.

A point is an item with two attributes of type double, called thex- andy-coordinate of the
point, respectively5. We use(a, b) to denote a point withx-coordinatea andy-coordinate
b.

Note that we are not saying that a point is a pair of doubles. Wesay: a point is an item
and this item has two double attributes, namely the coordinates of the point. In other words,
a point is logically a pointer to a container that contains two doubles (and additional fields
for internal use). This design has several desirable implications:

• Assignment between points takes constant time. This is particularly important for
types where the attributes are large, e.g., arbitrary precision integers.

• Points can be tested for identity (= same pointer value) and for equality (= same
attribute values). The identity test is cheap.

• The storage management for points and all other independentitem types is transparent
to the LEDA user.

We have functions to query the attributes of a point:p.xcoord( ) returns thex-coordinate
and p.ycoord( ) returns they-coordinate. We also have operations to construct new points
from already constructed points, e.g.,point p.translate(double a,double b);
returns a new point(p.xcoord( ) + a, p.ycoord( ) + b), i.e., it returns an item with attributes
p.xcoord( ) + a and p.ycoord( ) + b. It is important to note thattranslatedoes not change
the pointp. In fact, there is no operation on points that changes the attributes of an already
existing point. This is true for all independent item types.

LEDA Rule 4 Independent item types offer no operations that allow to change attributes;
the attributes are immutable.

We were led to this rule by programs of the following kind (which is not a LEDA pro-
gram):q = p;p.hange x(a); // hange x-oordinate of p to a
After the assignmentq and p point to the same point-container and hence changingp’s x-
coordinate also changesq’s x-coordinate, a dangerous side-effect that can lead to errors that
are very hard to find6. We therefore wanted to exclude this possibility of error. We explored
two alternatives. The first alternative redefines the semantics of the assignment statement to
mean component-wise assignment and the second alternativeforbids operations that change

5 There are also points with rational coordinates and points in higher dimensional space.
6 Both authors spent many hours finding errors of this kind.
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attributes. We explored both alternatives in a number of example programs, adopted the
second alternative7, and casted it into the rule above.

A definition of an independent item always initializes all attributes of the item. For
example,point p(2.0,3.0);point q; // q has oordinates but it is not known whih.
defines a pointp with coordinates(2.0, 3.0) and a pointq. The coordinates of pointq are
defined but their exact value is undetermined. This is the same convention as for built-in
types.

LEDA Rule 5 The attributes of an independent item are always defined. In particular,
definition with default initialization initializes all attributes. A type may specify the initial
values but it does not have to.

We explored alternatives to this rule. For example, we considered the rule that the initial
value of an attribute is always the default value of the corresponding type. This rule sounds
elegant but we did not adopt it because of the following example. We mentioned already
that the default value of typedoubleis undefined and that the default value of typerational
is zero. Thus a point with rational coordinates (typerat point) would be initialized to the
origin and a point with floating point coordinates (typepoint) would be initialized to some
unspecified point. This would be confusing and a source of error. The rule above helps to
avoid this error by encouraging the practice that objects ofan independent item type are to
be initialized explicitly.

2.3 Copy, Assignment, and Value Parameters

We now come to a central concept of C++ and hence LEDA, the notion of acopy. Its
importance stems from the fact that several other key concepts are defined in terms of it,
namely assignment, creation with initialization by copying, parameter passing by value,
and function value return. We give these definitions first andonly afterwards define what
it means to copy a value. At the end of the section we also establish a relation between
destruction and copying.

We distinguish between primitive types and non-primitive types. All built-in types, all
pointer types, and all item types are primitive. For primitive types the definition of a copy
is trivial, for non-primitive types the definition is somewhat involved. Fortunately, most
LEDA users will never feel the need to copy a non-primitive object and hence can skip the
non-trivial parts of this section.

We start by defining assignment and creation with initialization by copying in terms of
copying. This will also reveal a close connection between assignment and creation with

7 This does not preclude the possibility that other examples would have led us to a different conclusion.
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initialization. The designers of C++ decided that definition with initialization is defined
in terms of copy and we decided that assignment should also bedefined in terms of copy.
Observe that C++ allows one to implement the assignment operator for a class in an arbitrary
way. We decided that the assignment operator should have a uniform semantics for all
LEDA types.

LEDA Rule 6 An assignmentx = A assigns a copy of the value of expression A to the
variable x.

C++Axiom 1 A definitionT x = A creates a new variable x of type T and initializes it with
a copy of the value of A. An alternative syntactic form isT x(A). The statementnew T(A)
returns a pointer to a newly created anonymous object of typeT . The object is initialized
with a copy of the value of A.

The axioms above imply that the code fragmentsT x; x = A andT x = A are equiv-
alent, i.e., creation with default initialization followed by an assignment is equivalent to
creation with initialization by copying8. The next axiom ties parameter passing by value
and value return to definition with initialization and henceto copying.

C++ Axiom 2
a) A value parameter of type T and name x is specified asT x. Let A be an actual param-
eter, i.e., A is an expression of type T . Parameter passing isequivalent to the definitionTx = A.
b) Let f be a function with return type T and letreturn A be a return statement in the
body of f ; A is an expression of type T . Function value return is equivalent to the definitionT x = A where x is a name invented by the compiler. x is called a temporary variable.

Now that we have seen so many references to the notion of copy of a value, it is time to
define it. A copy of a natural number is simply the number itself. More generally, this is
true for all so-calledprimitive types.

LEDA Rule 7

(a) All built-in types, all pointer types, and all item types areprimitive.
(b) A copy of a value of a primitive type is the value itself.

We conclude, that the primitive types behave exactly like the built-in types and hence
if you understand what copy, assignment, parameter passingby value, and function value
return mean for the built-in types, you also understand themfor all primitive types. For
non-primitive types the definition of a copy is more complex and making a copy is usually
a non-constant time operation. Fortunately, the copy operation for non-primitive types is
rarely needed. We give the following advice.

Advice: Avoid assignment, initialization by copying, parameter passing by value, and

8 This assumes that both kinds of creations are defined for the typeT .
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function value return for non-primitive types. Also exercise care when using a non-primitive
type as an actual type parameter.// read on, if you plan to use any of the statements belowL1 = L2; // L1 and L2 are listsint f(list<int> A); // non-primitive value parameterlist<int> f(); // non-primitive return valueditionary<string,list<int> > D; // non-primitive type parameter

The values of non-primitive types exhibit structure, e.g.,a value of typestack<E> is a
sequence of elements of typeE, a value of typearray<E> is a set of variables of typeE
indexed by an interval of integers, and a value of typelist<E> is a sequence of list items
each with an associated element of typeE. Therefore, non-primitive types are also called
structured. A copy of a value of a structured type is similar but not identical to the original
in the same sense as the Xerox-copy of a piece of paper is similar but not identical to the
original; it has the same content but is on a different piece of paper.

We distinguish two kinds of structured types,item-basedandnon-item-based. A struc-
tured type is called item-based if its values are defined as collections of items. Dictionaries,
sorted sequences, and lists are examples of item-based structured types, and arrays and
sets are examples of non-item-based structured types. We also saysimple-structuredtype
instead of non-item-based structured type.

LEDA Rule 8

(a) A value x of a simple-structured type is a set or sequence of elements or variables of
some type E. A copy of x is a component-wise copy.

(b) A copy of a variable is a new variable of the same type, initialized with a copy of the
value of the original.

We give some examples. Copying the stack(1, 4, 2) produces the stack(1, 4, 2), copying
an array<int> with index set [1.. 3] means creating three new integer variables indexed
by the integers one to three and initializing the variables with copies of the values of the
corresponding variable in the original, and copying astack<dictionary<K , I > ∗ > produces
a stack with the same length and the same pointer values. The following code fragment
shows that a copy of a value of a structured type is distinct from the original.array<int> A(0,2);array<int> B = A;int* p = A[0℄;int* q = B[0℄;p == q; // evaluates to false
We next turn to item-based structured types.

LEDA Rule 9 A value of an item-based structured type is a structured collection of items
each of which has zero or more attributes. A copy of such a value is a collection of new
items, one for each item in the original. The combinatorial structure imposed on the new
items is isomorphic to the structure of the original. Every attribute of a new item which
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does not encode combinatorial structure is set to a copy of the corresponding attribute of
the corresponding item in the original.

Again we give some examples. Copying alist<E> of length 5 means creating five new
list items, arranging these items in the form of a list, and setting the contents of thei -th
new item, 1≤ i ≤ 5, to a copy of the contents of thei -th item in the original. To copy
a graph (typegraph) with n nodes andm edges means creatingn new nodes andm new
edges and creating the isomorphic graph structure on them. To copy aGRAPH<E1, E2>9

means copying the underlying graph and associating with each new node or edge a copy of
the variable associated with the corresponding original node or edge. According to LEDA
Rule 8 this means creating a new variable and initializing itwith a copy of the value of the
old variable.

The programming language literature sometimes uses the notions of shallowanddeep
copy. We want to relate these notions to the LEDA concept of a copy.Consider a structure
nodecontainerconsisting of a pointer to a node container and a pointer to some other type.lass node ontainer{ node ontainer* su;E* ontent;}
Such a structure may, for example, arise in the implementation of a singly linked list; one
pointer is used for the successor node and the other pointer is used for the the content,
i.e., the list has typelist<E ∗ > for some typeE. A shallow copy of a node is a new node
whose two fields are initialized by component-wise assignment. A deep copy of a node is
a copy of the entire region of storage reachable from the node, i.e., both kinds of pointers
are followed when making a deep copy. In other words, a shallow copy follows no pointer,
a deep copy follows all pointers. Our notion of copying is more semantically oriented.
Copying alist<E ∗ > of n items means creatingn new items (this involves following the
successor pointers), establishing a list structure on them, and setting the content attribute of
each item to a copy of the contents of the corresponding item in the original. Since the type
E∗ is primitive (recall that all pointer types are primitive) this is tantamount to setting the
contents of any new item to the contents of the correspondingold item. In particular, no
copying of values of typeE takes place. In other words, when making a copy of alist<E ∗ >
we follow successor pointers as if making a deep copy, but we do not follow theE∗ pointers
as if making a shallow copy.

Parameter passing by value involves copying. Since most arguments to operations on
complex data types have value parameters, this has to be taken into account when read-
ing the specifications of operations on data types. Consider, for example, the operation
D.insert(k, i ) for dictionaries. It takes a keyk and an informationi , adds a new item〈k, i 〉
to D and returns the new item10. Actually, this is not quite true. The truth is that the new

9 A GRAPH<E1, E2> is a graph where each node and edge has an associated variableof typeE1andE2,
respectively.

10 We assume for simplicity, thatD contains no item with keyk.
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item contains a copy ofk and a copy ofi . For primitive types a value and a copy of it are
identical and hence the sentence specifying the semantics of insertcan be taken literally. For
non-primitive types copies and originals are distinct and hence the sentence specifying the
semantics ofinsert is misleading. We should say “adds a new item〈copy ofk, copy ofi 〉 to
D” instead of “adds a new item〈k, i 〉 to D”. We have decided to suppress the words “copy
of” for the sake of brevity11. The following example shows the effect of copying.ditionary<string,ditionary<int,int> > M;ditionary<int,int> D;di item it = D.insert(1,1);M.insert("Ulli",D);M.lookup("Ulli").inf(it); // illegalD.hange inf(it,2);M.lookup("Ulli").aess(1); // returns 1D.insert(2,2);M.lookup("Ulli").lookup(2); // returns nil
The insertion ofD into M stores a copy ofD in M. The itemit belongs toD but not to the
copy of D. Thus querying itsinf -attribute in the copy ofD returned byM.lookup(”Ulli ” )
is illegal. The operationD.changeinf (it, 2) changes theinf -attribute ofit to 2; this has no
effect on the copy ofD stored inM and hence the access operation in the next line returns
1. Similarly, the second insertion intoD has no effect on the copy and hence the lookup in
the last line returnsnil.

When the lifetime of an object ends it isdestructed. The lifetime of a named object ends
either at the end of the block where it was defined (this is the default rule) or when the
program terminates (if declared static). The life of an anonymous object is ended by a call
of delete. We need to say what it means to destruct an object. For LEDA-objects there is a
simple rule.

LEDA Rule 10 When a LEDA-object is destructed the space allocated for theobject is
freed. This is exactly the space that would be copied when a copy of the object were made.

2.4 More on Argument Passing and Function Value Return

C++ knows two kinds of parameter passing, by value and by reference. Similarly, a function
may return its result by value or by reference. We have already discussed value arguments
and value results. We now review reference arguments and reference results and at the
end of the section discuss functions as arguments. This section contains no material that is

11 In the early versions of LEDA only primitive types were allowed as type parameters and hence there was no need
for the words “copy of”. When we allowed non-primitive typesas type parameters we decided to leave the
specification ofinsertand many other operations unchanged and to only make one global remark.
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specific for LEDA; it is just a short review of reference parameters, reference results, and
function arguments in C++.

The specification of a formal parameter has one of the three forms:T x (value parameter of type T),T& x (reference parameter of type T),onst T& x (constant reference parameter of type T).

The qualifieronst in the last form specifies that it is illegal to modify the value of the
parameter in the body of the procedure. The compiler attempts to verify that this is indeed
the case. LetA be the actual parameter corresponding to formal parameterx. Parameter
passing is tantamount to the definitionT x = A in the case of a value parameter and to the
definitionT& x = A in the case of a reference parameter. We already know the semantics
of T x = A: a new variablex of typeT is created and initialized with a copy of the value of
expressionA. The definitionT& x = A does not define a new variable. Rather it introduces
x as an additional name for the object denoted byA. Note that the argumentA must denote
an object in the case of a reference parameter. In either casethe lifetime ofx ends when the
function call terminates.

Argument passing by reference must be used for parameters whose value is to be changed
by the function. For arguments that are not to be changed by the function one may use either
a value parameter12 or a constant reference parameter. Note, however, that passing by value
makes a copy of the argument and that copying a “large” value,e.g., a graph, list, or array,
is expensive. Moreover, we usually want the function to workon the original of a value and
not on a copy. We therefore advice to specify arguments of non-primitive types either as
reference parameters or as constant reference parameters and to use value parameters only
for primitive types. In our own code we very rarely pass objects of non-primitive type by
value. If we do then we usually add the comment: “Yes, we actually want to work on a
copy”.

An example for the use of a constant reference parameter isvoid DIJKSTRA(onst graph& G, node s, onst edge array<int>& ost,node array<int>& dist, node array<edge>& pred)
This function13 takes a graphG, a nodes of G, a non-negative cost function on the edges of
G, and computes the distance of each vertex from the source (indist). Also for each vertex
v 6= s, pred[v] is the last edge on a shortest path froms to v. The constant qualifiers ensure
thatDIJKSTRAdoes not changeG andcost(although they are reference parameters). What
would happen if we changedG to a value parameter? Well, we would pass a copy ofG
instead ofG itself. Since a copy of a graph has new nodes and edges,s is not a node of
the copy andcost is not defined for the edges of a copy. The function would fail if G was
passed by value. Thus, it is essential thatG is passed by reference.

Parameter passing moves information into a function and function value return moves

12 It is legal to assign to a variable that is defined as a value parameter. Such an assignment does not affect the value
of the actual parameter.

13 See Section 6.6 for a detailed discussion of this function.
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information out of a function. Consider the call of a function f with return typeT or T&
for some typeT and assume that the call terminates with the return statement return A.
The call is equivalent to the definition of a temporaryt which is initialized with A, i.e.,return A amounts to eitherT t = A or T& t = A. The temporary replaces the function
call.

Let us go through an example. LetT be any type. We define four functions with the four
combinations of return value and parameter specification.T f1(T x) { return x; }T f2(T& x) { return x; }T& f3(T& x) { return x; }T& f4(T x) { return x; }// illegal, sine a referene to a loal variable is returned

Let y andz be objects of typeT . The statementz = f1(y);
copiesy three times, first fromy to the formal parameterx (value argument), then fromx
to a temporaryt (value return), and finally fromt to z (assignment). Inz = f2(y);
y is copied only twice, first fromy to a temporary (value return) and then from the tempo-
rary intoz (assignment).z = f3(y);
copiesy once, namely fromy into z (assignment). Sincef3 returns a reference to an object
of typeT it can also be used on the left-hand side of an assignment. Sof3(y) = z;
assignsz to y.

Some operations takefunctions as arguments. A function argumentf with result typeT
and argument typesT1, . . . ,Tk is specified asT(*f)(T1,T2,...,Tk)
The∗ reflects the fact that a pointer to the function is passed. As aconcrete example let us
look at the bucket sort operation on lists with element typeE:void L.buket sort(int i,int j,int(*f)(E&));
requires a functionf with a reference parameter of typeE that maps each element ofL into
[i .. j ]. It sorts the items ofL into increasing order according tof , i.e., item〈x〉 is before
〈y〉 after the call if eitherf (x) < f (y) or f (x) = f (y) and〈x〉 precedes〈y〉 before the
call.
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2.5 Iteration

For many data types, LEDA offersiteration macrosthat allow to iterate over the elements
of a collection. These macros are similar to the C++ for-statement. We give some examples.
For all item-based types we haveforall items(it,D){ /* the items in D are suessively assigned to it */ }
This iteration successively assigns all items inD to it and executes the loop body for each
one of them. For lists and sets we also have iteration statements that iterate over elements.// L is a list<point>point p;forall(p,L){ /* the elements of L are suessively assigned to p */ }.
For graphs we have statements to iterate over all nodes, all edges, all edges adjacent to a
given node, . . . , for example:forall nodes(v,G){ /* the nodes of G are suessively assigned to v*/ }forall edges(e,G){ /* the edges of G are suessively assigned to e*/ }forall adj edges(e,v){ /* all edges adjaent to v are suessively assigned to e */ }
It is dangerous to modify a collection while iterating over it. We have

LEDA Rule 11 An iteration over the items in a collection C must not add new items to C.
It may delete the item under the iterator, but no other item. The attributes of the items in C
can be changed without restriction.

We give some examples:// L is a list<int>// delete all ourrenes of 5forall(it,L)if ( L[it℄ == 5 ) L.del(it);forall(it,L)if ( L[it℄ == 5 ) L.del(L.su(it)); // illegal// add 1 to the elements following a 5forall(it,L)if ( L[it℄ == 5 ) L[L.su(it)℄++;forall(it,L)L.append(1); // infinite loop// G is a graph;//add a new node s and edges (s,v) for all nodes of Gnode s = G.new node();node v;forall nodes(v,G) if (v != s) G.new edge(s,v);
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The iterations statements in LEDA are realized by macro expansion. This will be dis-
cussed in detail in Section 13.9. We give only one example here to motivate the rule above
and the rules to follow. Theforall itemsloop for listsforall items(it,L) { <<body>> }
expands into a C++ for-statement. The expansion process introduces a new variable; a dis-
tinct variable is generated for every loop by the expansion process.loop it of type list item
and initializes it with the first item ofL. In each iteration of the loop,loop it is assigned to
it, loop it is advanced, and the loop body is executed. The loop terminates whenit has the
valuenil.for (list item loop it = (L).first item();it = loop it, loop it = (L).next item(loop it), it; ){ <<body>> }
The fact that we use macro expansion to reduce the forall-loop to a C++ for-loop has two
consequences.

LEDA Rule 12 Break and continue statements can be used in forall-loops.

We give an example.list item it;forall items(it,L) if ( L[it℄ == 5 ) break;if ( it ) // there is an ourrene of 5 in Lelse // there is no ourrene of 5 in L
There is second consequence which is less pleasing. Consideredge e;forall(e,G.all edges()) { <<body>> }
where the functionG.all edges( ) returns a list of all edges ofG. The expansion process
will generatefor (list item loop it = (G.all edges()).first item();it=loop it,loop it=(G.all edges()).next item(loop it),it;){ <<body>> }
and hence the functionG.all edges( ) is called in every iteration of the loop. This is certainly
not what is intended.

LEDA Rule 13 The data type argument in an iteration statement must not be afunction
call that produces an object of the data type but an object of the data type itself.

The correct way to write the loop above islist<edge> E = G.all edges();edge e;forall(e,E) { <<body>> }
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or even simplerforall edges(e,G) { <<body>> }
2.6 STL Style Iterators

STL (Standard Template Library [MS96]) is a library of basicdata types and algorithms
that is part of the C++ standard. STL has a concept callediterators that is related to, but
different from LEDA’s item concept. In STL the forall-itemsloop for alist<int> is written
asfor (list<int>::iterator it = L.begin(); it != L.end(); it++){ <<body>> }
In the loop body the content of the iterator can be accessed by∗it; in LEDA one writesL[it]
to access the content ofit.

Many LEDA data structures offer also STL style iterators. This feature is still experi-
mental and we refer the user to the manual for details.

2.7 Data Types and C++

LEDA’s implementation base is C++. We show in this section how abstract data types can
be realized by theclass mechanismof C++. We do so by giving a complete implementation
of the data type stack which we specified at the beginning of this chapter. We also give
the reader a first impression of LEDA’s structure and we introduce the reader to Lweb and
noweb.

A C++ class consists ofdata membersandfunction members. The data members define
how the values of the class are represented and the function members define the operations
available on the class. Classes may be parameterized. We nowdefine a parameterized class
stack<E> that realizes the LEDA data type with the same name.

〈stack.c〉�template <lass E> // E is the type parameter of staklass stak{ private:
〈data members〉publi:
〈function members〉};
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source.lw

source.tex

notangle

lweave

source.[c|cc|h]

Figure 2.2 Lweb: lweave transforms a file source.lw into a file source.tex; notangle extracts
program files. Lweb is a dialect of noweb [Ram94].

The definition of a class consists of a private part and a public part; the private part is only
visible within the class and the public part is also visible outside the class. We declare the
data members private to the class and hence invisible outside the class. This emphasizes the
fact that we are defining an abstract data type and hence it is irrelevant outside the class how
a value is represented in the machine and how the operations are implemented. To further
emphasize this fact we give an implementation of stacks in this section that is different
from the one actually used in LEDA. The function members are the interface of the class
and hence public.

It is time to give more information about Lweb.Lweb is the literate programming tool
which we use to produce manual pages, implementation reports, and which we used to
produce this book. It is dialect ofnoweb[Ram94]. It allows us to write a program and
its documentation into a single file (usually with extension.lw) and offers two utilities to
produce two views of this file, one for a human reader and one for the C++ compiler:lweave
typesets program and documentation and creates a file with extension .tex which can then
be further processed using TEX and LATEXandnotangleextracts the program and puts it into
a file (usually with extension .c or .cc or .h). Figure 2.2 visualizes the process.

We postpone the discussion of lweave to Chapter 14 and only discuss notangle here. A
noweb-file14 consists of documentation chunks and code chunks. A documentation chunk
starts with� followed by a blank or by a carriage return in column one of a line and a code
chunk starts with〈name of chunk〉= in column one of a line. Code chunks are given names.
If several chunks are given the same name they are concatenated. Code chunks are referred
to by 〈name of chunk〉.

In this section we have already defined a chunk〈stack.c〉. It refers to chunks〈data mem-
bers〉 and〈function members〉 which will be defined below. The commandnotangle -Rstak. Foundations.lw > stak.
will extract the chunkstak. (the “R” stands for root) from the file Foundations.lw (the
name of the file containing this chapter) and write it into stack.c.

We come back to stacks. We represent astack<E> by a C++ arrayA of type E and two
integersszandn with n < sz. The arrayA has sizeszand the stack consists of elements

14 As far as notangle is concerned there is no difference between a noweb-file (usually with extension .nw) and a
Lweb-file.
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A[0], A[1], . . . , A[n] with A[n] being the top element of the stack. The stack is empty if
n = −1.

〈data members〉�E* A;int sz;int n;
The function members correspond to the operations available on stacks. We start with

the constructors. There are two ways to create a stack:stack<E> S creates an empty stack
andstack<E> S(X) creates a stack whose initial value is a copy ofX. The corresponding
function members are the so-calleddefault constructorand so-calledcopy constructor, re-
spectively. In C++ a constructor has the same name as the class itself, i.e., theconstructors
of classT have nameT . The default constructor has no argument and the copy constructor
has a constant reference argument of typeT .

〈function members〉�stak() // default onstrutor{ /* we start with an array of ten elements */A = new E[10℄;sz = 10;n = -1;}stak(onst stak<E>& X) // opy onstrutor{ sz = X.sz;A = new E[sz℄;n = X.n;for(int i = 0; i <= n; i++) A[i℄ = X.A[i℄;}
We give some more functions:emptyreturnstrue if the stack is empty,top returns the top
element of a non-empty stack,pushadds an element to a stack,pop deletes an element
from a non-empty stack and returns it, and= performs assignment. We lettop check its
precondition and call an error-handler when it is violated.However,popdoes not check its
precondition. Recall that LEDA does not promise to check allpreconditions.

〈function members〉+�int empty() { return (n == -1); }E top(){ if ( n == -1) error_handler(1,"stak::top: stak is empty");return A[n℄;}E pop() { return A[n--℄; }
A pushfirst checks whether there is still room in the array. If not, it doubles the size ofA.
In either case it increasesn and assignsx to the new top element of the stack.
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〈function members〉+�void push(onst E& x){ if (n + 1 == sz){ sz = 2 * sz;E* B = A;A = new E[sz℄;for (int i = 0; i <= n; i++) A[i℄ = B[i℄;delete[℄ B;}A[++n℄ = x;}
An assignment first checks for the trivial assignmentS = S, then destroys the old value of
the left-hand side, copies the right-hand side into the left-hand side, and finally returns a
reference to the left-hand side.

〈function members〉+�stak<E>& operator=(onst stak<E>& X){ if (this != &X){ delete[℄ A;sz = X.sz;A = new E[sz℄;n = X.n;for (int i=0; i<=n; i++) A[i℄ = X.A[i℄;}return (*this);}
When the lifetime of a stack ends the arrayA needs to be deleted.

〈function members〉+�~stak() { delete[℄ A; }
This completes the definition of classstack<E>. The class essentially realizes the data type
stack<E> as defined on page 4; we invite the reader to complete the implementation by
writing the code forclear.

Our implementation of the stack data type wastes space. Imagine that we perform 1000
pushes followed by 1000 pops. The pushes will increase the size of A to at least 1000 butA
does not shrink again during the pops. The LEDA implementation of stacks uses space in
a more thrifty way; its space requirement is proportional tothe number of elements in the
stack.

In this section we gave the reader a first impression of how thedata types of LEDA are
implemented in C++. Chapter 13 gives the details.



2.8 Type Parameters 31

2.8 Type Parameters

Most data types in LEDA are parameterized. We have lists overan arbitrary element type
E and dictionaries over any linearly ordered key typeK and any information typeI . Any
class that provides a certain small set of functions can be used as an actual type argument:
one must be able to create a variable of the type and initialize it either with the default value
(default constructor) or with a copy of an already existing value (copy constructor). One
must be able to perform assignment (operator=), to read a value of the type from an input
stream (functionRead), and to print a value onto an output stream (functionPrint). Finally,
when the lifetime of an object ends one must be able to destruct it (destructor). Sometimes,
type arguments need to have additional abilities. Linearlyordered types have to support
comparisons between their elements, hashed types have to support hashing, and numerical
types have to support arithmetic.

LEDA Rule 14 Any actual type argument must provide the following six functions:
a default constructor T::T()
a copy constructor T::T(onst T&)
an assignment operator T& T::operator=(onst T&)
a read function void Read(T&,istream&)
a print function void Print(onst T&,ostream&)
a destructor T::~T().

A linearly ordered type must in addition provide
a compare function int ompare(onst T&,onst T&).

A hashed type must in addition provide
a hash function int Hash(onst T&)
an equality operator bool operator ==(onst T&,onst T&).

A numerical type must in addition have the basic arithmetic functions addition, subtraction,
and multiplication, and the standard comparison operators.

We have already discussed the default constructor, the copyconstructor, the destructor,
and the assignment operator. The functionsReadandPrint read an object of typeT from
an input stream and print it to an output stream, respectively. Equality and the functions
compare, Hashare discussed in the next section and number types are discussed in Chap-
ter 4. We next give the complete definition of a linearly ordered classpair.

〈definition of class pair〉�lass pair{ double x, y;publi:pair() { x = y = 0; }pair(onst pair& p) { x = p.x; y = p.y; }friend void Read(pair& p,istream& is) { is >> p.x >> p.y; }friend void Print(onst pair& p,ostream& os){ os << p.x << " " << p.y; }friend int ompare(onst pair&,onst pair&);};



32 Foundationsint ompare(onst pair& p,onst pair& q){ if (p.x < q.x) return - 1;if (p.x > q.x) return 1;if (p.y < q.y) return - 1;if (p.y > q.y) return 1;return 0;}
We need to make two remarks about the definition of the classpair. (1) The functionsRead,
Print, andcompareare not member functions of the class, but global functions.They are
declared as friends ofpair so that they can access the private data of the class. (2) We did
not define two of the required functions, namely the assignment operator and the destructor
∼pair. The reason is that C++ will generate them automatically. More precisely, if no
copy constructor, assignment operator, or destructor is defined then the default version is
used. The default version copies component-wise, assigns component-wise, and destructs
component-wise, respectively. Thus the definition of the copy constructor could also be
omitted from classpair.

The typepair can be used as the key type in a dictionary, i.e., we may defineditionary<pair,int> D;
What happens if one uses a classT as an actual type parameter without defining one

of the required functions (that are not generated automatically)? The C++ compiler will
produce an error message that it cannot match certain functions. For example, the compiler
used by the first author producesLEDA/ditionary.h:52: no math for` IO ostream withassign & << onst pair & '
when given the following program

〈parameterizeddata type test.c〉�#inlude <LEDA/ditionary.h>lass pair{ double x;double y;publi:pair() { x = y = 0; }pair(onst pair& p) { x = p.x; y = p.y; }};main(){ditionary<pair,int> D;}



2.9 Memory Management 33

2.9 Memory Management

LEDA provides an efficientmemory management systemthat is used for all node, edge,
and item types and that can easily be customized for user-defined classes by means of
theLEDA MEMORY macro. One simply has to add the macro callLEDA MEMORY(T) to the
definition of classT . This call createsnewanddeleteoperators for the classT that rely on
LEDA’s memory manager. The main advantages over the built-in newanddeleteoperators
are:

• Memory is allocated in big chunks and thus frequent and costly calls to the memory
allocator are avoided.

• Memory returned by thedeleteoperator is reused by later calls of thenewoperator,
i.e., the manager provides garbage collection.

The implementation of LEDA’s memory manager is discussed inSection 13.8. The defi-
nition of our classpair now reads as follows. We advise the reader to follow this scheme in
the definition of his classes.

〈refined definition of class pair〉�lass pair{ private:double x, y;publi:pair() { x = y = 0; }/* pair uses the default versions of opy onstrutor,assignment operator, and destrutor */friend void Read(pair& p,istream& is) { is >> p.x >> p.y; }friend void Print(onst pair& p,ostream& os){ os << p.x << " " << p.y; }friend int ompare(onst pair&,onst pair&);LEDA_MEMORY(pair);};
2.10 Linearly Ordered Types, Equality and Hashed Types

Algorithms frequently need to compare objects: a geometricalgorithm may have to deter-
mine whether one line is above another line at a certainx-value, a sorting algorithm needs
to compare the objects it is supposed to sort, and a shortest path algorithm needs to compare
the lengths of two paths. Also, many data types such as dictionaries, priority queues, and
sorted sequences need to compare the objects of their key type. The appropriate mathemat-
ical concept is a linear order.

A binary relation≤ (less than or equal) on a setS is called alinear order if the following
three conditions hold for allx, y, z ∈ S:
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• x ≤ x (reflexivity).

• x ≤ y andy ≤ z impliesx ≤ z (transitivity).

• x ≤ y or y ≤ x (anti-symmetry).

Note that the “or” in the third condition is not exclusive. Wemay havex ≤ y andy ≤ x
even if x and y are distinct. Here is an example. For non-vertical linesg andh, define
g ≤ h if the intersection ofg with the y-axis is below or equal to the intersection ofh with
they-axis. Theng ≤ h andh ≤ g iff g andh intersect they-axis in the same point.

We callx andy equivalentif x ≤ y andy ≤ x and we say thatx is strictly less than y
and writex < y or y > x if x ≤ y andx andy are not equivalent. Note that for any two
elementsx andy exactly one of the following three relations holds:x is strictly less thany,
x is equivalent toy, or y is strictly less thanx.

In LEDA, a functionint cmp(const T& , const T& ) is said to realize a linear order on the
typeT if there is a linear order≤ on T such that for allx andy in T

cmp(x, y)







< 0, if x < y
= 0, if x is equivalent toy
> 0, if x > y

LEDA Rule 15 A type T is calledlinearly orderedif the functionint ompare(onst T&,onst T&)
is defined for the type T and realizes a linear order on T . If compare(x, y) returns zero for
two objects x and y then they are calledcompare-equivalentor simplyequivalent.

Note that we have adopted the syntactic convention that the function with the name
comparedefines the order onT . This is in line with similar conventions already used in
C++, e.g., that constructors have the same name as the type.

For many primitive data types a functioncompareis predefined and defines the so-called
default orderingof the type. The default ordering is the usual “less than or equal” for the
numerical types, the lexicographic ordering for strings, and the lexicographic ordering of
the Cartesian coordinates for points. For all other typesT there is no default ordering, and
the user has to define the functioncompareif a linear order onT is required. We already
gave an example in the preceding section.

A weaker concept than linear orders is equivalence relation. A binary relationR defines
anequivalence relationon a setS if the following three conditions hold for allx, y, z ∈ S:

• x Rx (reflexivity).

• x RyandyRzimpliesx Rz(transitivity).

• x Ry implies yRx (symmetry).
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We have already seen an equivalence relation, namely compare-equivalence. The relation
R defined byx Ry if compare(x, y) == 0 defines an equivalence relation. We also require

LEDA Rule 16 If the equality operatorbool operator==(onst T&,onst T&)
is defined for a class T then it defines an equivalence relationon T . We call x and y equal
if x == y evaluates to true.

We requireno relationship between equality and compare-equivalence, i.e., two objects
may be equal but not compare-equivalent or compare-equivalent but not equal. However,
for all LEDA types with predefinedcompareand== the two notions agree. On the other
hand, there are applications where it is natural to distinguish between the two concepts.
For example, a plane sweep algorithm for line segment intersection (cf. Section 10.7.2)
compares segments by they-coordinate of their intersection with a vertical sweep line and
thus two segments can be compare-equivalent without being equal.

We next turn to hashed types. A hashed typeT must provide the equality operator and
the functionint Hash(const T& ). Of course, the hash function should not tell objects apart
that are equal.

LEDA Rule 17 For any hashed type and any objects x and y of type T : if x== y then
Hash(x) == Hash(y).

There is one further point that we have to make. Recall that, for example, a dictionary
stores copies of keys (and informations) and that for structured types a copy of a value is
distinct from the original. It is possible to write compare functions and equality operators
that distinguish between a value and a copy of the value. Thiswould lead to a disaster, e.g.,
a lookup in a dictionary would fail to find a stored key. We therefore have

LEDA Rule 18 A value and a copy of a value must be compare-equivalent and equal.

For primitive types, this axiom is trivially fulfilled sincea copy is identical to the original.
In some situations it is useful to have more than one linear order for a typeT . For

example, we might want to have two dictionariesD1 andD2 with key typepair. In D1 the
pairs are to be ordered by the lexicographic ordering of their Cartesian coordinates and in
D2 by the lexicographic ordering of their polar coordinates. The dictionaryD1 is easy to
define. We simply writeditionary<pair,int> D1,
but how can we define the second dictionary? After all, we havethe syntactic convention
that the function with the namecomparedefines the order on a type. There are two solutions,
one old and one added recently.

The first solution is to define an equivalent type with the alternative ordering. The code
sequence



36 Foundationsint pol mp(onst point& x,onst point& y){ /* ompute lexiographi ordering by polar oordinates */ }DEFINE LINEAR ORDER(point,pol mp,pol point);ditionary<pol point,int> D2;
first defines the ordering by polar coordinates and then defines a typepol point by a call
to theDEFINE LINEAR ORDER macro. The typepol point is equivalent to the typepoint,
in particular, a polpoint can be assigned to a point and vice versa. However, the ordering
on the typepol point is given by the functionpol cmp. The last line defines the desired
dictionaryD2.

The second solution makes the linear order an additional argument of any data type that
requires a linearly ordered type, e.g.,ditionary<point,int> D(pol mp);
declares a dictionaryD that uses the functionpol cmpfor comparing points.

Instead of passing a function to the dictionary, one can alsopass a class which has a
function operator and is derived from the classledacmpbase. This variant is helpful when
the compare function depends on a global parameter. We give an example. More examples
can be found in Sections 10.7.2 and 10.3. Assume that we want to compare edges of a graph
GRAPH<point, int> (in this type every node has an associated point in the plane;the point
associated with a nodev is accessed asG[v]) according to the distance of their endpoints.
We write

〈compareexample〉�lass mp_edges_by_length: publi leda_mp_base<edge> {onst GRAPH<point,int>& G;publi:mp_edges_by_length(onst GRAPH<point,int>& g): G(g){}int operator()(onst edge& e, onst edge& f) onst{ point pe = G[G.soure(e)℄; point qe = G[G.target(e)℄;point pf = G[G.soure(f)℄; point qf = G[G.target(f)℄;return ompare(pe.sqr_dist(qe),pf.sqr_dist(qf));}};main(){GRAPH<point,int> G;mp_edges_by_length mp(G);list<edge> E = G.all_edges();E.sort(mp);}
The classcmpedgesby lengthhas a function operator that takes two edgese and f of a
graphG and compares them according to their length. The graphG is a parameter of the
constructor. In the main program we definecmp(G) as an instance ofcmpedgesby length
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and then passcmpas the compare object to the sort function oflist<edge>. In the implemen-
tation of the sort function a comparison between two edges ismade by writingcmp(e, f ),
i.e., for the body of the sort function there is no differencewhether a function or a compare
object is passed to it.

The example above illustrates a nice feature of literate programming. We gave a named
program chunk that illustrates a concept of LEDA. Of course,we want to make sure that the
program fragment is correct and hence we want to execute it. To this effect we enclose it
into a larger program chunk which we can extract and compile.We usually do not show the
enclosing program chunk, i.e., we enclose it into a LATEX command\ignore that makes it
invisible to LATEXby expanding to the empty string. We show the construction once:\ignore{<<ompare_test.>>=#inlude <LEDA/graph.h>#inlude <LEDA/point.h><<ompare_example>>� }%end ignore
2.11 Implementation Parameters

Some data types in LEDA, e.g., dictionary, priority queue, darray, and sorted sequence,
come with several implementations. A user of such a data typecan choose a particular
implementation by giving the name of the implementation as an additional parameter, e.g.,
d array<I , E, skiplist> selects the skiplist implementation of dictionary arrays.Note that
the type name now starts with an underscore. This is necessary since C++ does not allow us
to overload templates. The following program uses the skiplist implementation of dictionary
arrays to count word occurrences in the input stream.#inlude <LEDA/d array.h>#inlude <LEDA/impl/skiplist.h>main(){ d array<string,int,skiplist> N(0);// d array<string,int> N(0) selets default implementationstring s;while (in >> s) N[s℄++;forall defined(s,N) out << s << " " << N[s℄ << endl;}
The types with and without implementation parameter are closely related.

Any type T<T1,..., Tk, xyzimpl> is derived (in the C++ sense of the word) from the
corresponding “normal” parameterized typeT<T1,..., Tk>. This allows us, for example, to
pass an instance of typeT<T1,..., Tk, xyzimpl> as an argument to a function with a formal
parameter of typeT<T1,..., Tk>&, a feature that allows us to execute even pre-compiled
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algorithms with different implementations of data types. We give an example. We define a
procedurewordcountthat has a parameter of typed array<string, int>.void word ount(d array<string,int>& N){ string s;while (in >> s) N[s℄++;forall defined(s,N) out << s << " " << N[s℄ << endl;}
Any implementation of darrays can be passed towordcount.d array<string,int> N1(0);word ount(N1);d array<string,int,skiplist> N2(0);word ount(N2);
The section “Implementation Parameters” of the LEDA manualsurveys the implementa-
tion parameters currently available. Section 13.6 discusses the realization of implemen-
tation parameters. The latter section also describes how a LEDA user may add his own
implementation of a data type to the system.

2.12 Helpful Small Functions

There are a number of small, but helpful, functions. We mention some of them here and
refer the reader to the section “Miscellaneous Functions” of the LEDA manual for the full
list.int i = read int("i = ");
prints “i = ” (more generally, its string argument) on standard output and then reads an
integer from standard input. Similar functions exist to read strings, character, and doubles.

The functionusedtime is very helpful for running time experiments. For example, the
chunkfloat T = used time(); // sets T to the urrent pu time// an experimentout << used time(T);// sets T to the urrent pu time and returns the differene// to the previous value of T// another experimentout << used time(T);
will print the cpu time used in each of two experiments.

The functionvoid print statistis();
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prints a summary of the currently used memory. For example, the program

〈memorystatistic〉�list<point> L;{ for (int i = 0; i < 100000; i++) L.append(point());list<point> L1 = L;}print_statistis();
producesSTD_MEMORY_MGR (memory status)+--------------------------------------------------+| size used free bloks bytes |+--------------------------------------------------+| 12 100000 100214 294 2402568 || 20 27 381 1 8160 || 40 100002 77 493 4003160 |+--------------------------------------------------+| time: 0.53 se spae: 6300.92 kb |+--------------------------------------------------+
The statistics tell us that space for a total of 100000+ 100214 records of size 12 bytes
(= list nodes), for a total of 27+ 381 records of size 20, and for a total of 100002+ 77
records of size 40 (= points) was allocated. It also gives information on which of these
records are currently used and which are free. In our example, the records for the nodes of
L and the points inL are still allocated and the records for the nodes ofL1 have already
been freed. Observe that the program allocates space for 200000 list nodes, but only for
100000 structures to contain representations of points; read Section 2.2.2 to understand
why. Space is allocated in blocks of 8160 bytes. The next to last column shows the number
of allocated blocks for the structures of the different sizes and the last column shows the
space consumption in bytes. Our program required about 6.3 megabytes. It ran for 0.53
seconds.

The functionsT leda min(onst T& a, onst T& b);T leda max(onst T& a, onst T& b);void leda swap(T& a, T& b);
return the minimum, the maximum, and swap the values of theirarguments, respectively.
They can be used for any typeT .

Finally, the functiondouble trunate(double x, int k = 10);



40 Foundations

returns a double whose mantissa is truncated afterk − 1 bits after the binary point, i.e., if
x 6= 0 then the binary representation of the mantissa of the result has the form d.dddddddd,
where the number of d’s is equal tok.

2.13 Error Handling

The error handlererror handler(int i, har* s);
writess to the diagnostic output (cerr) and terminates the program abnormally if i 6= 0. The
functionleda assert(bool b, int i, har* s);
calls error handler(i , s) if b is falseand has no effect otherwise. Users can provide their
own error handling functionhandlerby callingset error handler(handler);
After this function callhandler is used instead of the default error handler.handlermust
be a function of typevoid handler(int, char∗). The parameters are replaced by the error
number and the error message, respectively.

2.14 Program Checking

Programming is an error-prone task. How do we make sure that the programs in LEDA are
correct? We take the following measures:

• We start from correct algorithms as described in the large literature on data structures
and algorithms.

• We try to document our programs carefully. This book contains many examples of
carefully documented programs. We try to document so carefully that we can show
our programs around and give them to colleagues to read. Don Knuth coined the name
“literate programming” for this style of programming.

• We test extensively and our large user community tests.

• We use program checking [SM90, BK89, BLR90, MNS+96].

In this section we concentrate on the last item. Consider a programP that computes a
function f . We call P checkableif for any inputx it returnsy, the alleged value off (x),
and maybe additional informationI that makes it easy to verify that indeedy = f (x). By
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easy to verify we mean two things. Firstly, there must be a simple programC (a checking
program) that, givenx, y, andI , checks whether indeedy = f (x). The programC should
be so simple that its correctness is “obvious”. Secondly, the running time ofC on inputs
x, y, and I should be no larger than the running time ofP on x. This guarantees that the
checking programC can be used without severe penalty in running time.

We give some examples.
Consider a program that takes anm × n matrix A and anm vectorb and is supposed to

check whether the linear systemA·x = b has a solution. As stated, the program is supposed
to return a boolean value indicating whether the system is solvable or not. This program is
not checkable. In order to make it checkable, we extend the interface.

On inputA andb the program returns either:

• “the system is solvable” and a vectorx such thatA · x = b or

• “the system is unsolvable” and a vectorc such thatcT · A = 0 andcT · b 6= 0.

The extended program is easy to check. If it answers “the system is solvable”, we check
that A · x = b and if it answers “the system is unsolvable”, we check thatcT · A = 0 and
cT · b 6= 0. Thus the check amounts to a matrix-vector and a vector-vector product which
are fast and also easy to program. We leave it as an exercise toprove that the vectorc exists,
when the system is solvable, and only remark that Gaussian elimination will produce it.

The second example is planarity testing. The task is to decide whether a graph is planar.
A witness of planarity is a planar embedding and a witness of non-planarity is a Kuratowski
subgraph. The details can be found in Section 8.7. The planarity test played an important
role in the development of LEDA. A first implementation of it was added to LEDA in 1991.
The implementation had been tested on a small number of graphs. In 1993 we were sent
a graph together with a planar drawing of it. However, our program declared the graph
non-planar. It took us some days to discover the bug. More importantly, we realized that
a complex question of the form ”is this graph planar” deserves more than a yes-no answer.
We adopted the thesis that

a program should justify (prove) its answers in a way
that is easily checked by the user of the program.

By now many functions in LEDA justify their answers and come with checkers, see Sec-
tions 5.5.3, 10.3, 10.4.3, 10.5.3, and all sections in Chapter 7.

What do we gain by program checking?
First, the answer of a program can be verified for any single problem instance. This is

much less than program verification which gives a guarantee for all problem instances, but
it is assuring.

Second, a user of a program can develop trust in the program with little intellectual
investment. A user of a linear systems solver does not need tounderstand the intricacies
of Gaussian elimination. For any program run, she can convince herself of the correctness
of the computation by a simple matrix-vector and vector-vector product. The program for
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the latter two tasks is so simple, that it is even conceivableto verify them formally. See
[BSM97] for a first example of a verified checker.

Third, a developer of a program can give compelling evidenceof its correctness with-
out revealing any details of the implementation. It sufficesto publish the interface of the
functions, to define what constitutes a witness, and to publish the checking program.

Fourth, program checking allows us to use a potentially incorrect program as if it were
correct. If a program operates correctly on a particular instance, fine, and if it operates
incorrectly, it is caught by the checker. Thus, if all subroutines of a functionf are checked,
no checker of a subroutine fires, and an error occurs during the execution off , the error
must be in f . This feature of program checking is extremely useful during the debugging
phase of program development.

Fifth, program checking supports testing. Traditionally testing is restricted to problem
instances for which the solution is known by other means. Program checking allows one to
test onany instance. For example, we use the following program (among others) to check
our algorithm to compute maximal matching in graphs (see Section 7.7).for (int n = 0; n < 100; n++)for (int m = 0; m < 100; m++){ random graph(G,n,m); // random graph with n nodes and m edgeslist<edge> M = MAX CARD MATCHING(G,OSC);CHECK MAX CARD MATCHING(G,M,OSC);}

Sixth, a checker can only be written if the problem at hand is rigorously defined. We
noticed that some of our specifications contained hidden assumptions which were revealed
during the design of the checker. For example, an early version of our biconnected compo-
nents algorithm assumed that the graph contains no isolatednodes.

The papers [SM90, BS94, SM91, BSM97, BS95, BSM95, SWM95, BK89, BLR90,
BW96, WB97, AL94, MNS+96, DLPT97] contain further material on program checking.

2.15 Header Files, Implementation Files, and Libraries

The specifications of all LEDA types and algorithms are contained in the header files in
directory LEDAROOT/incl/LEDA. In order to use a particularLEDA type or algorithms
one must include the appropriate header file.#inlude <LEDA/list.h> // to use lists#inlude <LEDA/ditionary.h> // to use ditionaries#inlude <LEDA/point.h> // to use points#inlude <LEDA/graph alg.h> // to use the graph algorithms#inlude <LEDA/geo alg.h> // to use the geometri algorithms

The implementations of all LEDA data types and algorithms are contained in the .c-files
collected in the various subdirectories of LEDAROOT/src. They are pre-compiled into
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four libraries (libL.a, libG.a, libP.a, libWx.a) which canbe linked with C++ application
programs. The section “Using LEDA” of the LEDA manual describes how this is done.

2.16 Compilation Flags

The compilation flag -DLEDACHECKING OFF turns off all checking of preconditions.
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